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Abstract
Deep learning, which has been very successful in recent

years, requires a large amount of data. Active learning has been
widely studied and used for decades to reduce annotation costs
and now attracts lots of attention in deep learning. Many real-
world deep learning applications use active learning to select the
informative data to be annotated. In this paper, we first investi-
gate laboratory settings for active learning. We show significant
gaps between the results from different laboratory settings and
describe our practical laboratory setting that reasonably reflects
the active learning use cases in real-world applications. Then,
we introduce a problem setting of blind imbalanced domains. Any
data set includes multiple domains, e.g., individuals in handwrit-
ten character recognition with different social attributes. Major
domains have many samples, and minor domains have few sam-
ples in the training set. However, we must accurately infer both
major and minor domains in the test phase. We experimentally
compare different methods of active learning for blind imbalanced
domains in our practical laboratory setting. We show that a sim-
ple active learning method using softmax margin and a model
training method using distance-based sampling with center loss,
both working in the deep feature space, perform well.

Introduction
Deep learning [1] techniques are rapidly advanced recently

and becoming necessary components for widespread systems.
The performance of deep learning techniques is obtained with
complex (”deep”) model structures with massive parameters,
along with computational resources to enable optimization of
such parameters. On the other hand, it also requires a large
amount of data, and efficiently collecting and annotating data is
one of the most important issues in deep learning. Annotation,
which involves human workers, is time-consuming and costly.
Thus we cannot annotate all collected samples because the bud-
get is always limited. Active learning is a technical solution hav-
ing been studied before the advent of deep learning to annotate
data efficiently [2, 3, 4, 5, 6, 7]. It selects the most informative
samples from collected data, and humans annotate them. Then,
we use the cumulatively annotated data to train machine learn-
ing models to improve performance with a minimal annotation
cost. Active learning has already been studied in a wide variety
of applications such as automated driving [8, 9], medical imag-
ing [10], medical diagnosis, microbiology, and manufacturing [4].
Experimental settings in such active learning studies (”laboratory
setting”) and active learning use cases in real-world applications
cannot be identical. We must carefully set up active learning ex-
periments that reasonably reflect the active learning use cases in
real-world applications. In this work, we focus on 1) investigating
practical active learning experimental settings and 2) the problem
of blind imbalanced domains in active learning.

Figure 1 illustrates the actual situation in real-world appli-
cations and the laboratory setting in academic studies. One of
the essential points of laboratory settings is to create a huge and
realistic data pool. In the actual situation, we collect massive
data samples based on true data distribution, as shown at the top
of Figure 1. On the other hand, we conduct laboratory experi-
ments with the data generation process illustrated at the bottom
of Figure 1. The size of collected data samples in the actual sit-
uation is much larger [11, 12] than standard experimental data
sets [13, 14, 15, 16]. Collecting new data samples only for active
learning experiments is not realistic. Therefore, we cannot eval-
uate active learning algorithms in the actual situation and must
carefully design appropriate laboratory settings. Such laboratory
settings are essential for experimental comparisons.

Any data set includes multiple domains, e.g., different in-
dividuals in handwritten character recognition with different so-
cial attributes such as communities, ages, genders, etc. We re-
fer to major and minor domains as the domains associated with
many data samples and few data samples. Domains are imbal-
anced if data has major and minor domains and blind if the do-
main assignment of data samples is unknown. In many real-world
applications, multiple domains are blind and imbalanced. The
trained machine learning models usually perform best on the ma-
jor domains, because the major domains have dominant samples
in data pools and training data sets. However, particularly for
safety-critical applications, the performance on minor domains
is critical. For example, accidents, i.e., minor domains, in au-
tomated driving systems and credit authorization systems have a
small number of samples but bring grave consequences. There-
fore, we need to improve the performance on the minor domains
while maintaining that on the major domains.

Our contributions to this paper are twofold.

• We investigate laboratory settings for active learning and
empirically show that laboratory settings greatly impact
experimental results.

• We evaluate methods of active learning for blind imbalanced
domains in our practical laboratory setting.

