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Abstract 
The present study addresses the issue of automatic analysis and 

noise reduction in dental X-ray images obtained through the Morita 
system. These images are characterized by spatially correlated 
noise with an unknown spectrum and varying standard deviation 
across different regions of the image. To address this issue, we 
propose the utilization of two deep convolutional neural networks. 
The first network estimates the spectrum and level of noise for each 
pixel of a noisy image, predicting maps of noise standard deviation 
for three different image scales. The second network utilizes these 
maps as inputs to suppress noise in the image. Results obtained 
using both modeled and real-life images demonstrate that the 
proposed networks achieve a peak signal-to-noise ratio (PSNR) for 
dental X-ray images that is 2.7 dB better than the state-of-the-art 
denoising methods.  

Introduction  
Dental X-ray images are commonly used in the field of 

dentistry for the diagnosis and treatment of dental conditions. 
However, these images often contain noise that can negatively 
impact their diagnostic value. This noise on the images can be 
spatially correlated and may have an unknown spectrum and varying 
standard deviation across different regions of the image [1]. In this 
paper, we propose a novel approach for the automatic analysis and 
noise suppression of dental X-ray images obtained through the 
Morita system [2].  

Dental X-ray images obtained through the Morita system 
undergo image processing that includes interpolation and geometric 
distortions [2]. As a result, the standard deviation of noise in these 
images varies across different regions. Additionally, the noise is 
spatially correlated and may have different spectra across different 
images. Furthermore, these images may contain frames and other 
artifacts of artificial origin which complicates a blind analysis of 
noise characteristics [2]. 

The noise suppression in digital images has been a central task 
in image processing for several decades [1]. Recently, convolutional 
neural networks (CNNs) have emerged as a powerful tool for image 
denoising, surpassing the capabilities of the human visual system [3-
5]. However, these CNNs are effective in suppressing noise only 
when they have been trained with specific characteristics. 

For example, the DRUNet [3] model is trained to suppress 
additive white Gaussian noise (AWGN) and requires a two-
dimensional map of noise standard deviation (STD) values as an 
input. This map has to be estimated [6] using a separate method, 
such as SDNet, or be a priori known. The use of this map allows the 
DRUNet to effectively suppress noise with varying STD across an 
image. However, the DRUNet is not capable of effectively 
suppressing spatially correlated noise. 

Some other CNNs, such as VDNet [4], do not require a noise 
map as an input, but instead evaluate it automatically. However, this 
comes at the cost of being limited to the noise spectrum and 
distribution for which the network was trained. The authors of 

VDNet provide two pre-trained models for AWGN and "real-life" 
noise, as trained on the SIDD image set. 

The DRUNET+NLNET+M2 method [7] is efficient for the 
suppression of spatially correlated noise with an unknown spectrum, 
but it assumes that the noise spectrum and level are constant across 
the entire image. 

Thus, there are currently no completely blind methods that 
provide reliable results for removing noise with a variable level and 
spectrum that are a priori unknown. 

An approach we are proposing in this paper utilizes CNN to 
estimate a spectrum and level of noise for each pixel of a noisy 
image, and to predict maps of noise standard deviation for three 
different image scales. These maps are later used as inputs for a 
second CNN, which suppresses the noise in the image. We evaluate 
the performance of our proposed method using both modeled and 
real-life dental X-ray images.  

 We evaluate the performance of our proposed method using 
both modeled and real-life dental X-ray images and show that it 
outperforms the state-of-the-art denoising methods. This research 
has the potential to improve the diagnostic value of dental X-ray 
images and, ultimately, benefit patient care. 

Proposed method of noise analysis and 
suppression 

In practice, not only the standard deviation of noise but also its 
spectrum is often unknown and non-stationary. This presents a 
challenge for denoising methods, as they typically rely on specific 
assumptions about the noise characteristics.  

For example, as shown in Fig.1(a), the noise in an image 
obtained through phase imaging [8] is spatially correlated in the 
center of the image but is almost white near image corners. The 
standard deviation of noise is low in the center and increases towards 
the corners, and the distribution is near Gaussian in the center but 
becomes non-Gaussian (heavy-tailed) near the corners. 
Additionally, the noise at the corners can be considered as 
impulsive. In such cases, neither CNNs trained for noise with a 
specific distribution and spectrum, nor methods for estimating a 
noise standard deviation map, are effective. 

  

 
a 

 

b 
Fig. 1. Examples of images with unknown noise characteristics 
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Fig. 2. An example of a real noisy dental image 

 
Fig.  3. A procedure of estimation of noise spectrum and levels as three maps of STD values for three different image scales

Another example is shown in Fig.1(b), where an image 
obtained through an image processing chain in the Canon EOS 250D 
digital camera. This image is automatically combined from several 
noisy images with a block matching procedure, resulting in visible 
residual spatially correlated noise with an unknown spectrum. The 
standard deviation of noise differs across different regions of the 

image, and the noise is partially smoothed due to a lossy JPEG 
compression. 

