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Abstract 

Deep Neural Networks (DNNs) are critical for real-time embedded 

imaging applications including autonomous vehicles. DNNs are 

often trained and validated with images that originate from a limited 

number of cameras, each of which has its own hardware and image 

signal processing (ISP) characteristics. However, in most real-time 

embedded systems, the input images come from a variety of cameras 

with different optical components, sensors and ISP pipelines, and 

often include perturbations due to a variety of scene conditions. 

Data augmentation methods are commonly exploited to enhance the 

robustness of such systems. Alternatively, methods are employed to 

detect input images that are unfamiliar to the trained networks, 

including out of distribution detection. Despite these efforts DNNs 

remain widely systems with operational boundaries that cannot be 

easily defined. One reason is that, while training and benchmark 

image datasets include samples with a variety of perturbations, 

there is a lack of research in the areas of metrification of input 

image quality suitable to DNNs and a universal method to relate 

camera system performance to DNN robustness using appropriate 

quality metrics. This paper addresses this lack of metrification 

specific to DNNs systems and introduces a framework for systematic 

modification of camera system performance parameters that relate 

input image quality attributes to DNN performance. 

Introduction 
In recent years we have seen significant advances in image 

processing and computer vision applications based on Deep Neural 

Networks (DNNs). This is a critical technology for several real-time 

embedded imaging applications including autonomous vehicles, 

smart cities, and industrial computer vision.  

However, even though deep neural networks are trained and 

validated based on a wide range of images, they have also been 

shown to be quite brittle when they come across artificial or natural 

adversarial examples. As early as 2014, it was shown that deliberate 

or natural adversarial changes occurring to the input images 

deteriorated the performance or classification decision of deep 

networks. For example, in [6], Goodfellow et al. demonstrated that 

by adding an imperceptibly small vector whose elements are equal 

to the sign of the elements of the gradient of the cost function with 

respect to the input, they can change GoogleNet’s classification of 

an image. 

Other examples that cause deep neural network performance 

deterioration during downstream include the use of images that are 

taken in environmental or viewpoint conditions or have artifacts due 

to the imaging process that may not have been part of the training 

set [1]. Figure 1 shows an example of how the performance of 

AlexNet deteriorates when exposed to images that are corrupted 

with Gaussian noise, with distortion severity increasing from left to 

right, with the left-most image having no distortion (original).  

 

Figure 1: In the presence of noise the recognition of the fire engine 

deteriorates as Gaussian Noise increases. In the original uncorrupted image 

(leftmost), top 1% the fire engine is recognized with 66% accuracy. As 

Gaussian noise is added to the image increasing progressively from standard 

deviation 0.08 to 0.12, 0.18 and 0.26 (rightmost image), top 1% accuracy 

for the fire engine is decreased respectively to 60%, 24%, 9% and  0%. 

In all such cases, the operational boundaries of DNNs cannot be 

explained or otherwise quantified. While widely studied in recent 

years, it is not yet clear the level of unseen distortions deep neural 

networks can tolerate, or the exact reasons for any network 

performance degradation. If machine learning models are to be 

trusted, particularly when deployed in critical applications, their 

level of robustness needs to be improved. This can only be possible 

if the underlying mechanisms are better understood. 

In this paper we explore a methodology that would enable us to 

better understand such underlying mechanisms by introducing a 

framework for the metrification of camera image performance that 

relates input image quality attributes to DNN performance. The aim 

of our proposed framework is to provide information on the 

operational boundaries of deep neural networks with respect to the 

image artefacts produced by camera pipelines for varying image 

content and pipeline characteristics. Our aims are to: (a) inform 

changes to the design of the imaging pipelines to optimize 

embedded imaging systems; (b) examine breath of variability in the 

input data used in the training of networks; (c) inform changes to 

architectural structures that will account for the operational output 

of the image sensors used in embedded imaging systems.  The rest 

of the paper is organized as follows. The section on Related Work 

presents a literature review on approaches taken to date to address 

the brittle characteristic of DNNs followed by a discussion on the 

issues related to DNNs robustness. In the section Domain 

Generalization, we discuss how current methods address the data 

shift issues inherent to the poor robustness of DNNs, whereas in the 

section Data Valuation using Reinforcement Learning we present a 

framework on how to use task specific reinforcement signal to 

model task specific fitness quality of images. In the section 

Observations using Imaging Performance Metrics we present our 

observations on DNNs robustness with respect to imaging 

performance metrics before we summarize in Conclusions. 
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Related Work 
 

The number of safety-critical applications affected, and the volume 

of the current research are testimony to the need to provide a better 

understanding of the operational boundaries of DNN systems used 

in real-time imaging operations and thus enhance the interpretability 

and explainability of such systems.  

