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Abstract
In recent years different Image Quality Metrics (IQMs) that

are focused on comparing the feature maps extracted from dif-
ferent pre-trained deep learning models have been introduced.
While such objective IQMs have shown a high correlation with the
subjective scores little attention has been paid on how they could
be used to better understand the Human Visual System (HVS) or
how observers evaluate the quality of images. In this study, by us-
ing different pre-trained Convolutional Neural Networks (CNNs)
we identify the most relevant features for image quality assess-
ment. By this our goal is to have a better understanding of which
features play a dominant role when evaluating the quality of im-
ages. Experimental results on four benchmark datasets show that
the most important feature maps represent repeated textures such
as stripes or checkers, and feature maps linked to colors blue, or
orange also play a crucial role. Additionally, when it comes to
calculating the quality of an image based on a comparison of dif-
ferent feature maps, a higher accuracy can be reached when only
the most relevant feature maps are used in calculating the image
quality instead of using all the extracted feature maps from a CNN
model.

Introduction
Over the last few decades different studies have focused on

evaluating the quality of images and videos resulting in differ-
ent Image and Video Quality Metrics (IQMs and VQMs respec-
tively). In the case of images, IQMs try to predict the subjective
evaluation done by observers and provide a consistent measure
which can also be used for quality optimization. Until recently
the introduced IQMs were based on traditional image processing
techniques and took advantage of handcrafted features. With the
introduction of different CNN based IQMs, we now have access
to a huge amount of data extracted from images which can help us
better understand the Human Visual System (HVS) and the pro-
cess observers take to evaluate the quality of images.

While the CNN based IQMs show a higher performance
compared to traditional IQMs [1, 2, 3], little attention has been
paid on how such metrics work and the information we can ac-
quire by analyzing their performance. A deep dive in how such
metrics work will not only allow us to have a better understanding
of the HVS but also how we can improve the performance of dif-
ferent CNN based IQMs. With this goal in mind, in this study we
aim to detect how different feature maps extracted from the image
would affect the overall performance of an IQM. Our focus will
be on IQMs which are based on comparing different feature maps
between the test and reference image.

Our results show that independent of the dataset, image, and

the type of distortion that affects the image, specific features play
a prominent role in the quality assessment of the image. Further-
more, while CNN based methods outperform traditional metrics,
by using a limited number of such deep features, we would not
only be able to reduce the computational costs but also improve
the performance of the IQMs.

In the rest of the paper we first provide a short overview of
the previous works done on CNN based IQMs. The methodology
used in our work is then introduced in the next section followed
by experimental results and conclusion of the work.

Related Works
Traditional IQMs simply measure the difference or the sim-

ilarity between the reference and the test image (in the case of
the full-reference and reduced-reference metrics) or how the qual-
ity image is with regards to an idea case scenario (no-reference
metrics). The first approach, which is referred to as error visi-
bility, calculates the error at the pixel level. At each location, a
value corresponding to the difference between the pixels in the
test (distorted) and the reference image is computed. A pooling
operation, which is normally an average of all the results is then
applied to the set of error values at all pixel positions to get a sin-
gle value representing the quality of the image. Three represen-
tatives for this category of IQMs are Mean Square Error (MSE),
PNSR, and ∆Eab. Another group of IQMs take into account the
tendency in the HVS to create mathematical models of the met-
rics [4]. Structural Similarity Index (SSIM) [5] is a perceptual
quality metric, which is based on the principle that the HVS is
adapted to extract structural information from images. The lo-
cal structure similarity, which is constructed from three compo-
nents: luminance, contrast, and structural comparison, is lever-
aged to evaluate the quality of images. Over years, different vari-
ants of SSIM have been proposed such as MS-SSIM [6], which
apply SSIM at multiple scales of the image, F-SSIM [7] calculat-
ing similarity at low-level features, or IW-SSIM [8] extending a
content-based weighted on measuring local similarity. The afore-
mentioned SSIM methods show a better performance than their
error visibility counterparts in image quality assessment. Some
other metrics use the information-theoretic to measure the fidelity
between the reference and distorted images such as VIF [9], or
combine the above approaches as in VSNR [10].

