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Abstract
Image classification is extensively used in various applica-

tions such as satellite imagery, autonomous driving, smartphones,
and healthcare. Most of the images used to train classification
models can be considered ideal, i.e., without any degradation ei-
ther due to corruption of pixels in the camera sensors, sudden
shake blur, or the compression of images in a specific format.
In this paper, we have proposed a novel CNN-based architec-
ture for image classification of degraded images based on inter-
mediate layer knowledge distillation and data augmentation ap-
proach cutout named ILIAC. Our approach achieves 1.1% and
0.4% mean accuracy improvements for all the degradation lev-
els of JPEG and AWGN, respectively, compared to the current
state-of-the-art approach. Furthermore, ILIAC method is efficient
in computational capacity, i.e., about half the size of the previ-
ous state-of-the-art approach in terms of model parameters and
GFlops count. Additionally, we demonstrate that we do not nec-
essarily need a larger teacher network in knowledge distillation
to improve the model performance and generalization of a smaller
student network for the classification of degraded images.

Introduction
Imaging is vital in various areas, such as smartphones, as-

tronomy, medical, robot vision, and self-driving vehicles. A wide
variety of research is performed on computer vision tasks where
images can be considered ideal; in this paper, we refer to them
as clean images. However, different imaging sensors or cameras
captured data can be degraded for several reasons, such as motion
blur, low-light conditions, and image compression. Hence, the
performance decreases when the camera sensor data is non-ideal
or degraded. Furthermore, most of the research in the computer
vision field is aimed at solving clean images task and can perform
poorly when the image quality is degraded [2, 3, 4, 5].

There can be a wide variety of degradations possible in the
real world. For example, (1) JPEG compression performed in
camera sensors or post-processing pipelines can lead to lossy
pixel information. (2) Random noise can occur in an image due to
low light or extreme conditions. (3) While taking a photograph,
an image can be blurred due to a sudden shake in the camera sen-
sor. (4) Due to defective memory hardware or camera sensor de-
fects, image pixels can be corrupted. This paper mainly deals
with the image classification task of computer vision. To sys-
tematically simulate and measure the performance in the degra-
dation conditions of image classification, we have discussed two
types of degradation: JPEG and additive white Gaussian noise
(AWGN), similar to the degradation methods used in the exper-
iments of Endo et al. [2, 3, 4]. JPEG and AWGN compression
degradation levels vary between 0 - 100 and 0 - 50, respectively.

(a) JPEG degradation where 70, 40, and 10 represent
quality factors levels.

(b) Additive white Gaussian noise (AWGN) degradation
where 10, 20, and 30 represent noise levels.

Figure 1: Sample images for different degradation levels on JPEG
and AWGN degradation methods.

Figure 1 shows what the input image looks like for two degrada-
tion methods and different degradation levels.

Large models cannot be adequately deployed in limited hard-
ware applications. However, as far as we know, no previous re-
search has investigated the computational efficiency of the meth-
ods proposed to solve the different tasks of computer vision on
degraded images. In this paper, we measure the efficiency of the
proposed model in terms of model parameters and GFlops count.
Additionally, rather than increasing the size of our network, we
proposed an efficient architecture based on the Intermediate Layer
knowledge dIstillAtion and Cutout (ILIAC) to improve the model
performance as discussed in section Proposed Method.

The main contributions of our work are summarized as fol-
lows:

1. We introduced a novel knowledge distillation-based ap-
proach with a cutout method of data augmentation for image
classification of degraded images that achieves state-of-the-
art performance on the CIFAR-100 dataset for the JPEG and
AWGN degradation methods.

2. We empirically demonstrate that the cutout approach of data
augmentation can be applied during the teacher and student
network training in the distillation process for improving the
performance from 0.864 to 0.882, i.e., ∼2% mean accuracy
improvements for image classification of CIFAR-10 dataset
on JPEG degradation.

3. ILIAC is efficient in terms of model parameters and GFlops
count since it is about 50% lighter as compared to the previ-
ous state-of-the-art method.