DNNs are often trained and validated with images that originate 

from only a limited number of camera systems, each of which has 

its own hardware (optics, sensors) and image signal processing (ISP) 

limitations and artifacts. However, in most real-time embedded 

systems, the input images come from a variety of cameras systems 

with different ISP pipelines, and also include perturbations due to a 

variety of external (scene) conditions.  

Data augmentation methods are often exploited to expand the subset 

of trained images to include images with distortions introduced by 

changing environmental conditions, such as modelled haze or rain, 

or by modelling changes in the imaging system, for example 

modelling varying camera parameters, by introducing Gaussian 

camera blur, Poisson noise or quantisation errors. Such data 

augmentation may result to improved performance of the network 

for artifact-specific images [6] but also degrades the performance 

for artifact-free images [7]. To tackle the problem from a different 

perspective, several methods have been researched to detect images 

from the target domain that are unfamiliar to the trained networks, 

such as out of distribution (OOD) detection, anomaly detection and 

open set recognition methods [13]. In addition, methods that use 

image quality assessment [12] or data valuation [11] aim to assign a 

valuation to the appropriateness of specific image samples. 

However, despite such efforts, DNNs remain widely systems whose 

operational boundaries cannot be explained or otherwise quantified 

[15].   

One of the reasons that DNNs for imaging applications are failing 

to provide the required robustness in downstream, is that while 

augmented training and benchmark image datasets for DNNs 

include samples with a variety of natural and adversarial occurred 

perturbations, it is not possible to train or test for a model that 

includes all potential data shifts that may occur due to imaging 

artifacts. In addition, recent work suggests that not all samples used 

in training are equally useful to learn from, for example robustness 

errors may occur due to the inclusion of low-quality samples in 

datasets [4]. Out of distribution methods aim to address the former 

reason but they are mainly concerned with semantic shifts in the test 

datasets. Changes in appearances such as, for example changes in 

image contrast, are either excluded from the evaluation stage or 

treated as a sign of OOD, which contradicts with the primary goal 

in machine learning, i.e., to generalize beyond the training 

distribution [11]. The latter reason for the lack of DNN robustness 

is primarily tackled by approaches that use data valuation [11] and 

image quality assessment methods [12]. Their aim is to assign image 

quality values to train data and/or downstream individual data 

depending on the application. However, the majority of well-

performing, established image quality metrics and relevant 

standards used in these methods are based on the knowledge that the 

recipient of images are human observers, which is not necessarily 

suitable for DNNs systems. Our objective is to study this problem 

by providing a framework to relate quality to DNN performance 

using meaningful camera system performance metrics. 

Robustness Issues in DNNs 

As mentioned earlier, the appearance of a captured scene can vary 

enormously, due to physical changes (in environment, viewpoint 

etc.) or camera variations and artifacts caused by the imaging 

processing pipelines. In our work we concentrate on attributes 

changes caused by capture and processing pipelines, and we use a 

subset from the ImageNet-C benchmark for some preliminary 

analysis [8]. 

ImageNet–C is a subset of ImageNet classes/images, to which a 

large number of corruptions have been added. In each image 25 

corruption types have been applied, and for each corruption there 

are 5 levels of distortion with increasing severity.  For our 

preliminary work we focus on only four corruptions: Gaussian 

Noise, Gaussian Blur, Motion Blur, Brightness Variations). These 

represent image degradations caused by sensor noise, lens blur, 

camera shaking and exposure errors respectively. 

Figure 2, shows sample images of the ImageNet subset we used, 

representing images that automotive systems may encounter. These 

are sample uncorrupted images from each of the 28 classes we are 

considering and are part of the images AlexNet was trained on for 

object classification [10]. 

