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Abstract
User experiments are essential for informing researchers

what an audience is seeing in a chart. User experiments are gen-
erally quite expensive in monetary value and in the time spent
getting data. It is crucial that we make the most out of the data
we get from participants. Statistically, the best practice for data
with repeated measurements is the use of (Generalized) Linear
Mixed Effects Models (GLME). These models increase the statis-
tical power, produce more reliable estimates, and provide better
interpretability for population-level and individual-level effects.
However, in the literature, a two-stage approach for analyzing
results from user experiments is commonly used. We compare
the two approaches with example data from psychophysics ex-
periments. We present a strategy on how to evolve a two-stage
analysis to a single GLME model and showcase diagnostics for
each step of that process. We adhere to the best practices of open
science and reproducible research by providing open access to all
of our code and data.

Introduction
Psychophysics research is often concerned with the edge of

perception: the line between “same” and “different”, also called
the just noticeable difference. The term “Just Noticeable Dif-
ference” describes the smallest observable change to a stimulus.
Kuroda and Hasuo [1] defined the JND in signal X formally as
the difference ∆X that is detected (on average) 75% of the time
compared to only 50% of the time, assuming the same (constant)
stimulus, i.e. ∆X = X75 −X50. Graph and visualization percep-
tion is a more applied domain, but the same considerations apply:
How different do two bars in a bar chart need to be in order for
viewers to see them as different? Lu et al. [2] examined this ques-
tion for bar, pie, and bubble charts, using the method of constant
stimuli.

While Lu et al. [2] describes an excellent experiment, its
findings could be significantly improved using a different ap-
proach to statistical modeling. In this paper, we examine different
ways to analyze data from psychophysics experiments, intending
to translate research on linear mixed models into this domain, in-
crease statistical power, and produce better estimates. Using data
from Lu et al. [2], we provide code and visualizations for mixed
effects models and compare the results of this analysis to other
commonly used methods. Different methods for modeling data
from psychophysics experiments have been discussed in other pa-
pers [3], but here we take a more expansive view: while we apply
these methods to an experiment about JNDs, the methods we dis-
cuss are applicable to many experiments in graphics and human
perception beyond psychophysics.

Analyzing Perceptual Experiments
Experimental psychophysics modeling often tries to separate

the effects of individual variation from the overall assessment.
Such concerns appear in early papers such as [4], where there
is a discussion of the best way to estimate variability in the un-
certain region between stimulus presence and absence. Even un-
dergraduate perception textbooks address this issue in some fash-
ion, discussing the difference between low and high thresholds for
reporting a stimulus compared to different individual perceptual
thresholds [5, pg 18].

There are three main options when working with individual-
level data while wanting to draw population-level conclusions:

• Naive approach Analyze all individual data using a single
summary model, ignoring the additional variability intro-
duced by combining individual-level data.

• Two-stage approach Analyze the data hierarchically, fitting
individual-level models and then summarizing individual ef-
fects in a second, population-level model.

• Hierarchical approach Analyze the data using a random ef-
fects model, where there are (random) individual-level ef-
fects and (fixed) population-level effects.

The first option, fitting an aggregate model, is perhaps the
most simple at the analysis level. In some cases, the experimenter
may design the experiment so that it is balanced, to ensure that
participant-level effects average out by having all participants ex-
perience all model conditions. This reduces some issues with es-
timates but does not usually address the correlated errors intro-
duced at the participant level. Aggregate models ignore the corre-
lation between responses from a single participant, which violates
the i.i.d. (independent and identically distributed) assumption of
almost every statistical model. This has the effect of underesti-
mating the variability in the model, which leads to overestimating
the significance and effect size while producing confidence inter-
vals with poor coverage rates. In addition, these models may be
subject to effects such as Simpson’s paradox[6], where aggrega-
tion over main effects changes the signal present in each subcate-
gory.

The second option is a more complicated approach in that it
requires the specification of errors and relationships at least two
(and sometimes more) levels of model and parameter structures.
In the two-stage approach, a model is fit for each participant, and
then some aspect of these participant-level models is used as input
to a second stage of modeling that summarizes participant-level
effects into an aggregate model. Examples include [7, 8, 9, 10,
11, 12, 13], and variations on this approach are taken in [14]. This
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approach may be intended to isolate participant and item-level
effects to produce invariant comparisons [15].