With the development of deep neural networks, CNNs are
considered as the efficient model for many computer vision tasks.
Due to the lack of enough data to train and test a CBB model,
initial IQMs which took advantage of deep learning techniques
[2, 1, 3] used a pre-trained CNN model to extract different fea-
tures from the image which then they used in their propsoed IQM.
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Amirshahi et al .[2] proposed a full-reference IQM measuring the
similarity between the extracted features from the test and the ref-
erence images at multiple layers. Following this approach, they
extract the feature maps at different convolutional layers of a pre-
trained CNN model and compared the feature maps using tradi-
tional IQMs such as PSNR and SSIM [1]. Around the same time,
Gao et al. [3] used a deeper pre-trained CNN, the VGG model
[11] for feature extraction, and calculate the local similarity of
the feature maps similar to the main idea behind the SSIM IQM.
The experimental results show that the metric that compare the ex-
tracted feature from the pre-trained CNN model achieve a higher
accuracy in evaluating image quality than traditional IQMs.

Methodology
In this study we focus on IQMs which use a comparison of

the feature maps extracted from a pre-trained CNN model. In
the previous section we introduced few methods which take such
an approach [1, 2, 3]. To find the features which play the most
important role in evaluating the quality of an image we use a
wrapper-based approach (forward selection) [12] which has pre-
viously been used in similar fields of research [13, 14]. In such
an approach, we start with an empty set of feature maps and iter-
atively add the feature maps which result in the highest increase
in the correlation between the subjective scores and the proposed
IQM. Using this approach, a combination of feature maps which
provide the highest correlation with the subjective scores is de-
tected.

The detailed step-by-step approach that iteratively builds a
set of feature maps that provide the best performance of a given
IQM can be found in the following.

1. An empty set of feature maps is created.
2. Feature maps are extracted from the test (IT ) and the refer-

ence (IR) images at all convolutional layers.
3. The quality score for all the test images in our dataset at each

feature map is then calculated by

q((Fn,m(IT1)) = IQM((Fn,m(IT1),(Fn,m(IR1)) (1)

where Fn,m(IT1) corresponds to the mth feature map in the
nth convolutional layer for the test image IT1 , IQM indi-
cates the IQM used in our calculations, and q((Fn,m(IT1))
corresponds to the quality score of image IT1 using feature
map Fn,m(IT1).

4. The correlation between the quality score of each feature
map and the subjective score is calculated.

5. The feature map with the highest correlation score is then
added to the feature set.

6. The remaining feature maps are then individually combined
with the feature set and the quality of the test images in our
dataset are then calculated.

7. The feature map which in combination with the feature set
we have provides the highest correlation with the subjective
scores is then added to the feature set.

8. This process (steps six and seven) continues until adding
any new feature map to the feature set does not result in an
increase in the correlation scores.

The selected feature set is then visualized to better understand
how observers evaluate the quality of an image.

Table 1: Number of features in each feature set which reach
the highest correlation rate along with the corresponding non-
linear Pearson correlation achieved using the feature set com-
pared to when all features are calculated in the AlexNet model.

Non-linear Pearson correlation

Dataset Num. of selected

feature maps

Using selected

feature maps

Using all

feature maps

CID:IQ 100cm [15] 2 0.89 0.80
CID:IQ 50 cm [15] 12 0.87 0.68

CSIQ [16] 16 0.90 0.87
TID2013 [17] 9 0.95 0.91
CIDGD [18] 13 0.75 0.61

Experiment and Results
To create each feature set we tested our approach on four

benchmark subjective datasets namely, CID:IQ [15], CSIQ [16],
TID2013 [17], and CID:GD [18]. The feature maps were ex-
tracted from a pre-trained AlexNet [19] model and compared to
each other using the SSIM IQM [5] similar to what was proposed
in [1]. Depending on the dataset, different number of feature maps
were selected in our feature set (Table 1). From the results, we
can observe that compared to the original IQM approach which
is based on more than 1000 feature maps in the AlexNet model
the proposed approach uses relatively a small number of features.
This is while the correlation values obtained using the collected
feature set show an increase compared to when all the feature
maps in the AlexNet model is used. This could be a good ev-
idence that the selected feature maps play an important role in
assessing the quality of images.