 

Figure 2: Sample images from 25 out of the 28 ImageNet classes 

used during our analysis. 

Figure 3 shows the normalized median network performance change 

when the Gaussian Noise and Gaussian (Defocus) Blur corrupted 

images of these classes are input into AlexNet during testing. In 

other words, how much the network performance for the target 
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dataset diminished compared to the uncorrupted / trained dataset.  

Figure 4 shows the normalized media performance change when the 

images are corrupted with Motion Blur and changes in Brightness. 

 

 

 

Figure 3: Normalized median network performance change for 

images corrupted with Gaussian Noise (top) and Defocus Blur 

(bottom) when input into AlexNet during downstream. 

Based on the ImageNet-C subclasses used in this initial analysis we 

make the following observations regarding the effect of corruptions 

on DNNs robustness: 

a) Based on the corruption level information alone, provided 

by the benchmark database, it is not possible to properly 

evaluate the effect that the corruptions/attributes have had 

on the images, and subsequently relate this appropriately 

to the performance of the network. This is because the 

corruption is presented as an arbitrary additive change 

(level) but does not suitably quantify the effect such a 

change has on the image quality. 

 

b) There is a sharp drop in performance usually after 

corruption exceeds level 3. However, based on the current 

information in ImageNet-C we cannot explain why this 

drop exists due to the lack of standardized metrification 

for image quality. 

 

c) Considering the network performance for each of the 

corruptions/attributes, we see that there is a lot of variation 

in the effect that they have. Brightness is shown to have 

the least effect whereas Gaussian Blur the biggest effect, 

but we do not know whether each level of individual 

distortion degrades the original image information 

equally. This is an important point which is often not 

accounted for in the relevant literature, and consequently 

wrong conclusions maybe drawn. 

 

 

Figure 4: Normalized median network performance change for 

images corrupted with Motion Blur (top)  and Brightness 

(bottom) when input into AlexNet during downstream. 

Further, most of the results provided in the literature are based on 

average robustness network performances and therefore it is not 

clear how specific image characteristics and contents may affect 

DNNs’ robustness. Figures 3 and 4 show the network performance 

for each class and highlight the median performance of the network 

for the chosen classes in this analysis. From Figures 3 and 4 we can 

see that the performance varies quite significantly from one class to 
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the other. We call this scene dependent network performance. Most 

of this scene dependency is most probably due to variations in low 

level scene features (textures, colors, etc.), size of objects on the 

frame, as well as semantic variations. Another contributing factor, 

however, is variations in the original image quality of the difference 

classes/images since images in the ImageNet dataset have been 

originating from different camera systems with varying output 

quality. Any added artefacts may result to different levels of quality 

for each artifactual level.  

Figure 5 summarizes the median performance of AlexNet for 

Gaussian Noise, Defocus Blur. Motion Blur and Brightness for the 

chosen ImageNet classes as a function of ‘level’ of corruption.  

 

Figure 5: The median performance of AlexNet for Gaussian Noise, 

Defocus Blur, Motion Blur, Brightness for the chosen ImageNet 

classes. 

Figure 6 focuses in two of the classes in ImageNet, “taxis” and “fire 

engine”.  We observe that even though both classes start with a very 

similar top-1% network performance of 0.60 and 0.66 respectively, 

the addition of the corruption causes significant network 

performance differences. Gaussian blur affected the fire engine class 

severely, while the taxis class less so. On the other hand, changes in 

brightness had almost no effect on the fire engine class, while 

affected the taxis class significantly. 

 

Figure 6: The median performance of AlexNet for two classes Fire 

Engine and Cab, Taxi under the four corruption types: Gaussian 

Noise, Defocus Blur, Motion Blur, Brightness. 

It is important to note that, based on the ImageNet-C benchmark 

dataset, we cannot evaluate the networks’ performances when more 

than one corruption is applied on the images. However, this is not a 

reflection of the image capture process faced by real-time embedded 

imaging applications. The effect that each additional artifact has to 

the distribution of a given dataset is multiplicative, thus requiring a 

much larger number of samples to model it [9]. 