Unfortunately, the relative simplicity of the required code
masks the statistical complexity introduced by this approach, es-
pecially when additional transformations of the dependent vari-
able are introduced, as is often the case with psychophysics data.
Tracking the different error components through two stages of
modeling and necessary transformations quickly becomes a dif-
ficult and mathematically complex task. In addition, it is also
harder to interpret results from these models, as the second model
is fit with quantities derived from the first. While this is in some
ways related to the error variance issues we just mentioned, it is a
much broader problem in that it is hard for readers of papers us-
ing these two-stage approaches to grasp the details and meaning
of the second (population-level) model stage. As this stage of the
model is typically the one that is the most broadly meaningful, the
lack of interpretability is a critical flaw in the two-stage approach.

An additional problem that may occur with this approach,
especially when fitting generalized linear models, is that some re-
gression models fail to converge. While fitting hundreds of mod-
els researchers are almost certain to encounter problems with at
least some of the models. These convergence issues can often be
resolved with larger sample sizes, i.e. using more data, as is done
when fitting a single omnibus model.

Having dispensed with the first and second options listed
above, let us consider a third option: fitting a mixed-effects model.
In many ways, this option is intended to address the weaknesses
of option 1 and option 2 that have previously been identified. A
mixed-effects model allows for the estimation of population-level
effects, which are considered “fixed” - that is, they represent quan-
tities that are not a function of the sample. Fixed effects exist
in contrast to “random” effects - effects which are a function of
the sample and can be expected to differ for a different sample.
This partition is useful because it allows us to distinguish, for ex-
ample, effects that are due to human physiology (and shared in
common by all participants) from those that are due to individ-
ual participants’ skill levels or perceptual biases. The inclusion of
random effects in the model allows us to include structural terms
- for instance, we can add a participant effect, which adds an error
term for each individual participant; this has the effect of model-
ing the relatedness of all trials completed by a single individual.
More importantly, however, fitting a single model that includes
participant-level effects allows us to combine the advantages of
option 2 and option 1: we get better estimates for population-level
terms while still accommodating the individual variability that we
know exists. This produces more stable estimates for population-
level and individual-level terms and also increases the statistical
power.

Mixed-effects models are a more general category of models
that include models that are more commonly used when analyz-
ing data from perceptual experiments, such as repeated-measures
ANOVA; these models are a very simple subset of the broader
class of mixed-effects models but have strict requirements about
the types of missingness and levels of repetition required. These
restrictions often lead to multiple models being fit to different sub-
sets of the experimental data, as in [16], instead of fitting a single
overall model. Generalized mixed-effects models allow the ex-
perimenter to account for nonlinear, count, and binary/proportion
data easily using the same basic modeling framework, and are

more tolerant of imbalances in the number of observations per
condition.

Data description
Researchers in Lu et al. [2] aimed to understand how object

intensity and separation distance affect the perception of compar-
ison in common visualizations, such as bar chart and pie chart.
In this paper, we focus on the bar chart experiments and their
corresponding data in Lu et al. [2]. The perception of compari-
son is determined by measuring the “Just Noticeable Difference”
(JND) using the method of Constant Stimuli. There are 28 partic-
ipants, five equally spaced object intensity levels, and five equally
spaced separation distance levels. For each combination of par-
ticipant, object intensity, and distance, the participant is asked to
judge if bar B (comparison bar) is higher than bar A (reference
bar) in a bar chart with 10 bars. The height of reference bar A is
determined by the intensity level, the distance between bar A and
bar B is determined by the distance level, and the height of bar
B varies within a small range centered at the height of bar A and
equally spaced into 10 levels. For each level of bar B height, each
participant evaluates (approximately) 10 trials; these results are
aggregated into a probability value. The varying heights of bar B
is the Constant Stimuli, and 10 levels of bar B height can result in
10 probability values, which will later be used to fit the first-stage
model in the two-stage approach. Lu et al. [2] fits 700 individual
logistic regression models to find the JND for each combination
of participant, stimulus intensity, and distance.