What Features Play an Important Role in Image
Quality Assessment?

To have a better understanding of the feature maps which
play an important role in the quality assessment of images we
tried to visualize and interpret them using different approaches.
In the first approach, we use the DeepVis [20] method which pro-
vides detail on how the pixels in an image affect the response at
a feature map in a hidden layer of a CNN model. From the visu-
alized maps (Figure 1) the common pattern which appears in the
visualization maps is texture where the activated regions are not
smooth (see feature maps 8, 9, and 27). Meanwhile, feature maps
15 and 40 seem to indicate the sky/color blue, and feature map 52
corresponds to the color orange in the first image (Figure 1(a)).

As the DeepVis technique significantly depends on the con-
tent of the input image, misinterpretation can happen. Thus, we
used the Activation Maximization approach [21] to synthesize the
input image and indicate the property that the model learns at each
feature map. The generated image for each feature map (Figure
2) provides us with a better sense of the feature maps that play an
important role in image quality evaluation, such as lined patterns
(feature maps 27 and 9), and bluish color (feature maps 15).

Finally, the semantic representation of the NetDissect ap-
proach [22] was integrated into the analysis. This method of la-
tent space visualization for deep networks aims at interpreting the
semantic meaning of the feature extracted from the intermediate
convolutional layers. In the method, a dataset containing several
visual concepts such as object, texture, or color was collected and
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(a)

(b) Map 8 (1) (c) Map 52 (1) (d) Map 60 (1) (e) Map 27 (1) (f) Map 40 (1)

(g) Map 10 (4) (h) Map 49 (1) (i) Map 9 (1) (j) Map 15 (1) (k) Map 259 (3)

(l)

(m) Map 8 (1) (n) Map 52 (1) (o) Map 60 (1) (p) Map 27 (1) (q) Map 40 (1)

(r) Map 10 (4) (s) Map 49 (1) (t) Map 9 (1) (u) Map 15 (1) (v) Map 259 (3)

Figure 1. Sample images from the CID:IQ [15] dataset ((a) and (l)) along with the 10 most important features ordered based on importance and visualized

using the DeepVis [20] approach ((b)-(k) and (m)-(v) respectively) using the AlexNet model. The numbers inside the parenthesis indicate the convolutional layer

that the feature map was extracted from. Red pixels represent what the model learns in each feature map.

(a) Map 8 (1) (b) Map 52 (1) (c) Map 60 (1) (d) Map 27 (1) (e) Map 40

(f) Map 10 (4) (g) Map 49 (1) (h) Map 9 (1) (i) Map 15 (1) (j) Map 259 (3)

Figure 2. The selected feature maps for the CID:IQ [15] dataset using the AlexNet model visualized by the activation maximization approach [21]. The numbers

inside the parenthesis indicate the convolutional layer that the feature map was extracted from.
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(a) Blue (b) Blue (c) Blue (d) Blue

(e) Lined (f) Lined (g) Lined (h) Lined

Figure 3. Visual concept detector by NetDissect [22] for feature map 15

((a)-(d)) and feature map 27 ((e)-(h)) at convolutional layer 1 of the AlexNet

model. (a)-(d) shows the segmentation generated by feature map 15 on the

images of the highest activation. (e)-(h) are the result for feature map 27.