This paper is organized as follows. Related works section vis-
its related works in active learning and machine learning with
blind imbalance domains. Laboratory settings for active learning
section investigates laboratory settings for active learning. Active
learning for blind imbalanced domains section elaborates on ac-
tive learning for blind imbalanced domains. Then, Experiments
section shows the concrete settings we used in our experiments,
the experimental results of active learning in different laboratory
settings, and the experimental result of different active learning
approaches to blind imbalanced domains. Finally, Conclusion
section concludes our research in this paper.
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Figure 1: Laboratory setting for active learning.

Related works
Active learning is a set of techniques to select data samples

from a data pool for annotation. Active learning tries to select the
most informative samples, i.e., the samples the trained model is
not expected to know. We usually believe that the data samples
with uncertain inference results are informative. Furthermore, the
acquisition mode of active learning is important, especially for
deep learning.

In the context of classification, the softmax value is the most
convenient approach to evaluate inference uncertainty [17]. Soft-
max values represent the estimated categorical probabilities by
applying the softmax function to the output logits from neural
networks. As proxies of inference uncertainty, we have variations
using softmax values such as maximum softmax value, e.g., the
probability of the most probable class, and the margin between the
two most significant softmax values. Other tasks such as detec-
tion (bounding box regression) and segmentation can have other
forms of uncertainty representation different from softmax values.
A Bayesian neural network [18, 19, 20] is an approach to directly
quantifying the uncertainty of inference results in the context of
Bayesian inference [21]. BALD [22] is a method to use Bayesian
neural networks for active learning.

The time complexity of deep learning training is very high,
and we want to reduce the total count of training attempts in active
learning. There are batch and sequential methods in active learn-
ing [23]. Sequential methods require one-by-one data acquisition
and model training for each single data point acquired. On the
other hand, batch active learning selects several samples at once.
It runs model training for a batch of data points acquired. As a re-
sult, the total count of training attempts to reach a specific number
of acquired samples is high in sequential active learning and low
in batch active learning. Therefore, although batch active learn-
ing is not optimal, it is convenient for deep learning in terms of
time [23, 24]. BatchBALD [25] is a batch version of BALD [22]
which ensures the independence of the samples in an acquisition
batch.

Latest active learning studies incorporate deep feature and
model-specific extensions. As mentioned above, active learning
is used along with deep learning whose important property is
its deep feature space. Active learning can leverage such deep
feature space to acquire high-dimensional data, e.g. images and

videos [26]. Deep learning introduced new problem settings with
high-dimensional labels. Active learning can acquire partial la-
bels, e.g. specific regions in pixel labels of semantic segmentation
to avoid annotating entire high-dimensional labels [27].

One of the latest research considers data augmentation in ac-
tive learning. Data augmentation is a set of techniques for model
training that increases the amount of training data by transform-
ing existing data points [28, 29, 30, 31]. Both unlabeled data in-
stances in data pools and their augmented data instances can be
used for active learning to integrate active learning and data aug-
mentation [32]. However, most of the latest active learning stud-
ies [27, 26] do not incorporate such training considerations yet.

Machine learning is good at statistically capturing the overall
characteristics of the entire training data. However, training data
sets generally include multiple domains in real-world machine
learning applications, and some domains have higher importance
or risks. Machine learning with blind imbalanced domains ad-
dressed such a problem by evaluating the performance of each
domain in the test data under the condition of unknown and im-
balanced domain assignment of training samples [33]. Although
previous work focused only on model training, blind imbalanced
domains apply to active learning, too.

Laboratory settings for active learning
One of the essential points of laboratory settings is how to

create realistic huge annotated data pools, as shown in Figure 1.
Another point is considering realistic model training configura-
tions even in active learning, including training data augmentation
and validation set size. We review general existing laboratory set-
tings and describe our practical laboratory setting.

