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Abstract
Reference-based image quality assessment techniques use

information from an undistorted reference image of the same
scene to estimate the quality of a distorted target image. The main
challenge in designing algorithms for quality assessment is to in-
corporate the behavior of the human visual system into the algo-
rithms. The advent of deep learning (DL) techniques has garnered
sufficient interest among researchers in the field of image quality
assessment. The common limitation of applying deep learning for
image quality assessment is its dependence on a large amount of
subjective training data. Recent advances in the field of patch-
based self-supervised vision transformers have achieved remark-
able results for tasks like object segmentation, copy detection, etc.
and other downstream computer vision tasks. In this paper, we
study how the distance between the pre-trained self-supervised vi-
sion transformer features applied on pristine and distorted images
is related to the human visual system. Experiments carried out in
two publicly available image quality databases (namely TID2013,
and MDID2016) have yielded promising results that can be fur-
ther exploited to design perceptual reference-based image quality
assessment methods.

Introduction
Objective image quality assessment (IQA) is one of the most

challenging problems for the research community due to the sub-
jective nature of the problem. Human visual system (HVS) is
trained to identify the difference between distorted and pristine
images, but designing algorithms to mimic this task is extremely
difficult. Subjective image quality assessment includes psy-
chophysical experiments in controlled laboratory environments or
crowd-sourced experiments. Subjective ratings can be available in
the form of mean opinion scores (MOS), differential mean opin-
ion scores (DMOS), etc. to name a few. Based on the need for
reference images, IQA algorithms are classified into 3 categories.
Full-reference [1, 2], reduced-reference [3, 4, 5] and no-reference
IQA [6]. The peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM) [7] are the most widely used
measures for full reference image quality assessment. Reference-
based IQA can be used in a variety of applications, such as the
evaluation of enhancement and compression algorithms.

With the advancement in the field of deep learning (DL),
there has been interest in the application of DL techniques in the
area of image quality assessment [8, 9, 10, 11, 12, 13, 14, 15].
However, one of the biggest challenges of DL is the requirement
of large datasets with images of varying image quality paired with
subjective studies for validation. Dodge and Karam [16] con-
ducted experiments involving humans and deep learning mod-
els for image classification and reported that humans are much
better at classifying distorted compared to convolutional neural

networks. Datasets like Imagenet-C [17] have been proposed
to understand how DL algorithms work on poor quality images
with a motivation to design self-correcting models with respect
to image distortions [18].Transformers have become the most
preferred model for most modern natural language processing
tasks(NLP) [19, 20].Recently, Dosovitiskiy et al. have used the
concept of transformer for NLP into vision transfomers (ViT) [21]
by considering an image as a sequence of words of 16 × 16
patches. Vision transformers are becoming a powerful and popu-
lar tool for tasks like image classification, object detection, and
semantic segmentation, and have recently emerged as a strong
competitor to convolutional neural networks. Vision transform-
ers have achieved one of the highest accuracies in the Imagenet
data set [22]. Vision transformer models are designed in such
a way that a 224× 224 image is presented to the model (base)
as a sequence of 16× 16 words. The ViT architecture consists
of three important components, namely patch embedding, feature
extractor based on stacked transformer encoders, and the classifi-
cation head. After the success of ViT, subsequent architectures
such as SWIN Transformer [23], DEIT [24], XCIT [25] have
been proposed, making it an active area among computer vision
researchers. Transformers have shown promising results in the
area of IQA [26, 27]. With more and more computer vision sys-
tems being deployed for critical applications in sectors like heavy
industry, healthcare, defense, etc. to name a few, robustness of
deep learning algorithms is an active area of research. Some
work has been done in the area of how modern architectures, such
as vision transformers, behave in distorted images [28, 29, 30].
Self-supervised learning is a sub-branch of machine learning al-
gorithms where the technique learns from unlabeled sample data.
Self-supervised learning has been very popular in the area of com-
puter vision, and methods such as SimCLR [31] and momentum
contrast [32] have achieved great success. Recently, Caron et
al. [33] have shown that the features of the self-supervised vi-
sion transformer have achieved remarkable results in the field of
downstream computer vision transformers, and excellent results
have also been obtained from the k-nn classifiers. The method
proposed by the authors was termed self-distillation without la-
bels (DINO), and we used DINO models to investigate reference-
based image quality assessment in this paper. Self-supervised
learning using pre-trained transformer features [34] has shown
promising results, and this has served as an important motiva-
tion to investigate self-supervised transformer features between
pristine and distorted images. One of the main contributions of
the paper is to investigate how the distance between features ex-
tracted from the self-supervised vision transformer model trained
on Imagenet aligns with subjective image quality assessment. The
rest of the paper is organized as follows. In Section we discuss
the preliminaries followed by Section where we list the details of
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the experimental protocol for the study, and finally Section where
we discuss the results.

