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Abstract
The paper describes a design of a subjective experiment for

testing the video quality of High Dynamic Range, Wide Color
gamut (HDR-WCG) content at 4K resolution. Due to Covid, test-
ing could not use a lab, so an at-home test procedure was de-
veloped. To aim for calibration despite not fully controlling the
conditions and settings, we limited subjects to those who had a
specific TV model, which we had previously calibrated in our labs.
Moreover, we performed the experiment in the Dolby Vision mode
(where the various enhancements of the TV are turned OFF by de-
fault). A browser approach was used which took control of the TV,
and ensure the content was viewed at the native resolution of the
TV (e.g., dot-on-dot mode). In addition, we know that video im-
agery is not ergodic, and there is wide variability in types of low
levels features (sharpness, noise, motion, color volume, etc.) that
affect both TV and visual system performance. So, a large number
of test clips was used (30) and the content was specifically chosen
to stress key features. The obtained data is qualitatively similar
to an in-lab study and is subsequently used to evaluate several
existing objective quality metrics.

Introduction
There are numerous video quality metrics of useful perfor-

mance (e.g., correlations of 0.88) but these are for SDR (Standard
Dynamic Range) and mostly SDTV (Standard Definition TV) res-
olution. These are constantly being improved and tuned for differ-
ent applications or goals. But today’s consumer video ecosystem
is now HDR-WCG (High Dynamic Range - Wide Color Gamut),
while still co-existing with the older SDR and SDTV ecosystem.
The newer ecosystem is also at the higher resolutions of HDTV
(1920x1080) or higher (UHDTV, a.k.a. 4k = 3840x2160). The
dynamic range increase in the newer system is several orders of
magnitude, going from SDR to HDR, and the color gamut in-
crease by approximately 2X from the SDTV/SDR gamut of Rec.
709 to that of the newer ITU-R spec of BT. 2100 [1]. Currently,
most content for the BT. 2100 format only fills a P3 color gamut,
which is less than the full specification. However, for HDR color
aspects, it is known that color volume is a more important de-
scriptor than color gamut, and that color volume improvement
ratios exceed color gamut ratios. There are several datasets and
models for predicting HDR-WCG still image quality, but none
yet for HDR-WCG video quality. So, there is a need for both data
and quality models for video HDR-WCG at the 4K resolution, to

which this work is addressed.
The objective is to design a subjective experiment for testing

the video quality of HDR WCG content at 4K resolution. We had
an experiment designed to be played on a custom 1600 cd/m2

65” OLED TV and bypassing its internal video processing. How-
ever, due to the Covid pandemic, testing could not bring subjects
into a lab, so an at-home test procedure was developed. To aim
for calibration despite not being in the lab, we limited subjects to
those who had a specific TV model, which we had previously cal-
ibrated in our labs. In addition, we know that video imagery is not
ergodic, and there is wide variability in types of low-level features
(sharpness, noise, motion, color volume, etc.) that affect both TV
and visual system performance. So, a large number of test clips
was used (30) and the content was specifically chosen to stress
key features, often referred to as corner cases. The key compres-
sion parameters of resolution and DCT Quantization Parameter
(QP) were varied and their effects on quality were analyzed.

A browser-based at home study was developed to collect ob-
servers’ opinions following ITU-T P.913 DCR methodology. The
reference video and the distorted video were shown iteratively
three times and then the user was queried to make a choice on how
the distorted video looked in comparison to the original video.
The ratings were done on a standard 5-point impairment scale.
4K resolution HDR-WCG content with 10 bits was displayed on
a 4K HDR OLED TV capable of P3 color gamut, 10 bits RGB,
700 cd/m2 maximum luminance, and < 0.005 cd/m2 black level
in the Dolby Vision format.

Key Problems with Crowdsourcing Image
Quality

While there has been much work in characterizing image
quality via crowdsourcing, initially starting with hard copy [2]
and expanding to displays [3], there are key problems that can
significantly affect the accuracy and utility of the results. The
particulars of the business aiming to use such results will deter-
mine their utility. The early work with hard copy image quality
was promising as there was limited variability in the way the test
images were displayed. For example, the printed images were
all the same size, resolution, color gamut, the illumination was at
office levels or higher, the dynamic range of prints is relatively
small (< 2log10), and the viewing distances tended to be at arms’
length. Once this concept moved to displays, further work needed
to be done to regularize the displayed resolution and viewing dis-
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tance, such as scaling the image to match a credit card [3], as well
as using visual characterization to assess the subjects’ displays’
gamma [3, 4].