4. We have given evidence that in the knowledge distillation
setting, a larger teacher network does not necessarily im-
prove the model performance of a smaller student network
in the image classification of degraded images.
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(a) Step-1: Train teacher network using supervised loss, i.e., cross-entropy loss, while applying data augmentation
methods random horizontal flip, random crop, and cutout.

(b) Step-2: Distillation process to train the student network using consistency and supervised loss. The teacher
network is non-trainable during the step-2 distillation process. We apply random horizontal flip and random crop data
augmentation to teacher and student networks while applying cutout to only student networks.

Figure 2: The above architecture illustrates two steps approach that describes our ILIAC method’s training process. Teacher network,
student network, and data augmentation methods are represented in green, orange, and yellow colors.

Literature Review
Often researchers have used ensemble networks [3], restora-

tion networks [7], estimation of degradation parameters [2] - [4]
for the classification of degraded images. Ensemble networks typ-
ically have additional modules for the prediction, increasing the
model’s computational parameters [3]. Restoration networks typ-
ically deal with the restoration of images by applying different
types of filters depending upon the type of degradation [14], or a
neural network [3] to the original form before performing the end
task. In the case of networks with degradation parameters estima-
tor, there is an assumption that degradation levels will be acces-
sible during the training phase [3, 4]. Due to the limitations of
the above-proposed approach in terms of either additional model
computational parameters or inaccessibility of degradation levels,
it makes them non-optimal to deploy in real-world applications
with limited hardware, such as self-driving vehicles, drones, and
smartphones. On the other hand, several approaches are used to
design efficient neural network architectures for limited hardware
systems, such as quantization, network pruning, knowledge dis-
tillation, weight sharing, and neural architecture search [12].

To deal with the constrained-resource computational require-
ment for real-world applications, Hinton et al. [1] have intro-
duced the Knowledge Distillation approach. The main idea be-
hind using Knowledge Distillation is to train a teacher network,
i.e., a large network or ensemble of networks, to learn the struc-
ture from the data and then leverage the information learned to
train a much smaller network, i.e., Student Network. A similar
approach to knowledge distillation for image classification of de-
graded images has been proposed in [4] as Direct Extractor and
Feature Adjustor method. However, in the case of both networks,
there was a degradation levels estimator, which makes it imprac-
tical when in real work datasets, we do not have access to the
image’s degradation levels. Besides, the Feature Adjustor method
contains two feature extractors, which substantially increases the

computational parameters of the proposed network.
In addition, as an alternative way to improve the perfor-

mance using knowledge distillation, we used a data augmentation
method cutout [13] which works as a regularization to the model
and does not lead to an increase in the computational capacity
of the network. The method cutout is defined as a way to ran-
domly mask images during the training phase, which increases
the model’s robustness and performance. There has been similar
work done in Stanton et al. [17] related to applying data aug-
mentation methods to Knowledge Distillation. However, the data
augmentation approach cutout was not covered in their study. Ad-
ditionally, our study focuses on at which place we should apply
data augmentation methods such as cutout in the knowledge dis-
tillation process.

Proposed Method
In this paper, we have proposed an intermediate layer knowl-

edge distillation-based approach along with the data augmenta-
tion technique cutout to improve the performance of classification
networks for degraded images, as shown in Figure 2. More details
about cutout settings are discussed in the Experiments (Cutout)
section. The first step is to train a teacher network while apply-
ing data augmentation methods: random horizontal flip, random
crop, and cutout, which gives us the output C(X) as shown in Fig-
ure 2 (a). We pass this clean image as the input to the teacher
network, which is trained using a supervised loss function, i.e.,
cross-entropy applied between the ground truth y and prediction
ycln.