Preliminaries
One of the biggest challenges in designing image quality as-

sessment techniques is that different types of distortion have dif-
ferent statistical properties. For example, the statistical properties
of blurred images are different from those of images that are cor-
rupted with additive noise, making it difficult to develop a single
algorithm that can perform image quality assessment for all differ-
ent types of distortion. With the advent of modern machine learn-
ing techniques, different approaches have been proposed to de-
sign IQA methods, but the biggest challenge of using fully super-
vised machine learning approaches is that these methods need a
lot of good quality annotated training data to achieve human-level
performance. Conducting subjective experiments in a laboratory-
controlled environment is a slow and expensive process to gener-
ate sufficient data to train machine learning algorithms. Recent
advances in self-supervised machine learning have enabled one to
generate embeddings that are robust and have performed excep-
tionally well in downstream computer vision tasks. In this paper,
we try to answer the following question: Given a pristine refer-
ence image and a distorted target image of the same scene, can
self-supervised vision transformer features be able to predict the
quality of the distorted image without being explicitly trained on
any image quality assessment dataset? Caron et al. [33] have pro-
posed DINO models that were based on self-supervised learning
with knowledge distillation. Knowledge distillation was incorpo-
rated using a student-teacher network approach. The authors have
followed the same image augmentation strategy as the boot strap
your own latent (BYOL) [35] method plus added augmentations
such as colour jittering, Gaussian blur and solarization and also
multi-crop. These data augmentations play an important role as
the model is exposed to images of the same class with different
distortions, and the model is able to learn the same object with
different image quality. We plot the different attention heads of a
self-supervised DINO-ViTS/8 model in Fig. 1 with different im-
age quality. We observe that for the image of the same scene, the
attention weights are different as the quality of the image changes.
The human visual system is able to identify the difference be-
tween two images on the basis of image quality. This observation
motivates us to examine the self-supervised ViT models in detail,
as during training images of the same class with different quality
were introduced as part of the augmentation. Although the model
was not explicitly trained to perform image quality assessment, it
learned different embeddings for different qualities. In a subse-
quent section, we will discuss in detail how we use the features
from the last hidden layers and conduct experiments to validate it
against the human visual system to perform the task of reference-
based image quality assessment.

Experiments
There are several public datasets available for research pur-

poses, such as LIVE and its variants [37, 38], KADID-10K [39],
CSIQ [40], VCLFER [41] to name a few. We have chosen two of
the largest public data sets available for our investigation, which
covers a wider group of distortions. Subjective ratings are avail-
able in the form of mean opinion scores (MOS) or differential
mean opinion scores (DMOS). The details of the datasets used

for this study are summarized in Table 1. As seen in Section ,
the attention maps of an image of the same scene with different
image qualities are different. We tried to exploit this property to
find the vector distance between the pristine and distorted images
to check whether the results align with the human visual system.
For this work, we used a simple pipeline to conduct experiments.
We extracted features from a self-supervised vision transformer
model for both the pristine reference and distorted target images,
and then computed the distance between the two feature vectors.
For this work, we used pre-trained self-supervised DINO mod-
els for feature extraction. We conducted separate experiments on
the ViT-S and ViT-B architectures, where S and B represent small
and base models, respectively. Furthermore, we examine the two
separate configurations with patch size 8×8 and 16×16, respec-
tively, for the ViT-S and ViT-B models. Due to the different patch
sizes, the final vector dimensions are different for models with
8×8 patches and 16×16 patches. The vector obtained from the
last hidden state of the DINO models serves as a feature vector for
both pristine and distorted images. The resulting 2D feature vec-
tor is converted further to 1D for distance calculation. The overall
pipeline of our analysis is shown in Figure 2. The dimensions
of the feature vectors obtained by the different VIT architectures
are reported in Table 2 .The distance measure between the vectors
used for this study is listed in Section 3.