Notation
The function that describes the relationship between signal

level and prediction performance is called a psychometric func-
tion [1]. Different functions can be used as the psychometric
function to fit the data. For example, logistic regression uses the
sigmoid function, and probit regression uses the cumulative distri-
bution function (CDF) of normal distribution. In some situations,
other constraints, such as anchoring points, may necessitate the
use of a different psychometric model function, as in [17]. Fig-
ure 1 shows the responses made by participant 8-91 of the initial
experiment at different signals (difference in heights of B and A)
and the fitted psychometric functions. Note that the choice of
the psychometric function form should depend on subject mat-
ter knowledge regarding signal activation, for example, activa-
tion slope, symmetry prior psychometric knowledge regarding the
subject of interest. Different choices of the psychometric function
form can affect the estimate of just noticeable differences (JND).

For logistic regression

logitP(Y = y) = µ +βx (1)

this means:

µ +βx75 = logit(0.75) = log(3)

µ +βx50 = logit(0.50) = log(1) = 0

∆X = x75 − x50 = log(3)/β (2)

Two-stage model
Lu et al fit the data in a two-stage process: first, they fit

a logistic regression for each participant’s data at each level of
distance between bars and intensity level. In the example of the
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barcharts, this fits two parameters (intercept and slope) for each
participant for each of the five levels of distance and five levels of
intensity for a total of 700 logistic regressions. From these param-
eters, a participant-level just noticeable difference is calculated as
shown in Equation 2.

In a second step, these just noticeable differences are then
combined in a linear model with covariates of distance and inten-
sity. Lu et al show that log-transforming the dependent variable
leads to better model performance.

Using this modeling approach the resulting model for just
noticeable differences shows significant effects for the distance
between bars only, while the height of the reference bar does not
factor into the model significantly.

Problems with this approach: Logistic regressions are curi-
ous models, in that the convergence of the model fails if the data is
“too good”. Figure 4 shows two examples of potentially observed
data that results in the non-convergence of logistic regression as
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Figure 1. Responses of participant 8 91 when the reference bar has height

of 150 pixels (intensity) and two bars A and B have distance of 177 pixels are

fitted using different choices of psychometric functions.
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Figure 2. Just noticeable differences for each participant estimated from

each participant’s data alone.

defined in Equation 1. In both cases, the fitted model chooses es-
timates for the slope that are very high – alternative models with
equally good model fits but far lower slope values are sketched
into the figure. Changes in the slope directly affect the estimates
for the JND values. In the example, the estimated slope values
change from 30.98 and 36.53 in the fitted models to 2.67 (purple)
and 2.54 (orange), respectively. This goes in hand with a ten-fold
difference in the associated JND values: the fitted models result
in JNDs of 0.04 and 0.03 pixels, respectively, while the alternative
fits result in JNDs of 0.41 (purple) and 0.43 pixels (orange).

As a result, the estimated JNDs from the participant-level
logistic regressions are more unstable in the case of ”too good”
data and failed convergence and will thus affect the model fitting
at the population level.

Moreover, this two-stage modeling approach introduces ex-
tra challenges for variance estimation of the estimated JND in the
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population-level model. Estimating JND at the participant level
has variances, and the variance of each estimated JND will be
carried on into the population-level model in a complex mathe-
matical form. When the population-level model is fitted, the vari-
ance from the participant-level model will be included as part of
the variance of the estimated JND at the population level, which
not only increases the variance of the population-level JND esti-
mation but also makes it harder to calculate.

Example: full hierarchical model for JNDs in
barcharts

We used the bar chart data from Lu et al. [2] to fit a
random effects model as shown below: The data set contains
28× 5× 5× 10 = 7000 observations since we have 28 partici-
pants, 5 levels for separation distance, 5 levels for height or inten-
sity of reference bars (A), and 10 levels for height of comparison
bars (B). The height difference in pixels between comparison bar
B and reference bar A is the signal to be perceived by the partici-
pants.

At the population level, model (Equation 3) fits three coef-
ficients to estimate the average individual’s ability to assess the
difference between the heights of two bars A and B. This model
depends on:

1. the difference in heights between these two bars (encoded as
signal S),

2. the horizontal distance between bars A and bars B (encoded
as distance D), and

3. the height of bar A (encoded as intensity I). Note that bar A
is the reference bar with the fixed height in the experiments.

Both distance and intensity are included using a log trans-
form. This transformation improves model performance signifi-
cantly. It is appropriate given research on human perception of
stimuli [18].