Our observation from these experiments is that current benchmark 

datasets and methods do not sufficiently analyze the reasons behind 

the performance degradation of deep neural networks and do not 

account for variations observed in different classes or types of 

images. 

Domain Generalization: Issues and Proposal 

The underlying reason for the drop in performance of deep networks 

is that the source and target data are not independent and identically 

distributed [2]. When the deep networks models are deployed in 

real-life scenarios, out-of-distribution data are encountered, and that 

exposes specific biases in the databases. 

Database biases give rise to a problem that is commonly called 

domain shift [13]. The main term that is used to describe the 

methods that are developed to address the performance deterioration 

that deep networks models face due to domain shift is broadly 

covered by domain generalization. Examples include data 

augmentation methods and domain alignment methods, just to name 

a few. Evaluation of domain generalization methods are mainly 

based on metrics that report the average performance of the models 

in the tested domain shift scenarios. 

While this is a widely studied area, there are still doubts on the 

efficacy of the existing methods to generalize across datasets. The 

relative performance between methods varies across datasets and 

shifts [4]. In addition, there has been little work in defining the 

underlying mechanisms that cause these shifts and variations of 

network performance due to capturing system bias. 

In order to address the problem of domain shift, in particular caused 

due to capturing system bias, we need an insight on the 

appropriateness of images for a given task. To achieve this, we are 

developing a framework that: 

a) Introduces systematic imaging system parameter 

(attribute) variations that are representative of (model) 

real camera system variations. 

b) Develops evaluation metrics for a set task. 

c) Tests the abovementioned metrics for their suitability to 

describe image attributes/characteristics in an appropriate 

manner for neural networks, relevant tasks and 

architectures. 

When discussing imaging metrics, image quality (IQ) assessment 

metrics are typically based on human perception [10] and therefore 

cannot necessarily work. IQ metric results are developed to correlate 

with the human visual system   but not necessarily with performance 

variations in  deep network performance. There are examples where 

image quality is learned through deep networks based on experts 
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labelled assessment [3]. However, the reported results are also not 

always positive. 

An alternative is to derive Image Fitness (IF) for input to network 

tasks by using reinforcement learning. Relevant models measure 

fitness for the purpose of images for a given network task. Examples 

include work by Yoon [15], where the model is domain agnostic and 

Saeed [11] where the model is applied in biomedical imaging. 

However, such metrics do not specify why any image may or may 

not be fit for purpose, as they don’t relate the decision to the image’s 

inherent information and attributes that in turn depend on the 

performance of the camera systems that have produced them. 

We argue that using such models is insufficient to provide a learned 

image assessment that best fits a task.  Subsequently, we can then 

investigate how learned image fitness metrics are related to imaging 

performance metrics that describe generic imaging system 

characteristics for average test signals as well as scene specification 

metrics that describe individual scene contents. 

Data Valuation using Reinforcement Learning  

The architecture in Figure 7 shows the data valuation model 

developed by Yoon [15] and represents the general principle behind 

the use of reinforcement learning to quantify the value of data. 

Yoon proposed a reinforcement learning framework that learns data 

values jointly with a target task predictor model, therefore it 

integrates data valuation with the training of the target task 

predictor. 

 

Figure 7: Data valuation using reinforcement learning [15] 

The network has two components: the data value estimator (in blue) 

that is trained based on reinforcement learning with a sampling 

process, and the task predictor (in red), which can be any feed 

forward deep learning predictor model for a given task. 

The data value estimator, modelled by deep reinforcement learning, 

learns how likely each datum is used in the training of the predictor 

model and is trained using a reinforcement signal of the reward 

obtained on a small validation set that reflects performance on a 

target task. 

What is of most interest to us here, is that the output of the data value 

estimator provides a set of selection probabilities that rank the input 

samples according to their importance to maximize the performance 

of the network for the given task. This data valuation can correspond 

to the learned image fitness values. 

In our framework shown in Figure 8, we propose to use a dataset of 

uncorrupted images and introduce systematic changes by employing 

physical camera system parameters (optics, sensor) and ISP models, 

and feed these systematically changed images to a data valuation 

model that is trained for a given task. We can use the model to rank 

the fitness for purpose of the corrupted images relevant to a given 

task.  

