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Abstract
Scientific user facilities present a unique set of challenges

for image processing due to the large volume of data generated
from experiments and simulations. Furthermore, developing and
implementing algorithms for real-time processing and analysis
while correcting for any artifacts or distortions in images remains
a complex task, given the computational requirements of the pro-
cessing algorithms. In a collaborative effort across multiple De-
partment of Energy national laboratories, the ”MLExchange”
project is focused on addressing these challenges. MLExchange
is a Machine Learning framework deploying interactive web in-
terfaces to enhance and accelerate data analysis. The platform
allows users to easily upload, visualize, label, and train networks.
The resulting models can be deployed on real data while both re-
sults and models could be shared with the scientists. The MLEx-
change web-based application for image segmentation allows for
training, testing, and evaluating multiple machine learning mod-
els on hand-labeled tomography data. This environment provides
users with an intuitive interface for segmenting images using a
variety of machine learning algorithms and deep-learning neural
networks. Additionally, these tools have the potential to overcome
limitations in traditional image segmentation techniques, partic-
ularly for complex and low-contrast images.

Introduction
The scientific community relies on scientific instrumentation

at light and neutron source user facilities to perform science that
is impossible anywhere else. Beamlines are significant producers
of scientific data, and image-based data constitutes a significant
part of this, with many instruments producing terabytes of image
data per day. Beyond the challenges of moving and storing data at
high rates and volumes is the challenge of developing and imple-
menting algorithms for processing and analyzing data in real-time
to produce immediate results while accurately correcting for arti-
facts. Thus, there is a pressing need for coordinated tools that can
build reproducible pipelines for optimizing the user experience
and experiment efficiency.

Recent advances in scientific machine learning (ML) have
proven to be a powerful tool to enhance data analysis – especially
image processing. Scientific imaging analysis faces unique hur-
dles as it often requires domain expertise to decode intrinsic rela-
tionships between image features. Applying a ML-based pipeline
in this context thus requires flexibility and adaptability to many
different specific use cases [1]. Moreover, to allow access for all
beamline users, many of whom have no experience with ML or
high performance image processing, the solution has to be easy-
to-use and must allow scaling to the size of data produced at mod-
ern synchrotron instruments.

As a collaborative effort across several Department of En-
ergy (DOE) national laboratories, we have developed a platform
called “MLExchange” to provide easily-accessible interfaces for
ML-infused tools. This Machine Learning Operations (MLOps)
platform features multiple interactive web interfaces allowing for
easy exchange, visualization, and labeling of datasets, as well as
training and testing of various ML models and techniques. The
platform is designed to be expandable and collaborative, to en-
able users to contribute new algorithms and customize existing
algorithms for their specific scientific needs [2].

One of the web-based applications within the platform fo-
cuses on image segmentation tasks. This application provides an
intuitive interface for users to segment images using ML algo-
rithms, such as deep learning neural networks. Traditional seg-
mentation techniques such as thresholding or watershedding [3]
can struggle with complex or low contrast images. ML, on the
other hand, has the potential to identify features and effectively
segment such images [4, 5, 6] despite obstacles such as noise and
artifacts sometimes present in tomography data sets.

Below is an introduction to the web-based segmentation in-
terface within MLExchange.

A Web-based Segmentation Interface
The MLExchange Segmentation Application has been de-

ployed on a centralized server at the Advanced Light Source,
Lawrence Berkeley National Laboratory. It consists of five pri-

IS&T International Symposium on Electronic Imaging 2023
Image Processing: Algorithms and Systems XXI 290-1

https://doi.org/10.2352/EI.2023.35.9.IPAS-290
© 2023, Society for Imaging Science and Technology



mary components: a File Manager tab, an Image Display session,
an Annotation Panel, a Model Selection Panel, and a Table of Jobs
(as depicted in Figure 1). To initiate a segmentation task, users up-
load an image stack through the drag-and-drop box, which is then
displayed in the Image Display section, equipped with a slice nav-
igation bar.

Figure 1. Layout of the MLExchange image segmentation application, with

a demonstration of ML guided segmentation for X-ray microCT images. The

manually labeled sparse annotations are colored purple and orange as the

ground truth for training, while model predictions are colored light yellow and

violet as the background and sample, respectively.