We consider the experimental settings of recent active learn-
ing studies [25, 32, 26, 27]. The first point is about the size of
data pools. It is assumed that the size of data pools is huge in
active learning. However, original annotated data sets are usu-
ally not large enough in active learning studies. In some stud-
ies, huge annotated data pools are generated by copying samples
in the original annotated data sets, adding elementwise Gaussian
noises. As a result, the generated data pools have very similar
samples. This generation process changes the distribution in data
pools from that in the original annotated data sets. Second, an
active learning algorithm acquires informative samples from the
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Figure 2: Our practical laboratory setting for active learning. Pool data augmentation in large data generation increases variation in data
pools. Validation set size is appropriate, and training data augmentation is used in model training.

huge annotated data pool and puts them into a training set. Then,
we train a machine learning model. The training strategy is im-
portant even in active learning. Data augmentation has not been
used during training in active learning studies. However, LADA
addressed that data augmentation is important for active learn-
ing [32]. In addition to that, some active learning research used
a validation set that is tens of times the training set. In machine
learning, validation sets are usually smaller than training data sets.
If we have such a large validation set, it is natural to use it as an
additional training set.

Next, we investigate our practical laboratory setting, as il-
lustrated in Figure 2, closer to the actual situation in Figure 1.
First, we generate huge annotated data pools by copying samples
in the original annotated data sets and applying data augmenta-
tion. As a result, the generated data pools have a wide variety of
samples, which is a natural condition for real-world applications.
Second, active learning algorithms select samples from the gen-
erated data pools and put them into training sets. Then, we train
a machine learning model. We use data augmentation during the
model training, following basic machine learning practices for im-
proving inference performance. The validation sets are similar to
or smaller than training sets, following the actual data usage prac-
tices in machine learning development. In the rest of this section,
we address the three points in Figure 2, pool data augmentation,
training data augmentation, and train-validation split.

Pool data augmentation
Huge annotated data pools should have a wide variety of

data samples. Just copying the original annotated data sets is not
enough. Therefore, in our practical laboratory setting, we apply
data augmentation [28, 29, 30, 31] to the copied samples after
copying original annotated data sets as k times to make huge anno-
tated data pools, as shown in Figure 2. Augmentation techniques
should be realistic, such as random affine transformations [34]
and random crops [35, 36]. This data generation process increases
variation in data pools. We refer to this data augmentation in the
data generation process as pool data augmentation.

Training data augmentation
We can also use data augmentation during the model training

even in active learning [32]. We refer to the data augmentation in

model training as training data augmentation. Training data aug-
mentation considerably impacts model training, and we usually
use it in real-world development. Therefore, in our practical lab-
oratory setting, we apply training data augmentation, as shown in
Figure 2.

Train-validation split
We use validation sets for model selection, hyperparameter

tuning, early stopping, etc., as a part of model training. The pa-
rameters of the models are updated with the training data, while
the validation data is not used for the parameter updating. There-
fore, we usually split a given data into training and validation so
that the training data size is comparable to or larger than that of
validation data. In our practical laboratory setting, we use valida-
tion sets of similar size or smaller than training sets, as illustrated
in Figure 2.

Active learning for blind imbalanced domains
We assume that a data pool contains samples from various

domains. In industrial applications, small sample data are some-
times critical. For example, accidents in automated driving and
frauds credit authorization are crucial but much smaller than stan-
dard samples. Therefore, improving the performance on minor
domains is essential while maintaining that on major domains.
Here, we refer to the minor domains as the domains associated
with the small training samples. The major domains are the do-
mains corresponding to the dominant training samples.

Let a data pool sample, a label, and a domain label of the
sample be x, y, and z, respectively. y is unknown in active learn-
ing. The joint probability of the data pool sample and the label
with multiple domains can be expressed by a mixture distribution:

p(x,y) =
Nz−1

∑
z=0

p(z)p(x,y|z) , (1)

where Nz is the number of domains. We say the non-blind domain
if p(z) is known. If p(z) is unknown, then it is a blind domain
problem. If the variance of p(z) is small, then the distribution of
domains is balanced. We say the imbalanced domains for the large
variance of p(z). In simple two-domain cases, i.e., Nz = 2, p(z =
0)≫ p(z = 1) is the imbalanced domain problem. If the domains
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(a) Example laboratory setting in an existing active learning study [25]. (b) Our practical laboratory setting.

