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Related Work
This section presents the literature overview on methods for

throwing action detection and on supervised, unsupervised, and
semi-supervised anomaly detection methods.

A. Throwing Action Detection
Related to throwing action detection, previous studies

mainly focus on the detection of the thrown object itself instead
of the action. In [5], a modified version of YOLOv3 [17] is pro-
posed to detect particular objects when they are thrown out of a
car window. This approach relies on the recognition of specific
small objects, which is difficult when dealing with low-resolution
video footage or throwing actions are performed far away from
the camera.

Other studies in [4] and [18] concentrate on the trajectories
of moving objects. The authors fit parabolic trajectories into the
potential trajectories. In other words, any object that is found to
follow a parabolic trajectory is deemed as a thrown object. This
approach requires long trajectories of thrown objects to reliably
fit a parabolic trajectory. In practice, objects are often thrown
horizontally or downwards, which results in a short trajectory that
renders this method inefficient and only partially addressing the
case.

B. Anomaly Detection
Anomaly detection is a challenging computer vision prob-

lem aiming to detect rare events from a video stream. Different
approaches to this problem can be split into unsupervised, super-
vised, and semi-supervised categories.

1) Unsupervised Anomaly Detection
The most popular approach is unsupervised anomaly detec-

tion, where the training set contains only normal sequences. This
approach is employed in many papers, such as [2,6,10,14,15,19,
21, 27]. During the training stage, a model of normal behavior is
constructed. This model can properly characterize normal data in
the testing stage, whereas it cannot characterize anomalous data.
Applying this method is advantageous when the exact nature of
the target anomalies is unknown or uncertain. A drawback of un-
supervised anomaly detection is that creating a model capable of
exactly capturing all possible normal behaviors is complicated.
In other words, similar behaviors can be often both anomalous
or normal, depending on the context. For example, a car driv-
ing down the right side of the road is considered normal behavior,
while driving down the wrong side of the road is not.

2) Supervised Anomaly Detection
The second type is supervised training to learn anomalous

behavior. Several authors [13, 16, 26] use supervised anomaly
detection methods to predict the presence of anomalies only at
the temporal level, while others [11, 27] also locate the anoma-
lies at the spatial level. In contrast to the unsupervised methods
that typically rely on a reconstruction error to find abnormal in-
puts, supervised learning generally learns to predict an anomaly
score directly from the input data. An advantage of the super-
vised anomaly detection methods is that they often outperform
unsupervised techniques for the specific anomalies for which they
are trained. One of the drawbacks is the ambiguity of where
specifically an anomaly begins and ends. The second drawback

is that these methods can only detect the anomalies existing in
the dataset, furthermore, annotating the training data is labor-
intensive and expensive, as anomaly locations should be specified
in every video frame or segment.

3) Semi-supervised Anomaly Detection
The last type of anomaly detection is semi-supervised

anomaly detection. This method for anomaly detection is first
introduced in [23] and is further expanded in [12, 24]. In this
approach, the training data contains both videos of normal and
anomalous events, however, the data is annotated on a per-video
basis. It is significantly faster to annotate data in this way, com-
pared to labeling at individual frames or areas in each frame. This
annotation brings a major advantage over the fully-supervised
anomaly detection methods. A disadvantage of this approach is
that it only learns to recognize anomalies that occur in the train-
ing data.

As can be derived, previous studies mainly focus on object
or trajectory detection, instead of considering the throwing action
detection as an anomaly detection use case. Therefore, we con-
sider these throwing actions as anomalies, and generate a dataset
of throwing actions performed by different road users in real
traffic flow. We opted for a semi-supervised anomaly detection
method, as opposed to a supervised anomaly detection method,
because of its advantages in requiring less labeled data, while still
providing a higher accuracy than the unsupervised methods.