In the Model Selection Panel, users then can choose from
three currently available algorithms: a Supervised Random For-
est Classifier, an Unsupervised K-Means Clustering Algorithm,
or a Supervised Mixed-Scale Dense Convolutional Neural Net-
work (MSDNet). Upon selection, the default model parameters
are automatically set, which can be adjusted if necessary. Various
training parameter choices may also be selected here, including
the number of epochs, loss criterion, learning rate, and the opti-
mizer. If a supervised model is selected, ground truth information
must be provided using the Annotation Panel, where regions of
interest can be color-coded to represent different classes.

As in other ML workflows, the model will undergo a train-
test process. The MLExchange Segmentation Application train-
ing session is initiated by hitting the TRAIN button, and progress
can be monitored in the Table of Jobs at the bottom of the ap-
plication. Upon completion, pressing the TEST button triggers
the segmentation process, analyzing the entire image stack with
the trained model. The segmentation result can be displayed by
toggling on the “Show Segmentation” option, which color-codes
each pixel according to its corresponding class. Completed re-
quests can be retrieved and revisited in the Table of Jobs section
for future needs.

Mixed-Scale Dense Convolutional Neural Network
One deep learning network model has been integrated into

the segmentation application. The mixed-scale dense network

(MSDNet) [7] was developed as a deep learning framework for
image classification and pixel-by-pixel segmentation tasks with
a relatively simple architecture containing roughly two to three
orders of magnitude fewer trainable parameters than U-Nets [8]
and other typical encoder-decoder convolutional neural networks
[9, 10]. MSDNets have proven effective and been tested in sev-
eral use cases for tomographic reconstruction [11, 12, 13, 14],
nano-CT denoising [15], segmentation of sub-nuclear structures
in focused-ion beam scanning electron microscopy (FIB-SEM)
[16], X-ray scattering imaging inpainting [17], and X-ray in-line
phase contrast imaging [18].

Benefits of MSDNet can be attributed to two distinct de-
tails in its architecture. First, MSDNet replaces typical upscal-
ing and downscaling operations (such as transposed convolutions
and maximum pooling) with dilated convolutions [19, 20]. Con-
volutions with integer dilations operate in the same manner as
standard convolutions, but by inflating the kernel with gaps be-
tween entries that expand the kernel’s receptive field; e.g. a 3×3
dilated convolution with a dilation of 5 has a receptive field of
11× 11 pixels, as vertically- and horizontally-adjacent entries in
the kernel are spaced 5 pixels apart. Second, image features from
different length scales are mixed together by densely connecting
all network layers with dilated convolutions and summing the re-
sults at each layer, as depicted in the 3-layer MSDNet diagram
in Figure 2. Dense and direct connections in this manner is only
feasible with dilated convolutions since they preserve spatial di-
mensionality, allowing all previous layers’ outputs to be used as
input in computing the next layer’s feature map, effectively creat-
ing a network full of skip connections [21] of all possible lengths.
This allows MSDNets to train on lower amounts of data than what
is required of other deep learning networks, as the dense inter-
connectivity yields maximum reusability of all input and inter-
mediate information. Furthermore, dense connections assist in
the recovery of lost spatial information [22] and help alleviate the
vanishing gradient problem [23], which, when combined with a
relatively small number of trainable parameters, allows for faster
model convergence that remains robust to overfitting.

Figure 2. Schematic of a 3-layer mixed-scale dense network (MSDNet).

Blue, green, and red solid lines represent 3×3 dilated convolutions between

each possible pairing of the input and hidden layers Li, with different dilations

assigned to each color. Black dotted lines represent 1×1 convolutional oper-

ators connecting all hidden layers and the input to the final output, effectively

resulting in a linear sum with learned weights between all previous layers.