Figure 3: Test accuracy of each active learning algorithm in different laboratory settings. Figures 3a and 3b are the test accuracy in
existing and our practical laboratory settings. Bald lines are the medians with lower and upper quartiles in shadow from 12 trials which
consist of four trials for three data sets MNIST [13], EMNIST [14], and USPS [15].

are balanced, then p(z = 0)≃ p(z = 1). The data pool size should
be large to keep the sampling distribution of imbalanced domains
in data pools during active learning. To evaluate trained models in
active learning for blind imbalanced domains, we use the domain-
wise performance on a domain z.

Experiments
In this section, we conduct experiments of 1. different labo-

ratory settings for active learning and 2. active learning for blind
imbalanced domains.

We use the following common active learning and model
training settings throughout experiments. We run batch active
learning in all experiments with an acquisition size of 10. Ac-
quisition size is the number of samples active learning algorithms
select in an iteration. We use sequential active learning methods
as naive batch methods to take the top samples with the highest
acquisition scores from a data pool in an active learning iteration.
The initial size of data pools is 300,000. We start active learning
with the initial training sets with 20 randomly selected samples
and end with the maximum size of training sets being 320, i.e.,
the number of active learning iterations is 30, and the maximum
number of acquired samples is 300. In model training, we train
a Bayesian neural network of LeNet [37] with ReLU [38, 39] on
a classification task, handwritten digit recognition. We run MC
dropout [40, 41, 42] and compute logit means before the softmax
function [17]. We used the dropout probability of 0.5, and the
number of inference samples using MC dropout is 10. Test accu-
racy of the trained models is measured after 40 epochs of training
with batch size 128 using sampling with replacement [43].

The learning curve in active learning is the plot of test accu-
racy against training set size. Throughout experiments, we use a
metric Area under Learning Curve (ALC) to evaluate active learn-
ing methods [44]. ALC is the square measure under such a learn-
ing curve in active learning, which is normalized to have values
from 0.0 to 1.0. We conduct four trials with random seeds of 0 to
3 for all experiments because test accuracy in active learning and

machine learning has variability.

Comparison of laboratory settings for active
learning

We compare our practical laboratory setting with the exam-
ple laboratory setting of an existing active learning study [25].

In the example laboratory setting of an existing active learn-
ing study, huge annotated data pools are generated by copying the
original annotated data sets. Pool data augmentation is not used,
but elementwise Gaussian noises with µ = 0.0 and σ = 0.1 are
added for avoiding identical samples. Deep learning models are
trained without data augmentation. The size of the validation set
is 3,072.

On the other hand, in our practical laboratory setting, we
copy the original annotated data sets, followed by pool data aug-
mentation to generate huge annotated data pools. We use the same
methods for pool data augmentation and training data augmenta-
tion illustrated in Figure 2. Data augmentation methods are ran-
dom affine with the angle from −10° to 10° and random crop. The
validation set size is 100.

Results
Figure 3 shows the test accuracy of different active learn-

ing methods in the example laboratory setting of an existing
study [25] (3a) and in our practical laboratory setting (3b).

In Figure 3a, BALD [22] performs worse than the random
baseline. However, Figure 3b shows all active learning methods
perform similarly with smaller variance. BALD [22] gets better as
the training set size grows in both Figures 3a and 3b, but the curve
is steep in Figure 3b. Even BatchBALD [25] performs worse than
the random baseline at the beginning of active learning in Fig-
ure 3b. Softmax margin, one of the most naive active learning
methods, performs best if we scale up Figure 3b. The test accu-
racy has a smaller variance in Figure 3b than that in Figure 3a.

We observe significant gaps between the results from differ-
ent laboratory settings. We can conclude that evaluating the active
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learning methods in a reasonable setting is important.

Comparison of methods of active learning for
blind imbalanced domains

The experiments in Comparison of laboratory settings for
active learning subsection showed the importance of laboratory
settings to compare active learning methods. This section uses our
practical laboratory setting in Figure 2 for the following experi-
ments to investigate active learning and model training methods.