The captions below each image indicate the detected visual category that

the segmented part represents.

densely labeled at pixel level by human annotators. The feature
activated at each feature map from the CNN model is considered
as a segmentation mask for each concept. A feature map is inter-
preted by a concept if its corresponding segmentation mask and
the ground-truth annotation of images in that category match to-
gether (Figure 3). Although there are many objects in the images,
the highlighted response region share the same visual meaning.
For example, in the case of the 15th feature map in the first con-
volutional layer (Figure 3(a)-(d)) which is the interpretation result
for feature map 15 of layer 1, highlight the color blue. It suggests
that the feature that is extracted from this feature map represents
the color blue. Similarly, feature map 27 (Figure 3(e)-(h)) seems
to correspond to a lined pattern in the image. The interpretation
for the remaining eight selected maps is: lined (feature map 8
- layer one), color orange (feature map 52 - layer one), lacelike
(feature map 60 - layer one), blue sky (feature map 40 - layer
one), wheel (feature map 10 - layer four), ball pit (feature map
49 - layer one), lined (feature map 9 - layer one), honeycombed
(feature map 259 - layer three).

From running the three different approaches, similar inter-
pretations can be made. Although the selected feature set in each
dataset are different (Figure 4), they represent a similar visual
concept. That is, in general features related to repeated patterns
such as lines, checkers, or stripes, and features that have an em-
phasis on the colors blue or orange, tend to play important roles
in determining the quality of an image.

To investigate if the depth of the CNN model plays a role in
the features selected in our feature set, we also used the same ap-
proach on a pre-trained VGG16 [11] model (Table 2). The VGG
network was first introduced in 2014, with the purpose of im-
age recognition. This model was also trained on the ImageNet
benchmark, but compared to AlexNet it contains a higher number
of convolutional layers. There are three main variants of VGG:
VGG11, VGG16, and VGG19. The VGG16 model which con-
sists of 13 convolutional layers was used in our experiments. We
can see that compared to the AlexNet model, in the case of most
datasets a higher number of feature maps were chosen for our
feature set while at the same time the accuracy has slightly im-

Table 2: Number of features in each feature set which reach
the highest correlation rate along with the corresponding non-
linear Pearson correlation achieved using the feature set com-
pared to when all features are calculated in the VGG16 model.

Non-linear Pearson correlation

Dataset Num. of selected

feature maps

Using selected

feature maps

Using all

feature maps

CID:IQ 100cm [15] 35 0.93 0.85
CID:IQ 50 cm [15] 28 0.92 080

CSIQ [16] 25 0.91 0.83
TID2013 [17] 24 0.90 0.88
CIDGD [18] 5 0.71 0.62

proved. As most of the feature maps are extracted from the deep
layers (Figure 5), their representations are not easy to explain.

Conclusion and Future work
In this study we tried to investigate what features play an

important role in evaluating the quality of images. For this goal,
we used an IQM which takes advantage of a pre-trained CNN
model and compares the feature maps between the reference and
test images. Our results show that by using a limited number of
features we are able to not only reduce the computational costs
but also increase the accuracy of the IQM. When it comes to the
selected feature maps, it is clear that in general features related to
repeated patterns such as lines, checkers, or strips and the colors
blue and orange play a dominant role in evaluating the quality of
the images.

While the findings of the study could be seen as a promising
first step there is still a huge room for improvement and investi-
gation on how the quality of the image is evaluated by observers.
Also, with the introduction of new datasets that provide the in-
dividual scores of observers [23, 24] it would be interesting to
see if the feature maps selected in the feature set are different for
different observers.
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(g) Map 307 (2) (h) Map 139 (3) (i) Map 53 (3) (j) Map 22 (3) (k) Map 25 (1)

Figure 4. Sample image from the CSIQ [16] dataset (a) and selected feature maps visualized using the DeepVis [20] approach. The numbers inside the

parenthesis indicate the convolutional layer that the feature map was extracted from. Red pixels represent what the model learns in each feature map.
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