If we extend this model to account for individual effects, we
can examine both the population-level trends and the trends for
individual participants. We do this by using random effects. For
each participant j, j = 1, ...,28, we fit an intercept (u j) and an
effect in signal size S (us j). We make the usual assumptions for
random effects of normality and mutual independence, i.e. u j ∼
N(0,σ2

u ) and us j ∼ N(0,σ2
s ) i.i.d. with u j ⊥ us j for all j .

logit P(Y = 1) = βsS + βsd log(D)S︸ ︷︷ ︸
impact of distance on signal

+ βsi log(I)S︸ ︷︷ ︸
impact of intensity on signal

+ u j +us jS︸ ︷︷ ︸
participants’ effects

(3)

where S is the signal in the study, i.e. the difference in heights
between bars B and A, i.e. if S is negative, bar B is shorter than bar
A. D and I are the distance between the bars and the height of bar
A, respectively. Note that for the overall population, no intercept
is fitted, i.e. the point of (relative) subjective equality is set to zero
at the population level. Instead, we are interested in how distance
and intensity affect a viewer’s perception of differences in bars’
heights.

This model is fitted in R using the package lme4 [19] and
evaluated using package lmerTest[20]. We have also developed
an R Shiny app [21] to support users in building GLME models
from scratch.

The app: Model Buildr
The Shiny app Model Buildr assists users in connecting

the two-stage modeling approach with the GLME modeling ap-
proach. Users can construct their GLME models incrementally,
guided by prompts within the app. The process starts with a ba-
sic logistic regression for a single participant with one condition
level per condition variable. Subsequently, the app extends the
logistic regression by incorporating all levels of a chosen con-
dition variable. Users have the option to apply a log transfor-
mation to the condition variables and assess the effects of this
transformation. These steps aid users in determining the fixed
effects to include in the GLME model. Once the fixed effects
selection is complete, the app constructs a GLME model by in-
troducing random effects for bias and signal for each partici-
pant. The Shiny app Model Buildr can be accessed at https:
//csafe.shinyapps.io/Model_Buildr/

Results

Table 1: Estimates of fixed effects for the Model specified by
Equation 3

Term Estimate Std. Error Pr(> |z|)
βs 2.48 0.059 ≤ 0.00001
βsd -0.34 0.005 ≤ 0.00001
βsi -0.04 0.005 ≤ 0.00001

Table 1 gives an overview of the fitted estimates for the
model specified by Equation 3 at the population level. All fitted
effects are highly significant.

Model to calculate the just noticeable difference at the pop-
ulation level for a distance between bars of d and a height of the
reference bar of i. Let n encode the number of bars between the
two bars of interest:

JND(d, i) =
log(3)

β̂s + β̂sd log(d)+ β̂si log(i)
(4)

=
log(3)

2.48−0.34 · log(d)−0.04 · log(i)

For intensity of 240 pixels of the reference bar, and distances
of d = 9,93, and 177 between bars, the JNDs will result in Equa-
tion

With the equation for computing the JND above (Equa-
tion 4), we are able to plot the estimated population-level JND
against the variables of interest. Figure 5 plots JND vs intensity
given fixed values of distance. What we can see is that when in-
tensity (height of reference bar A) increases, the estimated JND
also increases. The 95% confidence intervals of estimated JND

Table 2: Estimated JND according to Equation 4
JND(9, 240) = 0.7293 pixels

JND(93, 240) = 1.5351 pixels
JND(177, 240) = 2.2069 pixels
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are marked by the ribbon and are calculated using the estimated
variance-covariance matrix of fixed effects and the delta method.
Note that although the effect of intensity is tiny, it is still signif-
icant, and our model with more statistical power is able to cap-
ture it. Moreover, increasing the distance between the bars of in-
terest will also increase the estimated JND. The estimated JNDs
for each individual are also plotted in Figure 5. Note that the
spread of individual lines can be considered as a representation of
the standard deviation of the individuals, which is different from
the standard errors (represented by the confidence intervals) of
the model estimates. The dashed lines in Figure 5 represent esti-
mated JND values that are extrapolated from the model. Weber’s
Law builds a proportional relationship between the JND and the
initial stimuli intensity [22], and the relationship between the esti-
mated interpolated JND and the intensity (height of reference bar
A) can be approximated by a proportional relationship. However,
the estimated extrapolated JND does not keep a proportional rela-
tionship with the intensity as shown in Figure 5. This aligns with
some research findings that suggest that Weber’s Law fails at low
intensities [23].
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Figure 5. JND vs intensity given fixed values of distance. The transparent

ribbon area shows the 95% confidence intervals for the estimated JNDs.