Once we have received the fitness for purpose for the images, we 

can then relate them with the imaging performance metrics and 

scene metrics, therefore closing the loop and relating fitness for 

purpose to the imaging process. 

A sample of imaging performance metrics that we aim to use for this 

purpose include metrics relevant to exposure and tone reproduction, 

edge frequency content, optical resolution, texture reproduction, 

optical aberrations, information content/capacity, signal-to-noise. 

For scene content our metrics include contrast, brightness, energy 

(busyness, complexity), coherence, colorfulness, and dominant 

color palettes. 

 

Figure 8: Framework for the systematic assessment of artifact 

impacts 

Observations using Imaging Performance Metrics  

Imaging performance metrics are routinely used by the imaging 

industries for imaging system design and optimization, since they 

can relate image attributes (such as resolution, noise, color and tone 

reproduction) to specific system properties (optical, sensor, color 

filter array, etc.). For example, performance metrics extracted from 

the camera Modulation Transfer Function (MTF), which describes 

the ability of the camera for reproducing contrast at different spatial 

frequencies, can be related to image sharpness (MTF50) or 

resolution (MTF10, MTF20). Figure 9 shows examples on how 

three corruption types applied on ImageNet-C images can be   

evaluated through imaging performance metrics derived from 

Imatest© test charts that have been subjected to the same levels of 

corruption as the ImageNet-C images, using the same corruption 

filters. The resulting metrics values   are then related to the 

performance of the AlexNet network. Figure 9(a) shows how the 

MTF50 and MTF20 values extracted from the Imatest© charts 

corrupted by Gaussian Blur vary with the median performance of 

the network. MTF50 provides a measure of image sharpness, 

whereas MTF20 relates to vanishing resolution. In Figure 9(a) we 

observe that sharpness in images reduces the performance of the 

network deteriorates rapidly, whereas network deterioration is 

slower as image resolution is reduced.  
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Figure 9(b) shows the network performance with respect to signal-

to-noise (SNR) ratio, where SNR (dB) = 20*log10 (signal/noise) 

measured using ISO 15739. We observe that network performance 

decreases linearly as SNR increases. Finally, Figure 9(c) shows how 

changes in global contrast, through the measure of gamma value, 

affects the performance of the network. Here we notice that relative 

changes in brightness and contrast have a relatively small effect on 

the robustness of the DNN, an observation also supported by 

previous studies [9].  But although the contrast range covers most 

camera contrast variations, it does not cover extreme image 

contrasts. 

 

Figure 9 provides observations on the performance of the network 

based on example camera performance metrics that can potentially 

be used in our framework. They certainly require further evaluation 

and validation to draw meaningful conclusions on their suitability. 

Nonetheless, such descriptors are internal (relatable) to the quality 

of the image, as opposed to arbitrary values commonly used in 

evaluations found in literature, such as the standard deviation of the 

noise or blur filters. The latter describes changes external to the 

image and are therefore unrelatable. 

  

 

 
(a) 

 

 
 

(b)                                        (c) 

 

Figure 9: Median network performance variation with respect to 

scene metrics (a) MTF50 & MTF20, (b) SNR (c) Gamma value. 

  

Conclusion 

In this paper we report on the robustness of deep neural networks, 

based on sample images provided by ImageNet-C [9]. We observed 

that the current benchmark datasets cannot fully explain the 

underlying reasons for the brittle performance of deep networks. To 

address the problems discussed in the paper, we propose a 

framework based on metrics that relate camera system performance 

of cameras in embedded systems to the robustness of deep neural 

networks. The framework will employ: (a) systematic imaging 

variations to images as well as to test charts, from which imaging 

performance measurements can be derived. We do this   using 

modelling imaging functions that describe physical camera system 

parameters (optics, sensor) and ISP models (rather than arbitrary 

models that are often found in the computer vision literature); (b)  

reinforcement learning to associate task depended valuation to 

images and derive image fitness metrics; (c) scene 

descriptors/metrics that can be used to differentiate between 

different original scene contents that may affect differently network 

performance (tackle network scene dependency); (d) association of 

image fitness metrics with imaging performance and scene 

description metrics. We aim to test the validity of the framework 

and proposed performance metrics with a number of different 

network architectures and tasks. 
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