User-defined custom implementations of MSDNets were ac-
complished through the Python-based deep learning software li-
brary dlsia (Deep Learning for Scientific Image Analysis), which
allows one to easily tune the network hyperparameters and inter-
layer operations to optimize its performance. Further dlsia docu-
mentation may be found at https://dlsia.readthedocs.io/
en/latest/.
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ML-aided Tomography Segmentation
To evaluate the performance of the MLExchange segmenta-

tion application, a study was conducted using synthetic tomog-
raphy images from the TomoBank phantom foam data set [24],
pictured in Figure 3. In this series of data sets, one high-quality
(HQ) and five problematic versions of the raw data are synthe-
sized, with problems mimicking limitations often seen in real to-
mography scans such as only using a limited number of angles,
noise, and limited angular range. For the purposes of demonstrat-
ing MLExchange and the segmentation interface, we did not use
advanced reconstruction approaches - rather we used a consistent
set of parameters to reconstruct each data set using the ASTRA
Toolbox [25, 26]. We reconstructed a 100-slice sample of each
data set for this demonstration.

Figure 3. An overview of the reconstructed phantom foam data set, with

HQ picturing the high quality reconstructed slices. Other images represent

various degrees of limitations encountered in tomography scans.
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Figure 4. Visualization of the segmentation results for a zoomed-in region

of the sample. Each row corresponds to the data set described in Figure 3.

The phantom foam is marked in yellow, while the background is marked in

black.

Three types of ML-based segmentation were performed: a
Supervised Random Forest Classifier with 30 decision trees and

a tree depth of 8; a Supervised Mixed-Scale Dense Convolutional
Neural Network with 12 convolutional layers, max dilation of 6
and a learning rate of 0.01 for 50 epochs, optimized using the
ADAM algorithm [27] to update the model weights by minimiz-
ing the cross entropy loss criterion; and an Unsupervised K-means
Clustering algorithm with 2 clusters and a maximum iteration of
300. For both supervised models, training data consisted of only
a pair of single images: the first image in each of the 100-slice
samples and a corresponding mask with sparsely annotated label-
ing as a target. In this single mask, used across all 6 data sets to
ensure consistency, roughly 16% of pixels were labeled, of which
the foreground-to-background ratio was roughly 1:40. For the un-
supervised method, only the first image is used in model training.
Lastly, a traditional threshold-based segmentation [28] was per-
formed as a baseline comparison, with all sets sharing the same
threshold value.

The segmented results are presented in Figure 4 with a
zoomed in portion of the sample to show details. The perfor-
mance of each individual model was evaluated using the F1 score
[29], defined as the harmonic mean of model precision and re-
call, and the Intersection Over Union (IoU) metric, also known as
the Jaccard index, which measures the ratio of correct class pre-
dictions over the combined ground truth and predictions for said
class. The mean F1 and IoU of each stack are presented in Figures
5 and 6, respectively.

Figure 5. F1 score of the segmentation result. Each color represents one

segmentation method (Random Forest, MSDNet, K-means and traditional

Thresholding), and the bar value is calculated from the mean over the 100

segmented images for each technique.

The results of the segmentation study on synthetic tomogra-
phy images indicate the robustness of the two supervised learn-
ing methods, the Random Forest classifier and the MSDNet, in
handling noise and artifacts. Despite being trained on limited
ground truth information, the Random Forest classifier showed
a mean F1 score centered around 0.91 and a mean Intersection
Over Union (IoU) score centered around 0.84, while the MSD-
Net mean F1 score of 0.90 and a mean IoU score of 0.81. In
contrast, both the unsupervised K-Means Clustering method and
the traditional thresholding technique demonstrated strong perfor-
mance with high-quality data, yielding mean F1 and IoU scores
approaching 1. However, the performance of these methods dras-
tically reduced with the introduction of noise, indicating their sen-
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Figure 6. Intersection Over Union (IoU) of the segmentation result. Each

color represents one segmentation method (Random Forest, MSDNet, K-

means and traditional Thresholding), and the bar value is calculated from

the mean over the 100 segmented images for each technique.

sitivity to image quality and contrast. It is worth noting that the
quality of both the neural network classifier and the Random For-
est method are dependent on both how much of the image is an-
notated, and also where and how. This is especially true for the
MSDNet; Deep learning neural network models typically require
vast amounts of training data [30], though the MSDNet overcame
this via the dense interconnectivity between layers that allows
for maximum reusability for the sparsely annotated single image
training data set. Fortunately, the interactive nature of the MLEx-
change user interface allows one to rapidly iterate between anno-
tation paradigms - sparse or dense - to enhance the performance
for a particular data set under any classification scheme.