Display and TV Capability Differences
However, in the last 10 years there has been significant dis-

play capability increases, while the older capability still exists at
the lower price points. As a result, there is an extremely wide
range of capability, and hence visibility differences along multi-
ple dimensions. Critical aspects include screen size, pixel resolu-
tion, dynamic range, color gamut, temporal response, AR coating,
noise level, bit-depth and dithering, display processing, and view-
ing angle performance.

Screen size tends to affect field of view (FOV) which affects
the mapping of a display’s Nyquist to the visual cy/deg, which
in turn affects visibility of high frequency aspects of encoding
via the spatial CSF (Contrast Sensitivity Function) and viewing
distance. The display’s pixel resolution affects the visibility of
compression distortions, especially if the display is required to do
down-scaling, or up-scaling when edge sharpening algorithms are
included. The dynamic range includes factors such as the overall
range, but also the specifics of black level and maximum lumi-
nance. Current displays range from as low as 200:1 (2.3log10)
for SDR displays to over 10,000:1 (4log10) for HDR displays.
These factors affect the displayed contrast of signals and distor-
tions, and thus their visibility. Color gamut can range from less
than Rec. 709 to over P3. The smaller color gamuts can either
reduce the color contrast, and thus affect visibility of chromatic
sub-sampling and other spatio-chromatic distortions, or simply
clip the wider gamut colors, completely removing visibility of
distortions in that part of the color space. Temporal response
can affect visibility of distortions by blurring motion, or cause
judder distortion which may cause masking of motion artifacts.
The AR (anti-reflection) coating affects reflectivity, which deter-
mines how much the ambient light elevates the black level or cre-
ates hot spots of glare on the screen. While most digital displays
now can achieve extremely low noise levels, their video process-
ing chips may introduce noise, or have noise reduction which can
inadvertently affect visibility of low amplitude signal distortions.
In addition, displays have their own processing chips which af-
fect bit-depth and may use dithering. While excellent dithering
algorithms can increase native bit-depths by up to 2 bits without
any visibility of the dithering, there are lower quality dithering
techniques, as well as low bit-depth line drivers. Further display
processing may include sharpening algorithms, dynamic contrast,
vivid modes, and other alterations of the intended image. Some
display types have viewing angle effects, where perpendicular
viewing gives the best performance, but the contrast and color
saturation can reduce as the viewing angle moves away from per-
pendicular. In all these cases of display capability differences af-
fecting the displayed signal, it can act in two ways. One way is
to affect the visibility of high spatial frequencies, high temporal
frequencies and low amplitude details of distortions, all of which
are key factors in video compression. In addition, these factors
obviously affect the best inherent quality a display can achieve.
While compression quality assessment tries to be agnostic to the
display maximum possible quality via full-reference methodol-
ogy and use of degradation scales, it is unknown how the display’s
maximum capability may affect such a rating scale.

So, while in the crowdsourcing image quality databases of
the past, [9, 10] most displays were SDR and CRT (Cathode Ray
Tube) and the resolutions and dynamic ranges, contrast, viewing
angle issues were essentially uniform, that situation does not ap-
ply to today’s consumer ecosystem, as well as the more varied
business questions around quality that exist today [5].

Ambient Illumination Differences
Due to the physics of the display screen surface, the illumi-

nation hitting the display can have strong effects on the displayed
tone scale, which can significantly raise the black, lower the con-
trast/code value, and overall contrast. Further the luminance of
the surround has strong effects on visibility within the screen [6].
These effects are shown in Figure 1.

Figure 1. Effects of ambient light on a 100 cd/m2 SDR display; solid curve

shows the luminance displayed with an illumination of 5000 lux (is overcast

daylight, or interior room with daylight through window) . The bottom curve

shows the display response in the dark. The horizontal axis is normalized

code value range (0-1024 for 10-bits)

The lower dashed curve shows the displays’ performance
(luminance vs code value signal level) at a very low ambient il-
lumination level, and the middle curve shows how the displays
range is reduced for an office lighting level. The upper solid curve
shows the display performance in the ambient level correspond-
ing to overcast daylight or daylight coming through a window
of an indoor room. Not only is the dynamic range reduced (the
delta from the minimum to the maximum of the curve) which af-
fects overall quality, it is important to look at the slope at a given
code value. This slope is the contrast/code value, which affects
the contrast of small signals, which describes most compression
distortions for the high to mid quality ranges. This figure is for
an emissive display. Emissive displays, which is nearly all dis-
plays being used today (excepting a small percentage of reflective
displays, e.g., electro-chromic, electro-phoretic, and hard copy),
have their best performance in the dark. Ambient illumination
reduces their performance, such that the display contrast reduces
as the illumination is increased. The type of AR (anti-reflective)
coating and geometry of the room lighting has effects as well.
So, the unknown ambient lighting of most crowdsourcing experi-
ments causes significant increase on the variance of MOS scores.