Proposed Novel Dataset
Currently, datasets are not available from literature to train a

throwing anomaly detector. Therefore, we have generated a novel
dataset, including the throwing anomalies in six different outdoor
categories to address the anomaly use case from the Smart City
project. The throwing anomalies are split into classes based on
the acting traffic participant (car, bicycle, pedestrian) performing
the throw, and whether or not the thrown object is directed to-
wards another traffic participant. If the throw is directed at an-
other traffic participant, it is called a ’dangerous’ throw, other-
wise a ’safe’ throw. The generated dataset includes six throwing
anomaly classes as described in Table 1. All videos have a res-
olution of 320×240 pixels. One of the challenges in our dataset
is that throwing anomaly videos can contain multiple throwing
actions up to a maximum of ten.

The objects used to create the throwing anomaly dataset are
selected to have a large diversity in object shape, size, and color.
Additionally, some objects maintain their shape during a throw-
ing action, such as a football, while others become deformed
and change their shape during the throwing movement, such as
a sweater or plastic bag. Overall, the generated dataset consists of
130 normal videos without throwing anomalies and 271 anoma-
lous videos divided over all six anomaly classes, titled as the
”Throwing-Action” dataset throughout the paper. Table 2 pro-
vides the number of videos of each anomaly class in the dataset.

A. Annotation
In the training set, each video is labeled as either normal

or anomalous at the video sequence level, while each video is
annotated at the frame level in the testing set. In other words, the
start and end frames of each throwing action are provided for the
test set. While the start frame of an anomaly action is defined as
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Figure 2. Flow diagram of the proposed methodology. Each video is split into 32 temporal segments. The videos are represented as a bag, and the segments

as instances within this bag. Features are then extracted from each segment by the pre-trained C3D, I3D, or MFNet feature extraction networks. Next, these

features are provided with an anomaly score by a fully connected neural network, resulting in one anomaly score for every instance in the bag. The network

uses a multiple instance learning ranking loss for training.

B. Variations on the Baseline Method
We experiment with different feature extractors within our

methodology and forms of our loss functions, which both are dis-
cussed briefly below. The paper that inspired our proposal applied
the C3D network [25] only, whereas the further investigated fea-
ture extractors are the I3D network [1], MFNet network [3], and
features concatenated from the aforementioned extractors.

C3D network: The C3D network is originally proposed
in [25] and is one of the first applications of a three-dimensional
convolutional neural network (3D-CNN) for supervised video ac-
tion classification. We extract the output of the first fully con-
nected layer as our features. In this work, the C3D feature extrac-
tor is pre-trained on the Sports1M dataset [8].

I3D network: The I3D network [1] is based on the Inception-
V1 [7] detector. We take the output of the average-pooling
layer as our computed features, resulting in a 1024-dimensional
feature vector. Here, the I3D network is pre-trained on two
different datasets, the Charades dataset [20] and the Kinetics
dataset [1]. These feature extraction backbones are referred to as
I3D-charades and I3D-kinetics, respectively, throughout the pa-
per.

MFNet network: The MFNet network [3] is used to ex-
tract features from the input videos. In literature, this network is
not yet applied for the purpose of anomaly detection in videos.
The MFNet network achieves slightly better performance than
I3D on action-recognition datasets, while at the same time, it re-
quires up to ten times fewer computations according to [3]. The
MFNet feature extraction backbone is pre-trained on the UCF-
101 dataset [22]. The MFNet features are represented by 6,144-
dimensional vectors.

Concatenated features: Finally, we concatenate all the ex-
tracted features from the C3D, I3D-charades, I3D-kinetics and
MFNet networks together, of which we construct a 12,288-
dimensional feature vector. The anomaly detection model has ac-
cess to a wider range of information, thereby improving anomaly
detection performance with the help of these concatenated fea-
tures. The downside of this approach is the increase in computa-
tional cost to execute all feature extraction networks.

