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Abstract
Videokymographic (VKG) images of the human larynx are

often used for automatic vibratory feature extraction for diagnos-
tic purposes. One of the most challenging parameters to evaluate
is the presence of mucosal waves and their lateral peaks’ sharp-
ness. Although these features can be clinically helpful and give
an insight into the health and pliability of vocal fold mucosa, the
identification and visual estimation of the sharpness can be chal-
lenging for human examiners and even more so for an automatic
process. This work aims to create and validate a new method that
can automatically quantify the lateral peak sharpness from the
VKG images using a convolutional neural network.

Introduction
Videokymography is one of the fast-growing fields of vocal

cords vibration visualization techniques. The method uses a line
scanner camera to visualize a vibratory pattern of the larynx and
its neighboring tissue (Figure 1). Vertically stacked scanned lines
create a spatial-temporal videokymographic image (see Figure 2).
Physicians use this visualization to evaluate the vibration charac-
teristics of the vocal folds for diagnostic purposes, often with the
help of an automatic software tool capable of extracting the es-
sential characteristics and features [1]. The line scanner camera
operates with a frequency of 7200 fps and typically produces 25
VKG images every second [2, 3]. Due to a large amount of data,
VKG images are suitable for computer processing.

A phase difference between the movement of the lower and
upper vocal cord edges causes the mucosal wave on the medial
surface of the vocal cords. In the VKG images, a significant phase
difference appears as a double contour during the glottis closure
phase and as sharp lateral oscillation peaks (refer to Figure 3). If
the phase difference between the upper and lower vocal cord mar-
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Figure 1. Videokymography examination of the patient. The whole videoky-

mographic frame comprises a 2D space image of the vocal fold (left side) and

the temporal image of the scanned middle line highlighted in white in the 2D

image (right side).

Figure 2. Videokymographic images, where the vertical axis represents the

temporal and the horizontal axis denotes the spatial domain. Here we see

three different types of sharpness from left to right - sharp, rather rounded,

and rounded.

gins is relatively small, it will show up as a restricted glottal wave
and rounded lateral peaks in the VKG images. The occurrence
and the shape of mucosal waves on the vibrating vocal cords are
crucial indicators of larynx health conditions.

The performance of deep learning systems increased signif-
icantly in the last few years. In some areas, the machine learning
approach exceeds the actual human experts. The main goal of this
study is to verify the usability of deep learning for mucosal wave
presence detection and the sharpness evaluation of waves’ lateral
peaks, one of the most complicated tasks in videokymographic
image analysis.

In lateral peak sharpness assessment, manual ratings of the
same images can vary between the examining experts; even single
human professional evaluations may differ when repeated. Sev-
eral influences cause these inconsistencies in rating, such as dif-
ferent levels of experience, length of practice, or such a trifle as
the order of individual images. The combination of all these can
bias the final assessment.

Related Work
Several researchers focused on the mucosal wave properties

automatic estimation from the Videokymographic images [4, 5,
6], but due to its complexity, only a few have addressed the wave
lateral peak sharpness.

Jiang et al. in 2000 [7] used an indirect method of peak
sharpness estimation by quantifying the vertical phase difference
using a sinusoidal model approximation. Although the method is
correct in theory, the more complex shapes of the glottal contour
are hard to process or interpret.

Yamauchi et al. [8] choose a different approach. They de-
fined a Lateral Peak Index as an angle formed by two lines be-

IS&T International Symposium on Electronic Imaging 2023
Image Processing: Algorithms and Systems XXI 300-1

https://doi.org/10.2352/EI.2023.35.9.IPAS-300
© 2023, Society for Imaging Science and Technology



Figure 3. Mucosal wave as viewed on the VKG image. The blue arrows

denotes the mucosal wave and the red marking shows the lateral peak

tween the start of the open phase and the lateral peak; and between
the lateral peak and the end of the open phase. They quantified the
sharpness of the lateral peak using the defined index. The draw-
backs of this approach are that the index is sensitive to unrelated
factors and discounts the changes of curvature of the vocal fold
waveform that influence peak sharpness.

In [9], the researchers proposed four quotients that are good
indicators of lateral peak sharpness. A set of proposed quotients
was automatically calculated from the glottal contour line using
the VKG Analyzer tool [1]. Four of the derived quotients had
the best correspondence with the visual ratings of human experts,
namely, PQ95, PQ80, OT Q95, and OT Q80. They are the variants
of the Plateau Quotients, defined as the proportion of time dur-
ing which the vocal fold displacement exceeds R% of vibration
amplitude within the open phase (denoted as PQR) and the Open
Time Percentage Quotients, defined as the proportion of time dur-
ing which the vocal fold displacement exceeds a chosen percent-
age (R) of the vibration amplitude within a period (denoted as
OT QR).