The second step is to train a student network through the
knowledge distillation process, where we first initialize weights of
teacher and student network with the pre-trained model on clean
images. We input clean images C(X) and degraded images D(X)
after applying data augmentation methods as shown in Figure 2
(b) to the teacher and student networks, respectively. During the
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distillation process, we apply consistency loss function g after the
feature extractor (group-3 in our case) between the outputs f eatcln
and f eatdeg i.e. represented as Lcon = g( f eatcln, f eatdeg) and su-
pervised loss function h between the ground truth y and prediction
ydeg i.e. represented as Lsup = h(y,ydeg). γcon and γsup are the
weights of the respective loss functions. We formalize the loss
function equation for the second step, i.e., the distillation process
of our ILIAC method, as follows:

L = γconLcon + γsupLsup. (1)

Specifically, Cosine Embedding (COS) loss is applied as
a consistency loss function to transfer the knowledge from the
teacher network to the student network. Moreover, a cross-
entropy loss is applied as the supervised loss function that cal-
culates the difference between probability distributions of ground
truth y and prediction ydeg. Although we have primarily used
COS as a consistency loss function, we could easily replace it
with other loss functions that could be applied in the intermedi-
ate layers during the knowledge distillation. For example: Mean
Squared Error (MSE), Attention Transfer (AT) [15], and Factor
Transfer (FT) [15].

In our primary experiments, we use same backbone as Endo
et. al. [4] i.e. PyramidNet [10] with Shake drop regularization
[11] for the knowledge distillation. However, ILIAC differs from
Endo et al. [4] since it does not require additional estimators such
as scale, bias, and degradation level estimators in the architecture;
hence there is no additional increase in computational parame-
ters of the network. What’s more, our approach can be applied
to different types of CNN-based backbones such as ResNet [8] ,
VGG [9], and PyramidNet [10] irrespective of number of groups
shown in the proposed architecture Figure 2. Group numbers in
the backbone are shown to represent where exactly consistency
loss is applied during the distillation process.

Experiments
In this section, we will discuss experiment settings, datasets

and preprocessing, evaluation metrics, preliminary experiments,
model comparisons, and results analysis as follows:

Experiment settings
There are two different experimental setups for training

teacher networks and student networks. To train teacher networks,
we have used an SGD optimizer with an initial learning rate of 0.1,
Nesterov momentum of 0.9, and weight decay 5e-4. In addition,
we have used a multi-step learning rate scheduler with milestones
[60, 120, 160] and gamma 0.2. On the other hand, to train stu-
dent networks, we have used a RAdam optimizer with an initial
learning rate of 0.001 and a weight decay value of 1e-4. In addi-
tion, we have used cosine annealing learning rate scheduler with
Tmax = total epochs. As shown in Endo et al. [5] performance of
COS loss is better than KLD and MSE loss; hence we have used
COS embedding loss for knowledge distillation. Furthermore, we
have trained the teacher networks and student networks for 200
and 100 epochs, respectively.

In addition, we have performed our experiments mainly on
ResNet [8], and PyarmidNet [10] with Shake drop regularization
[11] backbones. Like Endo et al. [4], we name PyramidNet with
Shake drop regularization as ShakePyramidNet. We mainly use

the ShakePyramidNet backbone with depth=110 and alpha=270,
i.e., represented as ShakePyramidNet110. For ResNet, we have
used ResNet20, ResNet56, and ResNet110 backbones, where the
numbers represent the number of layers in the network. Moreover,
Knowledge Distillation backbones are represented in the notation
of BackboneA-B, where A and B represent the number of layers
in the teacher and student network, respectively. For example:
ResNet20-56 represents ResNet20 and ResNet56 backbones for
teacher and student network respectively.

Datasets and preprocessing
We have mainly used CIFAR-10 and CIFAR-100 [6] datasets

in our paper which are widely used for image classification. Since
predominantly CIFAR-10 and CIFAR-100 datasets were used to
measure the performance of image classification methods on dif-
ferent degradation levels in previous research [2, 3, 4], we have
mainly used the same datasets as well. In addition, we have pri-
marily used the CIFAR-100 dataset for proposed method model
comparisons since the CIFAR-10 dataset can be easily overfitted
on the backbone of ShakePyramidNet due to the large network
size. On the other hand, we have used the CIFAR-10 dataset for
preliminary experiments on knowledge distillation backbones.