We simulate blind imbalanced domains in data pools. Data
pools each have one of six pairwise domains in MNIST [13], EM-
NIST [14], and USPS [15] datasets abbreviated M, E, and U. An
example pairwise domain M/E denotes a major domain MNIST
with a minor domain EMNIST. We measure domain-wise test ac-
curacy, so we have domain-wise learning curves and ALC scores.
We define mean ALC scores as the mean of domain-wise ALC
scores. In our experiments, 99% of the data pool consists of the
samples from major domains and the rest does those from mi-
nor domains, i.e., the minor ratio is 1%. Domain assignment is
used only for the initial data pool generation and is blind to active
learning algorithms.

Active learning methods
We evaluate six active learning methods, i.e., random acqui-

sition as the baseline, three softmax methods, probability, margin,
and entropy, and two Bayesian methods, BALD [22] and Batch-
BALD [25]. Our softmax methods use 1. probability of the infer-
ence class, i.e., the maximum softmax value, 2. margin between
the two maximum softmax values, and 3. entropy of all softmax
values to acquire samples from data pools.

Training methods
We evaluate three model training methods, random sampling

as the baseline, random sampling with center loss, and distance-
based sampling with center loss. These training methods were
studied in previous work on machine learning with blind imbal-
anced domains [33]. Center loss and distance-based sampling
work in the deep feature space at the F6 layer of LeNet.

Results
Table 1 shows the major, minor, and mean ALC scores of the

six active learning and three model training methods introduced
above, i.e., 18 combinations. Results are indicated for each ma-
jor/minor domain setting such as MNIST [13]/EMNIST [14] and
the average of all six domain settings in Table 1.

First, we focus on the average ALC scores in the bottom rows
of Table 1. We observe that the results in the active learning for
blind imbalanced domains, i.e., domain-wise view, look different
from those in simple active learning, i.e., the major domain view.
For example, the combinations of an active learning method soft-
max entropy and model training methods with center loss per-
form better (0.913) than the random baseline (0.911) in the major
ALC scores. However, these combinations perform worse (0.869
and 0.871) than the random baseline (0.872) in the mean ALC
scores. We can conclude that incorporating blind imbalanced do-
mains is essential for a fair evaluation of active learning algo-
rithms. Based on the mean ALC scores, we can see that the active
learning method of softmax margin and the training method of
center loss and distance-based sampling outperforms others.

Next, we focus on the ALC scores for each major/minor
domain setting in Table 1. On the mean ALC scores, the com-
bination of softmax margin with center loss and distance-based
sampling outperforms others in the three domain pairs out of six
and performs comparably to the best methods in two of the rest
three pairs. The domain pair U/M is the only setting in which
the combination of softmax margin with center loss and distance-
based sampling has the mean ALC score 0.01 lower than that of
the best method. On the minor ALC scores, the combination of
softmax margin with center loss and distance-based sampling is
the best in two domain pairs out of six. Although one of the lat-
est active learning methods, BatchBALD [25], does not explic-
itly assume imbalanced domains, its combinations perform better
in minor domains for two other domain pairs. BatchBALD [25]
combinations have minor ALC scores 0.01 higher than that of
the combination of softmax margin with center loss and distance-
based sampling in these two domain pairs U/M and U/E, but they
are comparable in the rest two pairs, M/U and E/U. The com-
bination of softmax margin with center loss and distance-based
sampling consistently outperforms others for major domains ex-
cept for U/E. However, even for U/E, the method performs second
best, and the gap to the best method is the ALC score of 0.003.

In summary, the combination of softmax margin with center
loss and distance-based sampling comparably performs in minor
domains while maintaining that in the major domains. It achieves
the best mean ALC scores for most domain pairs.

Conclusion
This paper introduced different laboratory settings for active

learning and showed that active learning methods demonstrate
significantly diverse behavior in each setting. We have demon-
strated that appropriate laboratory settings for active learning ex-
periments are important to selecting proper methods. Our practi-
cal laboratory settings have 1. pool data augmentation in the large
data generation, 2. proper validation set size, and 3. training data
augmentation to simulate realistic training practices. Then, we in-
troduced a problem setting, active learning for blind imbalanced
domains, which is important in specific real-world applications.
Finally, we investigated the best active learning methods for blind
imbalanced domains under our practical laboratory setting. As
a result, active learning with softmax margin and model training
with center loss along with distance-based sampling during train-
ing works for both major and minor domains on average and in
most settings.
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