Summary and Looking Forward
The MLExchange platform is an MLOps platform that pro-

vides web-based interfaces for the training and testing of ML
models, specifically designed to address the challenges in sci-
entific data processing. The MLExchange Segmentation Appli-
cation, a key component of the platform, enables users to seg-
ment images generated from scientific experiments using ML
algorithms, including deep learning neural networks, and has
been evaluated using synthetic tomography images from the To-
moBank phantom foam dataset, showing improved results com-
pared to traditional threshold-based segmentation techniques. So
far, several other test cases have been successfully deployed in
the segmentation application, including a number of different X-
ray microCT dataset and one X-ray scattering dataset. Particularly
impressive in the MLExchange supervised learning schemes is the
ability to accommodate sparse or incomplete labeling of ground
truth data, as evidenced by the sparse manual labeling of classes.

The MLExchange platform serves as a central repository
containing a collection of community-sourced algorithms, mod-
els, and data sets. Users can access and utilize these contribu-
tions to analyze and annotate their experimental data, providing
new insights and refinements to the shared repository. This plat-
form offers facility users an accessible and convenient solution to
their image processing needs. The user-friendly interface enables
the selection, download, and implementation of ML solutions for

testing on their own experimental data. The platform operates as
a web-based system, with all applications and pipelines contained
in a centralized deployment, requiring only a web browser login
for access and eliminating the need for any local installations.
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[11] Daniël M Pelt, Kees Joost Batenburg, and James A Sethian. Im-
proving tomographic reconstruction from limited data using mixed-
scale dense convolutional neural networks. Journal of Imaging,
4(11):128, 2018.

[12] Jordi Minnema, Maureen van Eijnatten, Allard A Hendriksen, Niels
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Mokso, Daniël M Pelt, Jan Sijbers, and Mark Rivers. Tomobank: a
tomographic data repository for computational x-ray science. Mea-
surement Science and Technology, 29(3):034004, feb 2018.

[25] Wim van Aarle, Willem Jan Palenstijn, Jeroen Cant, Eline Janssens,
Folkert Bleichrodt, Andrei Dabravolski, Jan De Beenhouwer,
K. Joost Batenburg, and Jan Sijbers. Fast and flexible x-ray tomog-
raphy using the astra toolbox. Opt. Express, 24(22):25129–25147,
Oct 2016.

[26] Wim van Aarle, Willem Jan Palenstijn, Jan De Beenhouwer, Thomas
Altantzis, Sara Bals, K. Joost Batenburg, and Jan Sijbers. The astra
toolbox: A platform for advanced algorithm development in electron
tomography. Ultramicroscopy, 157:35–47, 2015.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[28] Azriel Rosenfeld. Picture processing by computer. ACM Computing
Surveys (CSUR), 1(3):147–176, 1969.

[29] Nancy Chinchor and Beth M Sundheim. Muc-5 evaluation metrics.
In Fifth Message Understanding Conference (MUC-5): Proceedings
of a Conference Held in Baltimore, Maryland, August 25-27, 1993,
1993.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learn-
ing. MIT press, 2016.

Author Biography
Guanhua (Tibbers) Hao received his PhD in Physics from University

of Nebraska-Lincoln (2021). Since then he has worked at Advanced Light
Source, Lawrence Berkeley National Laboratory, CA. He constructs algo-
rithms and machine learning pipelines to help with analysis of image data
generated by synchrotron facilities, and develops solutions to segment sci-
entific images (microCT, GISAXS) using machine learning methods. He
also works on deep learning infused image retrieval pipelines to aid for
image similarity detection.

IS&T International Symposium on Electronic Imaging 2023
Image Processing: Algorithms and Systems XXI 290-5


	Abstract
	Introduction
	A Web-based Segmentation Interface
	Mixed-Scale Dense Convolutional Neural Network
	ML-aided Tomography Segmentation
	Summary and Looking Forward
	Acknowledgement
	Author Biography

