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Abstract
Image quality metrics have become invaluable tools for im-

age processing and display system development. These metrics
are typically developed for and tested on images and videos of
natural content. Text, on the other hand, has unique features
and supports a distinct visual function: Reading. It is there-
fore not clear if these image quality metrics are effective or op-
timal as measures of text quality. Here, we developed a domain-
specific image quality metric for text and compared its perfor-
mance against quality metrics developed for natural images. To
develop our metric, we first trained a deep neural network to per-
form text classification on a data set of distorted letter images. We
then compute the responses of internal layers of the network to
uncorrupted and corrupted images of text, respectively. We used
the cosine dissimilarity between the responses as a measure of
text quality. Preliminary results indicate that both our model and
more established quality metrics (e.g., SSIM) are able to predict
general trends in participants’ text quality ratings. In some cases,
our model is able to outperform SSIM. We further developed our
model to predict response data in a two-alternative forced choice
(2AFC) experiment, on which only our model achieved very high
accuracy. Lastly, we demonstrated our model has the potential
to generalize to novel perceptual dimensions that it has not been
explicitly trained on.

Introduction
The ability to show high quality text is important for any

display system, especially for productivity purposes. There have
been many studies conducted on the legibility of text, usually
through the perspective of reading speed [1, 2, 3]. However, even
with equally legible text, numerous factors can still impact the vi-
sual quality of text. Here we are defining quality as the overall
aesthetic appearance of the text in addition to if the text is legible
, which can be crucial for the user experience. While text quality
can be assessed through user studies, they can be costly, time con-
suming, and limited to a few dimensions of interest. The goal of
the current paper is to develop an image-computable metric that is
able to predict text quality directly from rendered images of text.
Such model will provide a valuable tool for the design of any dis-
play system for which text quality is an important consideration.

Related work
To the best of our knowledge, there is no general model of

text quality. However, many metrics has been developed for qual-
ity assessment of images of natural content. Earlier attempts at de-
veloping image quality metrics used heuristic and empirical mea-
surements of human perception to design algorithms that trans-
form the image to the appropriate perceptual space [4, 5, 17]. An

alternative approach was to use the fact that natural images have
distinct statistical regularities [7]. Thus, distortions on natural im-
ages can be assessed through characterizing the deviations from
these regularities. In addition, since these statistics can often be
computed on a single image, a high-quality “reference image” is
no longer required. For example, in [8], the wavelet domain co-
efficients are used for assessing and removing noise from images
while [9] developed a set of statistical metrics for measuring the
“naturalness” of images in the spatial domain. These two dif-
ferent approaches also roughly correspond the full-reference and
reference-free methods of quality assessment. Empirical mea-
surements of the human visual system have also played important
role in advancing image quality metric, for example, by incorpo-
rating the contrast sensitivity function [10, 11].

More recently, deep convolutional neural networks and
learning-based methods have achieved superior performance on
various image processing tasks [12]. Thus, they have also been
used for building image quality metrics. In [13], the authors
showed that the internal representation of neural networks trained
on natural images is highly effective in predicting quality judge-
ments of human participants. Related studies also demonstrated
it it possible to use user data (e.g., 2-alternative-forced choice, or
2AFC) to either fine-tune [13], or directly train a neural network
model for image quality assessment [14, 15]. In particular rel-
evance to us, previous work also demonstrated that deep neural
network is able to capture the statistical regularities of text for
task such as deblurring [16].

In our current work, we developed a visual quality metric
based on a convolutional neural network that is specialized for
text. We demonstrate that our model outperforms generic image
quality metric for predicting text quality, and also fine-tune our
model using 2AFC data of text quality judgement.

Convolutional neural network model
The success of neural network models depends on their abil-

ity to extract relevant perceptual features from images. Since text
has unique features that are distinct from natural images, our first
step is to develop a neural network that is specialized for text.
To this end, we trained a simple convolutional neural network to
classify images of letters.

The neural network consists of six consecutive 2D convolu-
tions with kernel size 3. Each convolution is followed by a rec-
tified linear unit (ReLU), a 2D batch normalization, and a maxi-
mum pooling operation. The output of the last convolution block
then goes to three fully connected layers, before being converted
into class probability through softmax. A dropout layer with a
drop probability of 0.2 is applied right before the first layer, and
a 1D batch normalization is applied right after it. The network’s
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task is simply identify the letter. We also assumed that the upper
and lower case letters as the same category.

For the training data, we generated an image dataset of iso-
lated, 26 English letters in either upper or lowercase, that varies
in location, size, and contrast. The letter images then go through
a random affine transformation to simulate geometric artifacts,
and are blurred by a Gaussian point spread function with varying
sizes, before corrupted by randomly sampled 1/f pink noise of dif-
ferent magnitudes (Figure 1). The network is optimized through
the Adam optimizer using the cross-entropy loss function. We
used a mini-batch size 64, an initial learning rate (LR) of 0.001
with an exponential LR decay with rate 0.95 per epoch. Although
the performance is not our focus per se, the network can achieve
a high accuracy of over 95% on the classification task.