All the publications mentioned above attempted to estimate
the sharpness of lateral peaks from VKG images using conven-
tional image processing and mathematical approaches. To our
knowledge, no other teams pursued this topic using a machine
learning system.

Figure 4. Cropped parts of videokymograms for sharpness classification;

from left to right - sharp, rather sharp, rather rounded, and rounded.

Methodology
The proposed automatic mucosal wave lateral sharpness es-

timation method is defined as a deep learning classification task
using a convolutional neural network (CNN). The technique uses
fine-tuning of a pre-trained CNN architecture, trained on a set of
data from a given application domain, in our case, videokymo-
grams. The final system works with two same neural networks
with different trained weights. The first one classifies the lateral
peaks of a videokymogram into one of four classes of sharpness
[sharp, rather sharp, rather rounded, rounded]; see the examples
in Figure 4. The second one estimates the mucosal wave length
into one of four ranges [0-25%, 25-50%, 50-75%, 75-100%].
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Figure 5. Cropping of the neighborhood of the lateral peak.

After trying and testing several different approaches, the best
results were achieved using the following pipeline: We took ad-
vantage of the fact that videokymograms typically contain several
visually almost identical vocal cord opening and closing cycles.
Using a VKG Analyzer tool [1], we segment the vocal folds and
detect significant points (lateral peaks, opening, closing). That
gives us the beginning and end of each cycle. Within each cycle,
we cropped the local neighborhood following these coordinates
[xl −a : xl +b,yl − c+1 : yl + c]; where [xl ,yl ] represents the lat-
eral point of a particular cycle. The graphic representation is in
Figure 5.

A neural network subsequently classifies these cropped parts
one after the other. In this way, we detect the relevant features sep-
arately for each cycle. The resulting overall value for the whole
videokymogram is the most frequent (mode) for both the right and
left sides. Additionally, the agreement of the results on individual
cycles within a videokymogram determines the reliability of the
estimation.

Parameters a, b, and c need to be set according to the size of
one cycle in the image (in pixels). Gender, length of the throat, or
the frequency of the vocal cords, is one of the main factors which
cause these differences. We can normalize the whole image or
adapt the size of the cropping. In our case, we selected images
with similar sizes of cycles from different examinations of pa-
tients. Therefore we could set up the values globally as a=10,
b=40, and c=16. No other normalization of size was needed.

We used MobileNetV2[10] with the Adam[11] optimizer al-
gorithm as the backbone of our algorithm for its advantage of few
parameters and few operations, which leads to easy implemen-
tation, fast inference, and not demanding hardware. The same
neural network architecture and dataset were used to automati-
cally estimate the lateral peak’s sharpness and mucosal waves’
presence. We trained the system on the left and right halves of the
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Figure 6. Schematic representation of our method. The first step is a specific pre-processing operation (image enhancement and normalization). Then we cut

individual complete cycles from the left and right sides of the kymogram. The cropped data is sent to CNN for sharpness and mucosal wave length classification

in the next step. The final decision is to find the most common class on both sides.

videokymogram together, with the left side first rotated around
the vocal tract axis to the same position as the right side. Figure 6
shows the whole pipeline.

Dataset
All data used in this study are from examinations performed

on patients of different ages, gender, and health conditions at the
Voice and Hearing Centre, Medical Healthcom, Ltd, Prague. All
VKG images come from the second generation VKG camera (Ky-
mocam, CYMO, b.v. Groningen, the Netherlands) with a combi-
nation of different connected laryngoscopes, objective adapters,
or light sources. We used two vocal cord specialists from the
same department to evaluate the images.

The robustness of the CNN-based approach strongly depends
on the quality of the training set used. Therefore, we have focused
on data collection and subsequent annotation using the proposed
web annotation tool we created for this task, see Figure 7. Using
this tool, we could randomly display individual images to experts
and store their sharpness ratings. For control, we showed each
image several times in random order. In the resulting database,
we only included images on which the experts agreed.