For all experiments, we have used the pretrained self-
supervised vision transformer pretrained DINO models provided
by the authors repository 1 (refer github for details of the hyperpa-
rameters) and the Hugging Face [42] interface for extracting the
features using the feature extractor module. All experiments were
carried out with Pytorch 1.10.2. For the distance calculation, we
use scipy [43]. All experiments were performed with a NVIDIA
RTX3070 GPU.

Results and Discussion
We observe that the City block, Canberra and Euclidean dis-

tances between the reference and distorted images in the feature
space have a strong correlation as visible from the scatter plots in
Figures. 3, 4 for MDID2016 and TID2013 datasets respectively.
As expected, the more distorted images have a higher distance
from the reference image in the feature space. An important
observation is that the distance measures included in this study
have a strong correlation with the human mean opinion scores
obtained from subjective experiments, as seen in all graphs for
all DINO models for the three datasets used for our study. The
self-supervised vision transformer-based features used for the ex-
periments are not trained on any image quality dataset. The rela-
tionship is consistent across different ViT architectures which are
based on 8×8 and 16×16 patches.

Evaluation Metrics
For the analysis in this paper, we use the following quan-

titative measures. To study monotonicity, we used Spearman’s
rank order correlation coefficient (SRCC) and Kendall’s rank or-
der correlation coefficient (KRCC) between the distance measures
and the subjective ratings. We also calculate the Pearson’s lin-
ear correlation coefficient (PLCC) between the distance measures
and the subjective ratings. From Table 4, we observe that dis-

1https://github.com/facebookresearch/dino
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Figure 1: ATTENTION HEADS OF THE DINO-VITS/8 MODEL FROM AN IMAGE OF THE TID2013 DATASET [36] WITH DIFFERENT

QUALITIES.

Name
# Reference
Images

# Distorted
Images

Subjective
Study

# Distortion
Types

TID2013 25 3000 Lab 24
MDID2016 20 1600 Lab 5

Table 1: Summary of the datasets used for the study
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Figure 2: Pipeline for reference-based distortion analysis

Model Architecture Feature-vector size

dino-vits8 ViT-S/8 785×384

dino-vits16 ViT-S/16 197×384

dino-vitb8 ViT-B/8 785×768

dino-vitb16 ViT-B/16 197×768

Table 2: Dimensionality of the features obtained from the differ-
ent models for this study

tance measures have a competitive correlation for three publicly
available challenging IQA datasets with different subjective ex-
periments and protocols. One of the key observations is that trans-
former features have decent correlation values for the MDID2016
and TID2013 databases. For the baseline, we compare with a
perception-based image quality measure that combines contrast,
luminance, structure, and the corresponding values reported by
the authors of the respective datasets in Table 5. From Table 5, it
is observed that the distance measures between pristine and dis-
torted images extracted by the vision transformers give a better
estimate of perceptual quality compared to a widely used image
quality measure (SSIM). This motivates us to incorporate features
based on self-supervised vision transformers to design IQA algo-
rithms based on human perception.