Viewer Differences
Viewer differences should also be accounted for, and there

are three key factors. These are primarily the viewing distance,
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the viewer’s acuity, and the viewer’s engagement. In lab envi-
ronments, it is common to have a fixed viewing distance, typi-
cally such that the display and image content Nyquist frequency
results in 30 cy/deg on the retina to match the TV signal de-
sign specifications. That retinal frequency is the maximum that
can be seen by an average viewer for light adaptation levels be-
low around 600 cd/m2. In addition to considering such maximum
cut-off frequency, it is important to consider the entire spatial CSF
( frequency response). The viewing distance affects the map-
ping of the digital frequencies displayed to the retinal frequen-
cies. The CSF is band-pass, so that it has a maximum visibility
near 4 cy/deg and decreases for both higher and lower frequen-
cies. As the viewing distance gets closer, the display frequencies
shift to lower retinal frequencies. This means that high frequency
distortions get easier to see as the viewing distance gets closer.
However, for very low frequency distortions, which typically re-
sult from tone scale and color display mapping algorithms, these
become more difficult to see as the viewing distance decreases
because their frequencies shift towards the very low spatial fre-
quencies which are less sensitive due to the band-pass CSF. The
CSF affects the visibility of content, image intrinsic noise and
its masking effects, as well as the compression distortions. The
second factor, viewer acuity, describes how high of a frequency
one can see. It is typically described with the 20/20 terminol-
ogy (or 6/6 in the EU). Most TV signal processing and formats
are designed for a 20/20 viewer [7]. However, such a viewer is
the average (including correction for glasses) which means there
are those who can see higher spatial frequencies [8]. There is a
strong effect of age on acuity, such that those under the age of 25
are often those with acuity better than 20/20.

The last key factor of viewer differences is a variability that
can occur within a viewer/subject, and the umbrella term engage-
ment is used. This describes how well the viewer is paying at-
tention to the imagery/stimuli of the test, and how much they are
trying in the task. A distracted or multi-tasking viewer is less able
to fully pay attention to all parts of the image, and in the case of
video may even miss key portions (groups of frames) of the video
stimulus. There is also the type of viewer, particularly for paid
crowdsourcing, that does not bother to actually do the task, and
randomly makes responses. Analysis of one study found many
observers whose responses to a paired comparison test simply al-
ternated their responses. Of course, this can occur in lab exper-
iments as well, but tends to be more common in crowdsourcing.
Modern studies have developed techniques to weed out such lazy
viewers, but this tends to reduce the data that can be used. Other
approaches [12] try to weigh observers’ contributions based on
their reliability.

Browser-Based Approach to “At-Home” Test-
ing

Conducting subjective tests outside of laboratories has
shown increased interests since the Covid-19 pandemic as many
labs were not accessible. There is a wide range of possibilities
when it comes to testing outside of the lab, from conducting the
test in a different, but rather controlled environment, to running an
experiment on micro-tasks platforms over the internet [21],[22] .
Conducting tests in subjective tests labs provides the highest de-
gree of control in terms of environment, equipment, participants
and administration. Deviating from this ideal environment adds

uncertainty that experimenters should account for when planning
their experiments.

Crowdsourcing often refers to test conducted on micro-tasks
platforms such as Amazon Mechanical Turk (MTurk), involving
anonymized subjects who typically participate in a subset of an
experiment. This approach provides high scalability and fast exe-
cution at the expense of uncontrolled participants, equipment and
environment. In between crowdsourcing and lab testing is what
the Authors describe as ”remote testing”, where known partici-
pants attend a full-length experiment, as if they were sitting in
the lab. Participants can typically be recruited through the usual
methods (job agencies, colleagues, email lists, etc...). This ap-
proach provides a greater level of trust in the participants in terms
of attention to the material being presented, but also in setting up
the equipment and environment.