Several data augmentation methods were used in this study,
as shown in the proposed architecture Figure 2. Those methods
are as follows: random horizontal flip, random crop, and cutout
[13]. Random crop and horizontal flip were also used in [4]. We
have also shown different knowledge distillation variations on ap-
plying cutout in Table 1.

Evaluation metric
Accuracy is a widely used metric for image classification,

representing a ratio of the number of correct predictions by the
total number of predictions. Since the model’s performance de-
pends on varying degradation levels, we have used the interval
mean accuracy metric introduced in Endo et al. [2, 4], which can
measure the performance for different degradation levels. The
definition of the interval mean accuracy metric is as follows:

Acc(θ ,Ql ,Qu)
de f
=

∑
Qu
q=Ql

Acc( f (D(X,q) : θ),Y)

Qu −Ql +1
, (2)

where X denotes clean input images without any degradation for
respective ground truth labels Y, {Ql ,Qu|Ql < Qu} denotes the
range of degradation levels, D represents the degradation opera-
tor for a degradation level q for clean image X, θ is the model
parameter, and Acc represents the accuracy.

Preliminary experiments
In this paper, we explored several ways to improve the per-

formance of a student network from a teacher network. First,
we try to transfer features from varying sizes of teacher networks
such as ResNet110, ResNet56, and ResNet20 to student network
ResNet56. Then, we applied data augmentation techniques such
as cutout to improve the generalization of student networks with
different variations, as discussed in the below subsection. All pre-
liminary experiments are performed on ResNet backbones.

Size of model backbones
As commonly shown in the research community that knowl-

edge distillation helps to transfer information from a larger
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Figure 3: Accuracy for different sizes of teacher network such
as ResNet20, ResNet56, and ResNet110 with student network
ResNet56 on CIFAR-10 dataset, where degradation levels are
JPEG quality factors.

teacher network to a smaller student network, we inspected sev-
eral variations of backbones size in our network to see if that holds
in case of image classification of degradation images. We ob-
served that a larger teacher network does not help to improve the
student network performance, as shown in Figure 3. Similar re-
search has also shown that larger teacher does not consistently
improve student networks’ performance in knowledge distillation
[16, 17].

In our experiments, we observed that the same size network,
i.e., teacher network and student network with ResNet56 back-
bone, performs the best among the three models as compared in
Figure 3. A similar phenomenon has been reported in Stanton et
al. [17] where the same size network performs the best. On the
other hand, we get the worst performance with the larger back-
bone of the teacher network, i.e., ResNet110. Based on these
facts, we have proposed ILIAC with the same backbone for both
teacher and student networks, i.e., ShakePyramidNet110.

Cutout
Since cutout patch length can be dependent on the dataset, as

shown in DeVries et al. [13] where optimal cutout patch length
is 16X16 for CIFAR-10 and 8X8 for CIFAR-100. Similar to the
cutout patch lengths examined in DeVries et al. [13], we exper-
imented on five variations of lengths, i.e., no cutout, 4X4, 8X8,
12X12, 16X16 on JPEG degradation for the CIFAR-100 dataset,
to determine the optimal cutout patch length for ILIAC. As shown
in Figure 4, our method works best with a larger cutout patch
length of 16X16.

Additionally, we examined eight combinations of cutouts
for applying cutout to the teacher and student network’s train-
ing as shown in Table 1. Column ”Pre-trained Teacher” rep-
resents whether to apply cutout during step 1 of our proposed
method, i.e., training of the teacher network. Columns ”Distil-
lation - Teacher” and ”Distillation - Student” represent whether to
apply cutout during the distillation process on either the teacher
network or the student network. For example, case 1 is our base-
line when the cutout is not applied to training teacher and student

Figure 4: After applying different cutout patch lengths only on
the student network, as described in Figure 2 step-2’s feature ex-
tractor based on the ResNet56-56 backbone on the CIFAR-100
dataset. The X-axis represents accuracy, and Y-axis represents
degradation levels for JPEG quality factors.

Table 1: Model results comparison between different approaches
for cutout usage variations on CIFAR-100 dataset for JPEG com-
pression based on the teacher and student backbones of ResNet56.