In this study, we specifically consider the task of denoising of 
dental X-ray images of Morita system [2], such as the one shown in 
Fig. 2. The noise in these images is spatially correlated, and the 
standard deviation of noise varies across different regions. 
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Fig.4. Structural scheme of the proposed blind denoising 

 
Fig.5. Example of image with spatially correlated noise and noise spectrum (STD maps for three scales) estimated by NSPNet. True spectrum: σ1=10, σ2=8.5, 
σ3=5.7. Estimated spectrum: σ1=9.7, σ2=8.3, σ3=5.7

The proposed approach is based on the idea of obtaining maps 
of standard deviation levels for three different image scales (Fig. 3). 

This will provide a three-values estimate of the noise spectrum 
for each pixel, which, although rough, may be sufficient for an 
effective noise suppression.  

The proposed method is based on two CNNs (see Fig. 4), which 
are trained and applied successively. However, the CNNs can be 
applied separately for usage in other tasks of image processing. 
Architectures of both CNN are like those in the DRUNet [3].   

The first CNN (NSPNet) in the pair predicts three two-
dimensional STD maps of noise: for a full-size image (“STD 
map1”), for the image downscaled two times (“STD map2”), and for 
the image downscaled four times (“STD map3”). Together, these 
three noise maps provide an estimate of noise spectrum and noise 
STD for each pixel of the image.  

The second CNN (GDNet) suppresses the noise, taking as 
inputs noisy image and estimated STD map1, STD map2 and STD 
map3. The maps “STD map2” and “STD map3” are also connected 
to inner layers of the network, which process the corresponding 
image scales.  

For training of GDNet we used STD maps estimated by already 
pre-trained NSPNet. It provides an additional robustness to the 
trained GDNet. 

Matlab scripts with detailed structure of the designed NSPNet 
and GDNet are available in https://ponomarenko.info/ddxi.html. 

Training of the proposed networks 
For training of NSPNet, we used noise-free images with 

artificially added noise. In this way, ground truth maps “STD 
map1”, “STD map2”, and “STD map3” were known.  

To train the NSPNet, we selected 4238 images from various 
datasets as described below. We utilized 1000 images from the 
Tampere21 image database [9], which comprises of 1000 near 
noise-free color images. The second set of 1000 images has been 
selected from four datasets: KonIQ10k [10], FLIVE [11], NRTID 
[12], and SPAQ [13]. The merged mean opinion scores (MOS) [14] 
of these four databases were used to select high-quality images with 
the best MOS values. The remaining images were collected from 
various sources: 217 images from the Flickr2K database [15], 123 
images from the Waterloo Exploration Database [16], 103 images 
from the DIV2k database [17], and 1795 images from various photo 
hostings. The KonCept512 metric [30], pre-trained on six databases 
(KonIQ10k [10], Live-in-the-Wild [18], FLIVE [11], NRTID [12], 
HTID [19], and SPAQ [13]), was used to collect high-quality images 
from the above-mentioned image sources. 
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For the simplicity of noise modeling in the training sets, 
spatially correlated noise was modeled as n⊗k, where n represents 
the noise and k represents a rotationally symmetric Gaussian low-
pass filter with a standard deviation σk. According to this model, the 
noise level is characterized by the σ value, while the degree of 
correlation between noise values in neighboring image pixels, 
referred to as the “noise grain”, is characterized by the σk value. 

In the training data, 20% of the noise was AWGN, 60% was 
spatially correlated noise with varying levels of correlation, and 
20% was high-frequency noise.    

7% of the noise was additive noise with a constant STD, 7% 
was multiplicative noise with a constant STD, and 7% was Poisson 
noise with a constant STD. The remaining 79% was additive noise 
with a STD map of a randomly selected shape. 

Mean variance for a given patch was selected as (40 
abs(randn))², where abs(x) represents the absolute value of x, randn 
is a Matlab function that generates a random value with a Gaussian 
distribution and standard deviation of 1. 

This training provided the NSPNet with the ability to 
effectively estimate the noise spectrum and level in a blind manner. 

The GDNet was trained on the same patches with input STD 
maps estimated by the pre-trained NSPNet. This training scheme 
provided the GDNet with partial robustness to estimation errors 
made by the NSPNet. 

The training was carried out in the Matlab 2022 environment 
using a custom training loop, resulting in 100,000 iterations with a 
minibatch size of 32. Mean squared error (MSE) was used as the 
loss function to minimize the number of outliers in the STD maps 
estimates. Pre-trained NSPNet and GDNet are available in 
https://ponomarenko.info/ddxi.html.  

Analysis of effectiveness of the proposed 
NSPNet 

To evaluate the quality of the NSPNet training, we applied the 
network to estimate the standard deviation of AWGN with a 
constant STD. Table 1 presents the results of a comparison of the 
NSPNet with the best methods for this task (using the same image 
set as in the SDNet paper [9]). The results show that the NSPNet 
demonstrates estimation precision that is very close to the state-of-
the-art SDNet network, which was specifically designed for 
AWGN. 