The authors chose the remote testing approach for this study.
An advanced cloud-based subjective test platform was developed
to administer subjective tests within a web browser. It is important
to note that while web-browsers are very convenient endpoints
for deploying applications, the lack of direct access to the device
hardware requires special attention to ensure the correct presen-
tation of the test material, especially in terms of rescaling. Our
platform was developed with these aspects in mind and incor-
porate modules for detecting the native resolution of the display,
managing full screen modes and video presentation.

Workflow for testing on smart TVs
The presentation devices for this study were LG OLED TVs.

A custom-made WebOS TV application was developed to en-
hance the capabilities of our subjective test platform, enabling
access to TV hardware information and Dolby Vision rendering.
The subjective test platform was crafted to enable a simple pro-
cess for the participants and the workflow is depicted in Figure
2.

Participants received an email providing instructions on how
to install the WebOS application on their TV, and a unique URL
that gave direct access to the subjective test. A click on this URL
prompted the participants to pair their TV with the subjective test
platform by typing a code displayed on the WebOS application.
Once paired, the subjective test started automatically on the TV
with a set of instructions for TV settings, room conditions and
test procedure, followed by a demographics survey. Then the
test started with a set of training material to get participants ac-
quainted with the task, the rating scale and the range of distor-
tions. Participants navigated the test and entered their responses
using the TV remote control.

Test Setup and methodology
The test procedure followed typical procedure for in-lab test-

ing, with additional steps for instructing participants to configure
their TV and environment. A summary of the test properties is
available in Table 2.

The device requirement was an LG 4K OLED TV
B8/C8/C9/CX and the set up instructions were specifically writ-
ten for these TV models. Participants were requested to set up
their TV in Dolby Vision Cinema mode and to disable AI enhance-
ments. This configuration ensures appropriate screen calibration
and minimal post-processing.

Participants were further asked to set themselves into a dark
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Figure 2. Simplified workflow for conducting subjective tests on smart TVs.

home theater environment, and to sit at 1.6 times the height the
screen.

The test methodology was the ITU-T P.913 Degradation Cat-
egory Rating (DCR) procedure, also known as Double Stimulus
Impairment Scale (DSIS), in which the reference and the test stim-
uli are presented in pairs, sequentially, with the reference always
first [11]. In this test, the paired stimuli were presented up to three
times unless the participant interrupted the repetition by pressing
a key on their remote. After the presentation of the stimuli, partic-
ipants were requested to rate the difference between the first and
the second sample on the scale following 5-point discrete scale,
mapped from 5 (Imperceptible) to 1 (Very annoying):

Table 2: Degradation Category Rating scale (DCR)
Imperceptible 5
Perceptible, but not annoying 4
Slightly annoying 3
Annoying 2
Very annoying 1

Test Sequences
We used 30 different clips, each spanning approximately 5

seconds. These clips were content from popular shows on Net-
flix and some trailer/movie content from Dolby. The clips were
chosen such that it covers a large variety of dynamic range, color
gamut, sharpness and motion complexity. Along with sequences
that contain natural imagery, our test set also contained anima-
tion sequences. We specifically included challenging cases for
the display behavior as well as for human vision. For example we
included scenes that had complex motion effects on eye tracking
such as (say) scenes having snow falling along with some camera

Table 1: Test properties

Devices LG 4K OLED TV B8/C8/C9/CX in
Dolby Vision Cinema mode

Environment At home remote testing, dark home
theater

Viewing distance 1.6 times the height of the screen
Methodology ITU-T Rec. P.913 DCR (DSIS)

Up to three presentations per trial
Software Proprietary web platform (DSVLab)
Sources 30 5-second clips, with a variety of

dynamic range, color gamut, sharp-
ness and motion complexity

Encoding HEVC Dolby Vision Profile 5
Test conditions Resolutions: 2160p, 1080p, 720p

and 540p
Quantization Parameter (QP)s: 18,
22, 26, 30 and 34

Test sequences 250 sequences
2160p clips with QP18 used as ref-
erence
540p clips only with QP22

Participants 25 Netflix and Dolby employees and
family

Test sessions 3 separate sessions of 30 minutes
3 blocks per session

motion. Several of these clips represented highest possible quality
with the state-of-the-art technology.

The videos were also encoded using Dolby Vision Profile 5.
The test sequences contained content with various different reso-
lutions such as 2160p (3840 x 2160), 1080p (1920 x 1080), 720p
(1280 x 720) and 540p (960 x 540). While encoding the content,
we selected various different Quantization Parameters (QP) such
as QP18, QP22, QP26, QP30 and QP34. Please note that the low-
est QP value (QP18) in our test sequence has the highest quality.
Likewise, the highest QP value (QP34) has the lowest quality.