Conclusion and Future Work
In this article, we observe that the features of the self-

supervised vision transformer can demonstrate quality-related
information. In this paper, we do not propose any explicit full
reference image quality measure but instead we establish that the
distance between feature vectors obtained from reference and
distorted images of the same have shown promising correlation
with the subjective human opinion scores, and this knowledge
can further be leveraged in future to design reference-based
image quality assessment techniques which mimic the human
visual system more closely. Distances performed better than
the structural similarity index measure, which is one of the
widely used full reference image quality assessment measures.
The images with poor perceptual quality had a greater distance
from the pristine reference image in the feature space. One of
the challenges in deep learning-based image quality assessment
algorithms is the availability of data with quality variability

Distance Type Formula

Manhattan L1 ∑i |Xi −Yi|
Canberra L1 ∑i

|Xi−Yi |
|Xi |+|Yi |

Euclidean L2 ∑i(|Xi −Yi|2)
1
2

Table 3: Distance measures calculated between the reference and
target images

and their corresponding human opinion scores to train them.
The results presented in this study show that features extracted
from pre-trained self-supervised vision transformer models for
other tasks are in line with the human visual system and can
be used to design perceptual metrics. The data sets used for
this study are fundamentally different and use different types of
distortion and even multiple distortions (MDID2016). One of
the challenges in IQA is that different distortions have different
statistical properties, and it is challenging to design a common
IQA measure that works well on different types of distortion, but
features based on vision transformers show positive results in
that direction. The different augmentation strategies during the
training of the DINO models expose these models to images of
the same scene with different quality distortions, and this helps
the models to distinguish a pristine image from a distorted one
with a fair amount of accuracy. Training IQA specific datasets has
a great limitation that the model trained on such datasets tends to
work on the distortion specific to those datasets and fails on other
unknown distortion types. One of the solutions could be quality-
aware data augmentation and contrastive learning [34, 45].
The experimental results here motivate us to further explore
transformer architectures trained in other different computer
vision tasks and adapt to the field of image quality assessment,
and more advanced transformer architectures [23, 24, 46, 47]
have recently been proposed, making it a promising research area.
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(a) Euclidean-ViT-S/8 (b) Cityblock–ViT-S/8 (c) Canberra–ViT-S/8

(d) Euclidean–ViT-S/16 (e) Cityblock–ViT-S/16 (f) Canberra–ViT-S/16

(g) Euclidean–ViT-B/8
(h) Cityblock–ViT-B/8

(i) Canberra–ViT-B/8

(j) Euclidean–ViT-B/16 (k) Cityblock–ViT-B/16 (l) Canberra–ViT-B/16
Figure 3: Scatter plots to demonstrate the relationship between distance measures and subjective human opinion scores for the
MDID2016 [44] dataset

Dataset Model Euclidean Cityblock Canberra

SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC

MDID-2016

dino-vits8 0.92 0.75 0.91 0.92 0.75 0.91 0.94 0.78 0.92

dino-vits16 0.92 0.75 0.91 0.92 0.76 0.92 0.93 0.76 0.92

dino-vitb8 0.93 0.77 0.91 0.93 0.76 0.91 0.93 0.77 0.91

dino-vitb16 0.93 0.76 0.91 0.93 0.76 0.92 0.93 0.77 0.92

TID-2013

dino-vits8 0.78 0.58 0.81 0.76 0.57 0.80 0.75 0.56 0.79

dino-vits16 0.80 0.6 0.83 0.79 0.59 0.83 0.78 0.59 0.82

dino-vitb8 0.78 0.58 0.81 0.76 0.57 0.8 0.75 0.56 0.79

dino-vitb16 0.82 0.62 0.85 0.81 0.61 0.84 0.8 0.61 0.83

Table 4: Quantitative measures to establish the relationship between distance measures and human opinion scores

IS&T International Symposium on Electronic Imaging 2023
Image Quality and System Performance XX 308-5



(a) Euclidean-ViT-S/8 (b) Cityblock–ViT-S/8 (c) Canberra–ViT-S/8

(d) Euclidean–ViT-S/16 (e) Cityblock–ViT-S/16 (f) Canberra–ViT-S/16

(g) Euclidean–ViT-B/8
(h) Cityblock–ViT-B/8

(i) Canberra–ViT-B/8

(j) Euclidean–ViT-B/16 (k) Cityblock–ViT-B/16 (l) Canberra–ViT-B/16
Figure 4: Scatter plots to demonstrate the relationship between distance measures and subjective human opinion scores for the TID2013
dataset
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