The black line is the estimated population-level JNDs, where the solid part

and the dashed part are the interpolation and extrapolation of the model,

respectively. Other thin lines are the estimated individual-level JNDs.

While the fixed effects in the model specified by Equation 3
allow us to calculate the JND at the population level, the fitted
random effects allow us to inspect the perceptual skill of each
participant. Adding the random effects of a participant is essen-
tially adjusting the population-level estimates based on this par-
ticipant’s performance as shown in Equation 5 and Figure 6.
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Figure 6. Predictions for the overall population (thick lines) and each of the

participants (thin lines). Random effects are predicted to adjust the slope of

the population line to reflect participants’ performance. When the distance

in the experiments reaches 345 pixels, the individual variability increases so

much that the performance of some participants is not significantly different

from random guesses (flat lines and lines with negative slopes).

JND(d, i, j) =
log(3)

(β̂s + ûs j)+ β̂sd log(d)+ β̂si log(i)
(5)

Figure 7 gives an overview of the participant-specific effects.
Participants’ perceptual skills can be measured directly from the
ordering along the slope variable: because the Just Noticeable
Difference is inversely proportional to the slope of the estimated
probability curve along the signal, the only difference in the JND
of two participants j1 and j2 is their predicted slope values ûs j1
and ûs j2 .

The light grey line segments and dots in Figure 7 are in-
tended to provide a reference on how the random effects in the
model account for individuals’ perceptual skills. All line seg-
ments are shown with respect to the overall population average
(shown in green). An increase in slope indicates that a participant
is able to spot smaller differences between the bars’ heights. The
dot next to the line segment serves as a point of reference to the
theoretical point of equilibrium (0, 0.5). When the line segment
is moving away from this point of reference, it means that a par-
ticipant is exhibiting a subjective bias: when the reference point
is on the left of the line segment, a participant has a tendency to
respond that B is not larger than A. Three participants (68-122,
191-33, and 130-90) show a strong bias in this direction. Partici-
pant 3-67 exhibits the strongest bias in the other direction, i.e. has
a tendency to respond that B is larger than A.

Responses from individuals labeled in Figure 7 are shown in
Figure 8.

Figure 9(a) is the “residuals vs fitted values” plot for the
model specified by Equation 3. The grouping structure is seem-
ingly worrying but is actually expected. It is caused by the dis-
crete levels of intensity, distance, and participants. To see how
the discrete nature of these variables leads to the structure in the
residual plot, we simulate binomial samples for each combina-
tion of intensity, distance, participants, and signal values based
on the fitted probabilities of model (Equation 3). Then the simu-
lated data is used to fit a model with the same model structure as
model (Equation 3), and its residual plot is shown as Figure 9(b).
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ipant’s perception.

The original data of Lu et al. [2] reveal that some combinations
of intensity, distance, participants, and signal values do not have
exactly 10 trials, but the simulated data are sampled with fixed 10
trials for each combination. This difference results in the fact that
every point in Figure 9(b) can fit in one of the diagonal structures.
And we can see from the comparison of the two residual plots
that the diagonal structure is caused by the discrete nature of the
variables.

In Figure 10, the fitness of the GLME approach and the two-
stage approach is compared at the population level. The red dots
represent the average probability of predicting that the compari-
son bar is higher for the 28 participants across all combinations
of intensity and distance. And the grey dots represent the prob-
abilities of each individual. The population-level predictions are
made by the fixed effects of the GLME model (solid lines) and
the second-stage model of the two-stage model (dashed lines).

What we see from our comparisons between the GLME ap-
proach and the two-stage approach is that the two-stage model
has some advantages in fitting the data at the individual level.
The reasoning behind this lies in the structural design of these
models: the two-stage approach fits a logistic regression model
for each combination of distance, intensity, and individual, while
the GLME approach pulls information across various individuals
when making individual-level predictions. However, Figure 10
shows that the GLME model is more effective in capturing the
population-level trend for most combinations of the two variables,
which aligns with the core objective of the study and allows for
broad generalization.