Including all possible combinations of QPs and resolutions
would have made our testing process quite time-consuming. We
therefore sampled the data such that we had 250 different se-
quences. One such sampling was that we only had 540p clips with
QP22. While the content was being displayed during testing, we
used the 2160p content at QP18 as our ‘Reference’.

Due to copyright issues, we can’t demonstrate sample frames
from the sequences but the titles of the sequences can be seen in
Figure 6.

Subjective Results
We managed to recruit 25 participants able to create viewing

conditions suitable for the test in their homes. Each participant
was asked to complete 3 separate sessions of 20-30 minutes each
with a break of at least a few hours in between the sittings. The
majority of the subjects managed to finish all of the sessions lead-
ing to approximately 20 individual votes per test sequence.

The overall result for this experiment, across the 30 sources,
is depicted in Figure 3. The figure shows the average of all scores
collected for a given combination of resolution and QP, along with
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Figure 3. Average Subjective scores per QP and resolution

their 95% confidence interval. The results agree with general ex-
pectations, with the subjective scores decreasing as QP increases
or resolution decreases.

Within each resolution, the mean opinion scores highly cor-
relate with QP, with a strong linear relationship for 720p, 1080p
and 2160p. Note that a saturation of the rating scale can be ob-
served for 2160p at QP 22.

Within each QP values, mean opinion scores decrease signif-
icantly as the resolution decreases. Note that the results indicates
that lower resolution at low QP may be preferred over higher res-
olution at high QP. For example, 1080p QP18 was rated higher
that 2160p QP34. The same applies for 720p QP18 and 1080p
QP34.

Subjective Results post-processing
To recover the overall quality scores, we employed the

method from section 12.6 of the ITU-T Recommendation P.913
[11], originally described in [12]. This technique uses Maximum
Likelihood Estimation (MLE) to explain the individual scores by
modeling each subject’s bias and inconsistency. These are then
utilized to extract the most relevant information about the overall
quality from each participant.

The recovered quality scores for each sequence are shown in
Figure 4. The scores are sorted to showcase well-balanced cov-
erage of the quality scale. This makes the data well-suited for
training and/or testing of objective quality metrics.

Figure 4. Recovered quality scores with 95% confidence intervals.

Bias and Inconsistency Analysis
To better understand the observers’ behavior, we look deeper

into bias and inconsistency obtained by the above-described sub-
jective score recovery technique.

Bias is a global shift in an observer’s scoring compared to
the others. A subject with a high positive bias is “more forgiving”,
i.e. giving even the very low-quality sequences higher scores, typ-
ically someone less sensitive to quality drops. A negative bias, on
the other hand, means the observer is highly sensitive and their
overall scores are lower. Such behavior is typical for experts or
people used to watching the highest quality content on premium
devices. Even though bias provides an interesting view into each
subject’s scoring process, it usually does not say anything about
their reliability or attentiveness unless also paired with high in-
consistency.

Inconsistency shows how the participant’s votes agree with
the rest of the voters. High levels of inconsistency are a sign of un-
usual behavior, very often connected to less careful observations
and/or misunderstanding of the task. It has been shown [12] that
weighting each subject’s contribution towards the overall quality
scores by their consistency is beneficial over subjects rejection
mechanisms. Each subject’s bias and inconsistency with the cor-
responding 95% confidence intervals are depicted in Figure 5.

Figure 5. Each subject’s bias and inconsistency with 95% confidence inter-

vals.

The most interesting observation is that the subject inconsis-
tency is on the levels typical for controlled in-lab studies rather
than remote (crowdsourcing) tests. This suggests that our ap-
proach is valid and high-quality subjective data can also be ob-
tained outside a lab if certain precautions are taken care of. The
only exception is subject #21 who seemed to disagree with the
others more than is typical and, combined with the strong positive
bias, we conclude that there was either something wrong with the
observer’s setup or they did not follow the test carefully. Note that
larger confidence intervals for certain subjects are caused by the
completion of only a subset of the test sessions and do not indicate
non-standard behavior.

SOS Analysis
We further conducted a Standard Deviation of Scores (SOS)

analysis described in [13]. This method allows comparison to
other studies based on analyzing standard deviations of scores for
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Figure 6. SOS analysis plot.

each sequence. SOS hypothesis assumes a square relationship
between standard deviations and means which is parameterized
by a parameter a. The value of a obtained from the raw scores is
then compared to typical values for a given application.