Case
Pre-

trained
Teacher

Distillation
- Teacher

Distillation
- Student

Acc(All)

1 0.864
2 ✓ 0.874
3 ✓ 0.861
4 ✓ ✓ 0.873
5 ✓ 0.875
6 ✓ ✓ 0.882
7 ✓ ✓ 0.873
8 ✓ ✓ ✓ 0.880

Table 2: Model comparisons between different approaches
Existing methods Proposed

Clean Degrade
Distilla-

tion
EDP [2]

Ensem-
ble [3]

FA [4] ILIAC

Loss
functions

CE CE CE+CL CE, DL
RL, DL,

CE
CL+DL CE+CL

CL
Function

- - KLD - COS COS COS

CL
location

- -
after

softmax
- -

after
avg pool

after
group3

Cutout - - - - - - yes
DL

Function
- - - MSE MSE MSE -

Classifier
training

train train train train fix fix train

Training
image

clean degrade
clean &
degrade

clean &
degrade

clean &
degrade

clean &
degrade

clean &
degrade

networks while applying distillation. Experiments results for all
eight variations of cutout are shown in Table 1. Our baseline case
1 provides the Acc(All) performance of 0.864 when no cutout is
applied while training either teacher or student networks. We get
the best Acc(All) performance of 0.882 for case 6 when we train
the teacher network with cutout and apply cutout only to the stu-
dent network during the distillation process. There is 0.018 mean
accuracy or roughly ∼2% accuracy improvements by the usage of
the cutout in the model’s performance.
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(a) JPEG degradation (b) AWGN degradations
Figure 5: Accuracy for the feature extractor based of ShakePyramidNet backbone on CIFAR-100 dataset with (a) JPEG and (b) AWGN
where degradation levels are JPEG quality factors and standard deviations of the Gaussian distribution for the 8bit images respectively.

Model comparisons
There were 7 model comparisons in our study, as shown

in Table 2. The first method, ”Clean” and the second method,
”Degrade” is focused on directly training the model using either
clean or degraded images, respectively, using cross-entropy (CE)
loss functions. The third method, ”Distillation” is our baseline
method where we apply knowledge distillation using the Kull-
back Leibler divergence (KLD) loss function after the softmax
layer of the network. The fourth method, ”EDP” Estimation of the
Degradation parameters, is proposed by Endo et al. [2] where the
Mean Squared Error (MSE) loss function is applied to estimate
the degradation levels along with the cross-entropy loss function.
The fifth method, ”Ensemble” based on an ensemble network, is
proposed by Endo et al. [3], where first restoration loss (RL) and
degradation level estimator loss (DL) were used to train respec-
tive networks. Next, the classification network is trained using
the cross-entropy (CE) loss function while fixing the weights of
the restoration and degradation level estimator. The sixth method,
”FA” Feature Adjustor, is proposed by Endo et al. [4] which is the
previous state-of-the-art approach for image classification of de-
graded images, where degradation level estimator loss (DL) and
consistency loss (CL) are applied. Lastly, our proposed method,
”ILIAC”, is defined in the section ”Proposed Method”.

Results analysis
We have evaluated ILIAC on two points in the below sub-

sections. First, the performance quality of our model on the in-
terval mean accuracy metric for different intervals of degradation
methods such as JPEG and AWGN. Second, we compare our IL-
IAC model’s computation efficiency to the previous state-of-the
art method.

Performance quality
We have evaluated our ILIAC method in comparison with

six other methods described in subsection Models Comparison.
As discussed in the Introduction section, two degradation meth-
ods were inspected, JPEG and AWGN, on the CIFAR-100 dataset.
As shown in Tables 3 and 4, our method outperforms the previous
state-of-the-art method i.e. Feature Adjustor with the same back-
bone ShakePyramidNet110-110 in Acc(All) i.e. the mean interval
accuracy over all the degradation levels. Specifically, ILIAC’s

Table 3: Interval mean accuracy for the feature extractor based on
ShakePyramidNet and Endo et al. [2, 3, 4] with JPEG CIFAR-
100.