Table 1. Relative error of STD estimation of AWGN with a 
constant STD  

σ IEDD 
[20] 

PCA  
[21] 

WTP 
[22] 

VDNet 
[4] 

SDNet 
[9] 

NSPNet 

3 0.407 0.573 0.507 1.782 0.150 0.192 
5 0.204 0.274 0.269 0.905 0.094 0.091
7 0.114 0.166 0.174 0.559 0.062 0.050

10 0.073 0.097 0.122 0.323 0.034 0.028
15 0.071 0.053 0.075 0.168 0.013 0.021
20 0.077 0.038 0.057 0.105 0.016 0.020
30 0.114 0.036 0.055 0.066 0.011 0.012 
50 0.157 0.069 0.103 0.089 0.009 0.009
75 0.207 0.172 0.176 0.150 0.007 0.009 

 
Figure 4 illustrates an example of noise spectrum and level 

estimation by the NSPNet for an image with a spatially correlated 
noise with a fixed STD. The median values of the STD for the 
ground truth STD maps and the estimated STD maps (σ1, σ2, and σ3) 
can be compared. For this image, the NSPNet estimates the noise 

spectrum with a high degree of precision. A visual analysis of the 
estimated maps confirms that image fine details and textures 
introduce minimal errors in the estimated STD maps.   

Analysis of effectiveness of noise 
suppression by the proposed approach 

We modeled the noise typical of X-ray images obtained 
through the dental Morita system. The noise consists of a mixture of 
spatially correlated additive Gaussian noise with σ=2 and spatially 
correlated Poisson noise, as well as geometric distortions. This 
model was used to generate 20 sets of 3 noisy images (with 3 
different noise spectra) for 20 manually selected ground truth noise-
free images. 

Fig.6 shows example of simulated noise free and noisy images 
with a noise like in dental X-Ray images with σk=0.9. 

 

  
Fig. 6. Simulated noise free image and simulated noisy image with a noise 
from dental X-Ray image 

The test set generated was used to compare the proposed 
NSPNet+GDNet with several state-of-the-art denoising methods. 
The results are presented in Table 2. The parameter σk in this context 
is related to the degree of correlation or “grain” of the spatially 
correlated noise. 

Table 2. Denoising of simulated noise for dental X-Ray images 
for 3 different level of noise correlation, PSNR, dB 

Denoiser σk=0.7 σk=0.8 σk=0.9
Noisy image 29.2 29.2 29.2 
NSPNet+GDNet 36.5 36.5 36.7
DRUNet with a fixed STD map [3] 35.2 34.6 34.0 
Nonlocal Mean with a fixed 
threshold [23] 

33.9 33.4 32.9 

Edge-preserving Gaussian 
bilateral filter (Matlab) 

33.5 33.4 33.2 

DCT Filter with a fixed threshold 
[24] 

33.3 32.8 32.3 

Wavelet Filter with a fixed 
threshold (Matlab) 

31.8 31.5 31.2 

DRUNET+NLNET+M2 [7] 30.2 29.9 29.7 
Restormer, sigma 25 [5] 30.2 29.9 29.8
Restormer, blind [5] 29.2 29.2 29.2 

  
It is noteworthy that both blind and fixed-sigma versions of the 

state-of-the-art Restormer denoiser [5] do not perform well in this 
case, as they were trained for AWGN. We have not included many 
contemporary noise reduction techniques in this table because they 
leave the noise almost untouched. 
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Fig. 7. Example of denoising of real-life dental image of Morita system 

In contrast, the combination of NSPNet + GDNet is effective 
and provides a peak signal-to-noise ratio (PSNR) that is better than 
that of the DRUNet by up to 2.7 dB for larger noise correlations. 

Fig. 7 illustrates the result of denoising a fragment of a real-life 
dental X-ray image obtained through the Morita system. There is no 
visible residual noise in the denoised image. 

Conclusions 
In this paper, we proposed a novel approach for blind denoising 

of dental X-ray images that are distorted by spatially correlated 
noise with unknown spectrum and standard deviation that varies for 
different image regions. We proposed two deep convolutional 

neural networks, NSPNet and GDNet, that allow us to provide an 
efficient solution for this problem. 

The NSPNet estimates spectrum and level of noise for each 
pixel of a noisy image, predicting maps of noise STD for three image 
scales. The GDNet uses these maps as inputs to suppress noise in 
the image.  

We tested our approach on a set of simulated dental X-ray 
images and compared it to the state-of-the-art denoising methods. 
The results showed that our proposed approach provides PSNR that 
is better than other modern denoising methods by over 2.7 dB.  

The proposed approach is highly effective and can be used to 
denoise any kind of spatially correlated noise with unknown 
spectrum and standard deviation that varies for different image 
regions. Our method is general enough to be adapted to other 
imaging modalities and is expected to have a wide range of 
applications in various fields such as medicine, biology, and 
materials science. 
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