Our experiment resulted in a = 0.214 which is similar to
other in-lab tests in video compression and streaming. This fur-
ther validates the quality of the obtained data. The plot of standard
deviations against their respective means (also known as Mean
Opinion Scores – MOS) is depicted in Figure 6.

The plot also serves as an indicator of the content difficulty
as the standard deviation is directly linked to the inter-observer
agreement. Larger values indicate cases where observers’ opin-
ions differed more. We can see that a few contents stand out.
For example “DeathNote A” is a dark scene that contains a scene
cut which could lead to different observers focusing on a different
portion of the content. “DareDevilS2E1 B”, on the other hand, in-
cluded a camera panning leading to slight flickering on the OLED
screen which some observers could consider to be an encoding
artifact.

Objective Metrics Performance
In order to benchmark existing objective image and video

quality metrics on the above-described dataset, we first establish
a baseline performance achievable by a combination of known en-
coding parameters, namely the used quantization parameter (QP)
and encoding resolution. When we average the subjective scores
(MOS) across all sequences of the specific combination of QP and
resolution, we can find a good fit by optimizing parameters a1, a2,
and a3 in the following equation:

MOS = a1 ×Q1+a2 × log2(resolution)+a3. (1)

Setting a1 = −0.1027, a2 = 1.3464, and a3 = −7.7294 leads to
a very good correlation of 0.99. The resulting 2D plane can be
found in Figure 7.

If we try to use this combination to estimate the quality of
the individual clips, we reach the Pearson Linear Correlation Co-
efficient (PLCC) of 0.83. In order for a quality metric to be useful
for 4K HDR WCG content, it should be able to reach significantly
higher PLCC on our dataset.

Figure 7. Estimating MOS (averaged across all clips) by combining QP and

encoding resolution.

We selected 10 popular, publicly available image and video
quality metrics for benchmarking – Peak-Signal-To-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) and Multi-
Scale Structural Similarity Index Measure (MS-SSIM) [14], Vi-
sual Information Fidelity (VIFp) [15], Additive Distortion Metric
(ADM) [16], Video Multi-method Assessment Fusion (VMAF)
[17], HDR Video Quality Measure (HDR-VQM) [18], HDR Vi-
sual Difference Predictor (HDR-VDP 2.2) [19], HDR-VDP 3
[20], and its extension into temporal domain denoted as HDR-
VDP 3 Flicker. All metrics were computed directly on the I chan-
nel of the videos that were natively in ICtCp color space with
the exception of HDR-VDP versions which require the data to be
linearized with electro-optical transfer function (EOTF) – in this
case inverse PQ.

The performances of the tested metrics, expressed in terms
of PLCC, are plotted in Figure 8. The red dashed line indicates
the baseline correlation obtained from the combination of QP &
log2(Resolution) described above. The plot indicates that VMAF
is the only tested metric able to estimate quality significantly bet-
ter than the baseline predictions (PLCC = 0.89). ADM and the
two versions of HDR-VDP 3 are on par with the baseline while the
rest of the metrics only achieve much lower correlations. While
the state-of-the-art techniques such as HDR-VDP achieve similar
performance to the baseline model, please note that the baseline
model has been over-fit to our data. It remains to be seen how
well the performance can extrapolate to sequences outside of this
dataset. On the other hand, HDR-VDP has been known to have
good performance across a wide variety of datasets. This clearly
demonstrates the challenge that 4K HDR WCG content brings to
the objective quality assessment with even the best performing
metric still leaving a lot of room for improvement.

Conclusion
We developed a one-of-its-kind dataset of 4K HDR WCG

videos encoded with Dolby Vision Profile5 and described an ”at
home” experiment conducted to annotate the database with sub-
jective opinion scores. We further demonstrated that it is pos-
sible to obtain the quality of data in an “at-home” environment
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Figure 8. Pearson Linear Correlation Coefficient for the tested objective metrics. The red dashed line indicates the baseline correlation obtained from the

combination of QP & log2(Resolution).

comparable to “in-lab” tests, if specific precautions are taken into
account. In an objective analysis, we found that most standard
image and video quality metrics (both SDR and HDR) do not cor-
relate well with observer opinions in this challenging application.
The best performing metric was VMAF, reaching the Pearson Lin-
ear Correlation Coefficient of 0.89. It was the only tested metric
able to significantly outperform combination of QP and encoding
resolution as a predictor of quality.

Our future work includes using the dataset for training the
existing, as well as new video quality metrics.
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