In our method, the loss is based only on the maximum ob-
tained anomaly score of any segment in a video, both for normal
and anomalous videos. For an anomalous video, this makes sense

because it could be possible that such a video only contains one
anomalous segment. However, all segments should ideally have
an anomaly score of zero for normal videos. Hence, we experi-
ment with a loss function that takes the mean predicted anomaly
score into account, as opposed to only the maximum. This loss
is from now on referred to as the mean normal loss and described
formally below. This change allows the model to learn from all
normal segments at every training iteration, so that the mean nor-
mal loss is specified by

Lmean-nl(Va,Vn)=max ( 0 , 1−max
i∈Va

f (A i
a)+mean

i∈Vn

f (A i
n) ). (3)

Finally, we apply different optimizers in order to compare their
effects on the model performance. The baseline paper [23], uses
the Adadelta optimizer, while we also apply the Adam optimizer.

Experiments
In this section, we perform experiments with our anomaly

detection method described in the Methodology section on the
UCF-Crime dataset and the generated Throwing-Action dataset
to improve the anomaly detection performance. The primary met-
ric used to compare anomaly detection performance between ex-
periments is the area under the Receiver Operating Characteristic
(ROC) curve. This metric is commonly used to evaluate the per-
formance of anomaly detection methods and it gives insight into
the achieved ratio between the true-positive rate and false-positive
rate for the full range of anomaly thresholds.

A. Comparison of Adadelta and Adam Optimizers
Our first contribution is determining the appropriate opti-

mizer for the training phase of all experimentation models. We
train an anomaly detection model on the Throwing-Action train-
ing dataset for 100,000 iterations, using the Adadelta optimizer
with a learning rate of 0.01, similarly to [23] and using the Adam
optimizer with a learning rate of 0.0005. Figure 3 depicts the op-
timal ROC curves for each model.

As shown in Figure 3, Adam outperforms Adadelta by a
significant margin. This difference indicates that the Adadelta
training process has not reached an optimum after 100,000 iter-
ations. Figure 4 shows the batch loss during training for both
the Adadelta and Adam optimizers. From this graph, it can be
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Exp. 1 Exp. 2 Exp. 3 Exp. 4

C3D 70.30 69.80 67.68 70.66
I3D-charades 78.36 77.95 79.80 77.64
I3D-kinetics 78.47 78.34 80.25 78.01
MFNet 76.76 72.12 75.19 71.50
Concatenated 79.84 79.16 81.08 78.86
Concatenated
Mean normal loss

- 80.13 78.59 80.31

Table 2. Maximum area under the ROC curve achieved for dif-
ferent experiments. Exp 1: model trained and evaluated on
UCF-Crime dataset. Exp 2, 3 and 4: model trained on UCF-
Crime+Throwing dataset, evaluated on UCF-Crime+Throwing,
Throwing-Action and UCF-Crime datasets, respectively.

tion methods as used for the training set, while predictions of the
anomaly detection model are averaged over all versions of the
same video. Table 3 shows the maximum area under the ROC
curves when training the anomaly detection model on the aug-
mented Throwing-Action dataset and testing with TTA. TTA fur-
ther improves the results for both versions of the I3D feature ex-
tractors, but does not manage to improve results for other feature
extractors. Furthermore, TTA requires augmented test data which
makes the model more expensive at test time.

In conclusion, since the optimal area under the ROC curve
is obtained by a model trained without any augmentation and
training with augmentation is more computationally expensive,
we have decided to leave out data augmentation in the remainder
of this paper.

C. Experiments on UCF-Crime+Throwing Dataset
In addition to anomaly detection performance on the newly

generated Throwing-Action dataset, we are interested in combin-
ing the new Throwing-Action dataset with the publicly available
UCF-Crime [23] anomaly dataset. Therefore, we first evaluate
the performance achieved on the UCF-Crime dataset for all fea-
ture extractors.

Table 4 shows the best maximum area under the ROC curve
on the UCF-Crime dataset for all feature extraction backbones.
It indicates that the performance for the C3D feature extraction
is significantly lower than other feature extractors. Another ob-
servation from Table 4 is that concatenated features outperform
any individual feature extraction backbone. For the UCF-Crime
dataset, the different feature extractors provide different sets of
information about the video, and concatenating these allows the
detector model to consider more information. Furthermore, com-
paring the performance on the UCF-Crime dataset with the perfor-
mance on the Throwing-Action dataset shown in Table 3 reveals
that for each feature extraction network the performance on the
UCF-Crime dataset is lower, leading to the conclusion that the
UCF-Crime dataset is overall a more difficult dataset.