Degradation
Interval

Clean
De-

grade

Dis-
tilla-
tion

EDP
[2]

En-
sem-
ble
[3]

FA
[4]

ILIAC
(Ours)

Acc(1, 20) 0.144 0.575 0.574 0.454 0.461 0.565 0.578
Acc(21, 40) 0.389 0.718 0.729 0.563 0.581 0.711 0.731
Acc(41, 60) 0.512 0.738 0.754 0.581 0.603 0.739 0.756
Acc(61, 80) 0.605 0.750 0.770 0.588 0.617 0.762 0.775
Acc(81, 100) 0.747 0.762 0.783 0.596 0.638 0.798 0.794
Clean Image 0.841 0.765 0.788 - - 0.836 0.798
Acc(1, 100) 0.479 0.709 0.722 0.557 0.580 0.715 0.727

Acc(All) 0.483 0.709 0.723 - - 0.716 0.727

Table 4: Interval mean accuracy for the feature extractor based on
ShakePyramidNet and Endo et al. [3, 4] with AWGN CIFAR-100.

Degradation
Interval

Clean
De-

grade

Dis-
tilla-
tion

En-
sem-
ble
[3]

FA
[4]

ILIAC
(Ours)

Clean Image 0.841 0.787 0.808 0.659 0.839 0.816
Acc(1, 10) 0.588 0.782 0.803 0.642 0.812 0.809

Acc(11, 20) 0.169 0.762 0.782 0.623 0.773 0.786
Acc(21, 30) 0.040 0.736 0.751 0.597 0.738 0.754
Acc(31, 40) 0.020 0.700 0.705 0.567 0.703 0.711
Acc(41, 50) 0.015 0.640 0.645 0.539 0.667 0.652

Acc(All) 0.180 0.725 0.739 0.596 0.740 0.744

Table 5: Computation summary for ILIAC method and previous
state-of-the-art method i.e. Feature Adjustor [5].

Model Params GFlops
Acc(All)

JPEG AWGN
ILIAC -

SPN110-110
28.51 M 473.34 0.727 0.744

ILIAC -
ResNet56-56

0.88 M 12.74 0.627 0.644

Feature
Adjustor [4]

57.02 M 946.68 0.716 0.740

Acc(All) is 0.727 for JPEG and 0.744 for AWGN. Also, refer to
the Figures 5 (a) and 5 (b) for more granular view at each degra-
dation level.
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Computation efficiency
To measure our network’s computational efficiency, we have

used two metrics that are widely used to measure the efficiency
of neural networks: model parameters (in millions) and flops.
These results are shared in Table 5 along with mean interval ac-
curacy for all degradation levels on JPEG and AWGN. ILIAC
method with ShakePyramidNet (SPN) backbone is about half the
size of the previous state-of-the-art feature adjustor method [5].
Feature Adjustor method flops, and model parameters are esti-
mated based on the author’s comments in the paper that the model
is twice the size of the ShakePyramidNet (SPN110-110) back-
bone since it requires two feature extractors and several estimator
modules. Additionally, we have included our ILIAC approach
with the ResNet56-56 backbone, which is much smaller than the
ShakePyramidNet backbone, along with satisfactory performance
results.

Conclusion and Future Work
Overall, our ILIAC method can outperform the previous

state-of-the-art methods on degradation methods such as JPEG
and AWGN on the CIFAR-100 dataset. Moreover, our ILIAC
method is efficient in model parameters and GFlops; specifically,
it requires roughly half the computation compared to the previous
state-of-the-art method. Additionally, we demonstrate through
our experiments that we do not require larger networks to gener-
alize well on image classification of the degraded images. Future
studies could examine three relevant research directions as fol-
lows: (1) investigation of several data augmentation methods that
can work best with image degradations, (2) designing efficient
neural network architectures using NAS or similar methods for
image classification of degraded images, and (3) affect of image
degradation on other computer vision tasks such as object detec-
tion and semantic segmentation.
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