After this evaluation, our database consists of 319 expert-

Figure 7. A screenshot from the proposed tool used for the training dataset

manual annotations. Annotators evaluated the sharpness of left and right

lateral peaks and the level of mucosal wave length (percentage denotes the

distance to the neighboring tissue, see Figure 3 for illustration of 100% wave).

rated VKG images from clinical records. The images were pro-
cessed and analyzed by VKG Analyzer software [1], and particu-
lar cycles were extracted and saved for subsequent sharpness anal-
ysis. In this way, a database of 3695 cropped parts with a size of
32x50 pixels was created, which was then divided into training

Figure 8. The confusion matrices between professional physicians and the

convolutional network in wave presence detection. The tables show the

evaluated features’ precision, recall, and accuracy. Professional physicians’

ratings are on the vertical axes and the proposed method results on the hor-

izontal axis. The upper table belongs to the left side of the vocal cord, the

lower to the right.
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Figure 9. The confusion matrices between professional physicians and

the convolutional network in lateral peak sharpness. The tables show the

evaluated features’ precision, recall, and accuracy. Professional physicians’

ratings are on the vertical axes and the proposed method results on the hor-

izontal axis. The upper table belongs to the left side of the vocal cord, the

lower to the right.

and test parts in a ratio of 3:2. Examples of individual sharpness
classes can be seen in Figure 4. Due to the vocal cords’ symme-
try, we could evaluate the left and right vocal cords simultane-
ously. The results of our method on the validation set in the form
of confusion matrices can be seen in the following section of this
document.

Results
The network performance results are presented in the form of

confusion matrices. Figures 8 and 9 show both evaluated features’
values for the left and right sides. The vertical axis corresponds
to the ground truth value determined by the expert (values 0 to 3),
while the horizontal axis corresponds to the values determined by
the machine learning algorithm. The integer values in the con-
tingency table correspond to the number of cases (combinations
of expert and algorithm values). Numbers below the combina-
tion values are the same values normalized to the sum of one,
row-wise. The rightmost column shows the recall values, and the
bottom row shows the precision values. The bottom right corner
then displays the overall percentage of exact match (accuracy).
Then we wanted to compare the ratings of two junior evaluators
with our professional physicians. The results of this comparison
are shown in Figure 10; the interpretation is the same as in Figure
8.

Finally, the proposed machine learning algorithm achieves
an accuracy of 0.54 and 0.61 for right and left lateral peak sharp-

Figure 10. The performance comparison of the junior evaluators’ ratings

vs. the professional physician. The table shows the professional (ground

truth) on the vertical axis and the examining rater on the horizontal axis. The

bottom right corner denotes the overall accuracy. The upper table belongs to

the left side of the vocal cord, the lower to the right.

ness, which exceeds the match of success of junior evaluators
(0.52 and 0.55). Similarly, compared to junior evaluators’ val-
ues, it improves the rating for wave length, reaching an accuracy
of 0.51 and 0.50 for the left and right sides. The system’s per-
formance will improve in the future through our continuous fine-
tuning of the network with newly acquired data. We consider this
to be the study’s main result, as it will allow us to automate and
objectify the estimation of an important parameter for evaluating
the condition of the vocal cords.

Conclusion
We have developed a CNN-based tool for automatically es-

timating lateral peak sharpness and the mucosal wave length in
videokymograms. The performance of this tool was evaluated on
a small dataset, and the results indicate that the proposed method
can accurately assess the sharpness of lateral peaks, and the level
of accuracy is higher or comparable to that of non-specialists.

In addition, when trained on a more extensive and diverse
dataset, we expect significant improvements which will be ap-
proaching accuracy achieving professional physicians. In that
case, we could handle a more comprehensive range of videoky-
mograms and accurately assess the sharpness of lateral peaks in
a broader range of vocal conditions. Overall, this tool shows
promise as a reliable and efficient method for evaluating the health
and function of the vocal cords.
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[6] S. Pravin Kumar and Jan G. Švec, “Kinematic model for simulat-
ing mucosal wave phenomena on vocal folds,” Biomedical Signal
Processing and Control, vol. 49, pp. 328–337, 3 2019.

[7] Jack J. Jiang, Ching I.B. Chang, Joseph R. Raviv, Sameer Gupta,
Franklin M. Banzali, and David G. Hanson, “Quantitative study of
mucosal wave via videokymography in canine larynges,” Laryngo-
scope, vol. 110, pp. 1567–1573, 2000.

[8] Akihito Yamauchi, Hisayuki Yokonishi, Hiroshi Imagawa, Ken-Ichi
Sakakibara, Takaharu Nito, Niro Tayama, and Tatsuya Yamasoba,
“Quantitative analysis of digital videokymography: A preliminary
study on age- and gender-related difference of vocal fold vibration
in normal speakers,” 2015.

[9] S.P. Kumar, K.V. Phadke, J. Vydrová, A. Novozámský, A. Zita,
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