Next, we combine the UCF-Crime dataset with our
Throwing-Action dataset. This new dataset is from now on re-
ferred to as UCF-Crime+Throwing. In order to compare the per-
formance, an anomaly detection model is trained on the training
subset of the UCF-Crime+Throwing dataset for each feature ex-
traction backbone and evaluated on the UCF-Crime+Throwing,
the Throwing-Action, and the UCF-Crime testing sets. Table 4
shows the maximum area under the ROC curve obtained on each

test set for every feature extraction backbone. The results indicate
that the performance on the UCF-Crime+Throwing dataset is gen-
erally similar to the performance on only the UCF-Crime dataset.
The results show that it is possible to add throwing anomaly detec-
tion capabilities at only a small cost in the detection performance
of other anomalies. Therefore, it is viable to integrate throwing
anomaly detection into general anomaly detection systems.

The final experiment is concerned with the proposed mean
normal loss function. Since this loss enables the model to learn
from all normal segments at every training iteration, changing the
loss function allows the model to better recognize normal sec-
tions of a video, which decreases the false positive rate and in-
creases the area under the ROC curve. Table 4 summarizes the
performance for this modified loss function when using concate-
nated features and training on the UCF-Crime+Throwing dataset.
This model achieves the highest overall performance on the UCF-
Crime+Throwing dataset, but at the cost of decreased perfor-
mance on the Throwing-Action testing set.

D. Qualitative results
This section presents qualitative results of the proposed

anomaly detection method. Figure 6 shows the output of the
feed-forward network as a function of time, expressed by the
frame number of several testing videos of the Throwing-Action
dataset. This means that the y-axis shows the likelihood that a seg-
ment is anomalous, according to our anomaly detection method,
and the x-axis shows the progression number of processed video
frames. Furthermore, the ground-truth anomalous regions within
each video are given as red colored areas. In Figure 6 (a)-(d),
it can be observed that the performance is quite good for pedes-
trian and bicycle-related anomalies. However, several segments
have a high predicted anomaly score, while being outside of the
ground-truth anomalous areas. This problem occurs most often
between two distinct anomalies or just after one anomaly. These
segments contain relatively large person-arm motions after com-
pleting a throw, which may seem similar to a throwing action.

In Figure 6 (e)(f) show predictions for car-related throwing
anomalies, which are more difficult to identify for our anomaly
detection method. Anomalous sections sometimes obtain a pre-
dicted anomaly score of zero. This is caused by the fact that
throwing anomalies from cars are more challenging to recognize,
as there could be no person-arm motions. Furthermore, the sec-
ond peak with a predicted anomaly score above 0.5 in subfigure (f)
corresponds to the moment that the car suddenly accelerates in the
video. An explanation for this high score is that the normal train-
ing videos do not contain sufficient video material of accelerating
cars, making this acceleration appear anomalous.

Finally, subfigures (g)(h) show predicted anomaly scores of
two different normal videos. As can be noticed, the example in (g)
is close to the ideal performance for a normal video, with a low
predicted anomaly score in every segment. However, subfigure
(h) indicates two false alarms, which are most likely caused by
the presence of a fire truck in the footage of this normal video,
because they rarely occur in any normal training video.

Overall, the experiments show that the best results for
the combined UCF-Crime+Throwing dataset are achieved when
training the anomaly detection model with the Adam optimizer on
concatenated features, and with the proposed mean normal loss
function using the mean anomaly score of normal videos. The
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we have successfully improved the performance on the combined
dataset to an area under the ROC curve of 80.13 by means of the
proposed mean normal loss function, Adam optimizer and con-
catenated features.
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