Figure 1. Some example images from our test dataset. These are examples

where the images have a low background noise. The network is able to

correctly classify all the letters after training.

Full-reference text quality assessment
After the network is optimized for the text classification

task, we use the internal features extracted by the convolutional
part of the model to build our text quality metric. Concretely,
for model f (·), we have the features r computed from image I,
r = f (I). Given a reference image Ir and distorted image Id ,
we can compute rr = f (Ir) and rd = f (Id), respectively. The
quality score s is then computed based on the difference be-
tween rr and rd . We used cosine similarity, cos(r1,r2) = (r1 ·
r2)/(||r1|| ∗ ||r2||). The final form of our text quality metric is
D(Ir, Id) = cos( f (Ir), f (Id)).

We compute the quality scores predicted by the model and
compare them to an internal study where users were asked to
provide a rating between 1 and 6 given an image of text. The
images were rendered with either a different Gaussian blur size,
font size, or text sharpening method. By running our model using
the highest quality image as the reference, our method is able to
qualitatively predict the user rating data. We also compared the
results with standard image quality metric (i.e., SSIM). Although
SSIM is also able to predict the user ratings for the blur and text
sharpening condition, it failed to predict the effect of font size,
presumably due to the lack of (size) invariance.

Building reference-free model with 2AFC data
In the previous section, we have shown that the internal fea-

tures of the network capture key aspects of text quality. However,
with the cosine similarity metric, a reference image is always re-
quired, and the numerical value of the score is not directly inter-

pretable. Thus, we built an explicit score function using user data
from a two-alternative forced choice (2AFC) task.

In particular, we assume a linear relationship between an in-
ternal judgement of quality score s produced by each user, and
the features of the neural network r, namely s = wT r. Here w
is a weight vector. To model 2AFC data, we compute s for both
images on each trial, s1 = wT r1 and s2 = wT r2, and a decision is
made through a sigmoid nonlinearity h(·) based on the difference
s1 − s2.

To estimate the weight vector w, we performed a logistic re-
gression with L1 regularization on a dataset of 2AFC judgements
where users made choices regarding quality of text images with
different font size, display resolution, and optical blur.

Consider the binary choice made by the user in each trial i,
di ∈ {0,1}. The model predicts the user has a probability of pi =
h(wT ri1−wT ri2) in choosing image number 1 as the one with bet-
ter text quality. Logistic regression minimizes the cross-entropy
loss function: L=−∑

N
i=1{di log pi+(1−di) log(1− pi)}. The L1

regularization encourages the weight vector to be “sparse”, result
in the final form of the loss function: L =−∑

N
i=1{di log pi +(1−

di) log(1− pi)}+β ∑i |wi|. The β parameter was chosen using a
cross-validation procedure.

There are a total of 4,000 binary choices across 10 subjects.
We randomly selected 3,600 trials for model fitting and cross-
validation, and report the model testing performance on the re-
maining 400 trials (Figure 2). Our model is able to achieve over
90% accuracy on the test set. As a comparison, we also built a
control model that uses the difference in pixel values of the two
images as regressors, and perform logistic regression with the
choice data, which only achieved an accuracy of 60%. Further,
we found that SSIM is unable predict the binary choices above
chance level.

Figure 2. Performance, in percent correct, in predicting the binary choices

on the test dataset, after fitting the linear score function on the training

dataset. The dotted line indicate chance level performance (50%).

With the weight vector w estimated from 2AFC data, we
now have a completely reference-free image quality metric of the
form s = wT · f (I). In addition, since the quality score is adjusted
through choice data, it can be interpreted in the unit of just notice-
able difference (JND). That is, a difference of 1 in quality score
predicts that an average user can barely see the quality differences
between the text images.

Factors impacting text quality
To visualize the prediction of the model on how different fac-

tors impact text quality, we plot the mode-predicted quality score
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s as a function of these factors. Below, we show two examples of
a contour plot of the predicted score, as two different factors that
impact text quality are varied (Figure 3).

Figure 3. The quality score, predicted by the model, as a function of the

font size (x-axis) and optical blur (y-axis) of the rendered text image (top); and

the font size (x-axis) and image resolution (y-axis) of the rendered text image

(bottom). The score is averaged over a randomly selected set of sentences.

As expected, as the font size increases and the optical blur
decreases, the quality of the text is higher (Figure 3, top). Sim-
ilarly, larger font size and image resolution results in better text
quality (Figure 3, bottom). Most importantly, the lines in the
contour plots represent iso-quality lines: The combinations of the
parameters along them are predicted to produce text with the same
perceptual quality. This is important for understanding trade-offs
that are relevant for text quality in display design. In addition,
although our model was optimized using only binary choices, it
produces quality score predictions that are mostly continuous and
smoothly varying, indicting the model is properly extrapolating
from the training data. However, we can still see some discon-
tinuities, such as in bright yellow regions in the bottom plot of
Figure 3. We expect that these should be resolved with a larger

dataset.