Discussion
In this paper, we demonstrate the advantages of model-

ing psychophysical data using a generalized linear mixed-effect
model (GLMM). The two-stage modeling approach is widely
used in the field of psychophysics and is taken by Lu et al. [2].
This approach fits individual-level models first and then builds
a single population-level model based on the individual effects.
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Figure 9. (a) Residual plot for the original data and our proposed model. (b)

Residual plot for the simulated data and our proposed model. The simulated

data are binomial samples with fixed 10 trials and fitted probability for each

combination of intensity, distance, participants, and signal values. The com-

parison of the two residual plots show that the diagonal structures presented

in the residual plots are actually expected and are caused by the discrete

nature of the variables.
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Figure 10. Comparison of the fitness of the GLME approach and the two-

stage approach at the population level. The red dots show the average pre-

diction results of the 28 participants. The fitted population-level curves of the

GLME approach and the two-stage approach are presented with solid lines

and dashed lines, respectively.

We show that a mixed-effect model provides more benefits than
fitting a two-stage model. Although the two-stage modeling ap-
proach has some advantages in fitting the individual-level data, it
cannot effectively capture the dependence structure in data of the
same participant and performs worse in estimating the scientif-
ically more important population-level effects. A mixed-effect
model considers individual-level effects as random effects and
population-level effects as fixed effects and incorporates both in
one single model, which provides more statistical power and bet-
ter interpretability.

We also developed a shiny app called Model Buildr, which
makes it easier for researchers to identify the model, the variables,
and the cognitive settings and apply the mixed-effect method to
their own topics. This shiny app captures lots of datasets and can
be used for many other similar studies.

The data set we used here is from Lu et al. [2]. Using the
two-stage approach, Lu et al. [2] fitted a logistic regression to
compute a JND for each combination of distance, intensity and
participant, and then used the estimated JND as the response vari-
able to build a population-level model. Using the mixed-effect
model approach, we can include and analyze both population-
level and individual-level effects in just one model.

Lu et al. [2] did not find the effect of intensity significant
with the two-stage modeling approach. And log-transformation
of JND was needed at the population-level model to stabilize
the variance. With more statistical power, the mixed-effect
model does find the effect of intensity tiny but significant. Log-
transformation was applied to variables intensity and distance to
align with research on human perception of stimuli [18].

Note that in the original experimental design of Lu et al. [2],
the ranges of signal values are the same across different intensity
levels for each distance level. But for each intensity level, the
ranges of signal values increase as the distance increases. This
means that, for a fixed intensity level, more signals are presented
to participants as the distance increases; however, for a fixed dis-
tance level, the amount of signals in pixels remains the same
across different intensity levels. This design conceals the effect of
intensity, especially for the participants who are not good at the
task. For example, participant “100 119” in Figure 8 was not able
to properly spot the difference in height for bar A and B with the
current experimental setup when the distance is 345 pixels. The
range of signals should have been enlarged to a point where even
participants not good at the task can spot the difference. Since the
effect of intensity is potentially concealed by the setup, a model
with more statistical power is needed in order to find the signifi-
cant effect of intensity.

Moreover, the mixed-effect model provides better inter-
pretability. For example, if the distance between bar A and bar
B increases from 100 pixels to 200 pixels, the task of deter-
mining the higher bar becomes more difficult. As a result, the
estimated population-level JND increases, and the slope of the
predicted probability curve decreases by approximately 0.1554
(= β̂D(log(200)− log(100))). The decrease of the slope can then
be translated into the following statement: on average when bar
B is one pixel higher than bar A, the odds of predicting bar B
is higher will decrease by 14.39% (= 1− 1/exp(0.1554)) if the
distance between the two bars increases from 100 pixels to 200
pixels.
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The following formula calculates the change of JND:

log(3)
β

− log(3)
β + c

=
log(3)

β

c
β + c

(6)

We really appreciate the efforts of Lu et al. [2] for mak-
ing their work open source. These efforts of Lu et al. [2]
and other researchers make the discussion about various meth-
ods and potential improvements possible. We emphasize the im-
portance of open science since it promotes reproducibility of the
work, accessibility for the public, and collaboration for future
research. It allows researchers to share their insights, collabo-
rate, and build upon each other’s work. Our work is publicly
available at: https://github.com/willju-wangqian/one_

model_that_fits_them_all The world of open science will
be constructed by more and more such efforts and contributions
from the community.
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