Predicting text quality
Our model would be extremely valuable if it is able to predict

text quality beyond the dimensions that has been explicitly trained
on. To test this possibility, we next examine the effect of additive
contrast on text quality. Below (Figure 4) we show two exam-
ple images where a relatively low (left) and high (right) additive
contrast, respectively.

Figure 4. Two example images of text with a low additive contrast (left) and

high additive contrast (right), respectively.

Previous research has examined the relationship between the
additive contrast of the display, and the legibility and quality of
the rendered text [17]. Although text legibility saturates when the
contrast is high enough, that is, after a certain contrast threshold,
subjects were able to recognize text equally well; Text quality
increases monotonically (See Figure 3 in [17]). Thus, subjects
prefer higher contrast text, even if it does not make the text more
legible. Our model was never trained explicitly with contrast vari-
ation, both for the initial letter recognition task, and the 2AFC
prediction task. We computed the predicted quality score for a
series of text images with increasing additive contrast (Figure 5).
Our model is able to recapitulate the exact monotonic relationship
observed in [17], which demonstrates its ability to generalize to
novel dimensions.

Figure 5. The quality score predicted by our model, as we increase the

additive contrast in the rendered text images. The score is averaged over a

randomly selected set of sentences.

To further elucidate how well our model is able to general-
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ize, we further predicted the 2D contour plots, similar to Figure 6,
but using additive contrast as one of the axes. Although the model
was never explicitly trained on how contrast, font size, and opti-
cal blur jointly determines text quality, it produces quality score
predictions that are sensible. For example, in the top plot of Fig-
ure 6, the model predicts that a higher contrast and larger font
size produces higher quality text, and the two factors also trade-
off in a precise way, as demonstrated by the iso-quality contour.
Similar results are also observed in the bottom panel, where we
simulated the interaction between contrast and optical blur. These
predictions can be verified using 2AFC experiment in the future.

Figure 6. The quality score, predicted by the model, as a function of the font

size (x-axis) and additive contrast (y-axis) of the rendered text image (top);

and the optical blur (x-axis) and additive contrast (y-axis) of the rendered

text image (bottom). The score is averaged over a randomly selected set of

sentences.

Discussion
In this article, we built an image-computable text quality

metric, based on the internal features of a convolutional neural
network trained on simple letter recognition task. Our initial com-
parison of the model prediction to rating data on text quality in-
dicated the model is able to recapitulate key aspects of user’s
judgements. Next, we extended the model quantitatively by fit-
ting the model to a dataset of 2AFC judgements by fitting a linear

score function using logistic regression with a sparse regulariza-
tion. Not only can our model achieve a high performance on test
data, and can predict text quality score in a meaningful way, in-
cluding the interaction and trade-off of different factors that im-
pact text quality.

We further showed that our model can generalize to a novel
dimension that it was not explicitly trained on. In particular, we
found that although the model was not explicitly trained with vari-
ations in the additive contrast of the text, it predicts the relation-
ship between contrast and text quality as previous reported [17],
and also how contrast interacts with other factors. Future experi-
ments will be able to validate the prediction of the model.

Our work adds to a growing literature of showing the similar-
ities between convolutional neural network and human perception
[13, 18, 19], but in the specialized domain of text. In addition to
the fact that our simple model is able to achieve high performance
in predicting the quality judgements of human participates, we
also found that only a small number of features (i.e., 10− 20) is
enough for making these predictions Figure 7. In contrast, neu-
ral network models that are not trained specially on text require a
much larger set of features to be able to predict behavior Figure
7. This indicates that our model trained specifically on text does
extract the most relevant perceptual features, compare to models
that are trained on natural images and others. This also offers us
a potential opportunity to interpret these features that are predic-
tive of text quality judgements, which will be one of our most
important goals in future work.

Figure 7. The number of features required for obtaining the same predictive

performance of behavior (y-axis), for four different neural network models (x-

axis) that are trained on text (our model), object recognition (AlexNet and

VGG), and MNIST dataset.

It is worth noting, however, that our model is still limited to
the user data it was trained on. Although we have showed the
model is able to generalize to novel dimension, we expect that it
still will need to be trained on a more comprehensive dataset that
includes a wide range of conditions [20]. In addition, our defini-
tion of text quality is confined mostly to the task of reading. It
could be possible that with alternative task demand, for example,
visual search [21], factors that impact text quality will be differ-
ent. However, our modeling framework should also be applicable,
given the appropriate dataset for model training.

In summary, we have shown that we are able to build spe-
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cialized model of text quality metric that achieves good predictive
performance of user judgement of text quality. Our model is able
to capture how different factors that impact text quality interact
and trade-off, and also generalize to novel dimensions. The pre-
diction of our model should also be testable by simply running
psychophysics experiment, for example, to see the effect of ge-
ometric distortions on text quality, just as those we used in our
training dataset. Our model will provide a valuable tool for the
design of display and text rendering pipeline.
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