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Abstract 
Slow motion video has become a standard feature in 

mainstream cell phones. Due to constraints in hardware, such as 

power consumption, limited memory or data transfer throughput, a 

high capture framerate is not always feasible. As a solution, video 

frame interpolation (VFI), a software-based approach, has been 

widely employed. Conventionally, researchers use relative image 

quality merits between ground-truth and reconstructed frames, such 

as mean square error (MSE), peak signal-to-noise ratio (PSNR) [6], 

or structural similarity index measure (SSIM) [7], to evaluate VFI 

algorithm implementations. When the ground-truth data with 

specified high frame rate is not available, these metrics cannot be 

applied. For video interpolation, especially for fast moving objects, 

motion blur as well as ghosting are more significant to the audience 

subjective judgment. We developed an objective method and an 

apparatus that can rapidly assess such video quality factors of an 

interpolated slow motion video without the dependence on ground-

truth data.  

This paper discusses the development of an apparatus, 

designed to evaluate motion blur, and the analysis of blurred edge 

width (BEW) metric in quality assessment for VFI. 

Introduction 
Slow motion videos are those captured at a high frame rate and 

played back at normal speed, e.g. 30 frame-per-second (fps). It has 

become a standard feature in mainstream cell phones. An ever 

increasing capture frame rate might be desirable. However, this 

comes at the expense of increased power consumption and 

bandwidth requirement of mobile phone camera sensors, application 

processors and memory. If a frame rate higher than 480 fps is 

expected, a software-based approach can be considered [2][3][4]. 

Video Frame Interpolation (VFI) is a software-based method to 

create and insert synthesized frames, referred as interpolated frames, 

between two consecutive captured frames, referred as key frames. 

VFI can be utilized for video compression [1], slow motion 

generation, etc.  These approaches present reasonable performance 

at the cost of significant computation resource requirement, since a 

bi-directional optical flow or even image depth are calculated. [5] 

introduces a more efficient framework to directly estimate the 

intermediate flow and blending mask within one network instead of 

calculating an end-to-end flow followed by backward warping. 

Evaluation of these algorithms with reliable quantitative metrics is 

challenging since most of them are designed for normal speed 

videos. Fast motion videos with obvious motion blur bring 

additional challenges for frame interpolation performance 

evaluation using conventional global metrics. It is noteworthy that 

some smartphone manufacturers refer to videos produced using VFI 

as "super slow-motion". In this paper, we only assess the quality of 

VFI-based videos. Hence, the term super slow motion and slow 

motion are sometime used interchangeably but both will refer to 

slow motion videos that are created with VFI. 

Motion blur [9] in a captured frame is caused by a combination 

of pixel exposure and object movement. During the shutter exposure 

time, a moving object is captured as the integration of all positions 

on its trajectory. As a result, this object will appear blurred, which 

makes it difficult to differentiate objects. Motion blur has different 

behavior than optical-related blur such as out-of-focus or lens 

aberration.  

In this work, we propose a test fixture design to evaluate 

motion blur quality of camera modules and video interpolation 

algorithms. We aim to solve the problem of slow motion video 

quality metrics by proposing a general approach based on blurred 

edge evaluation. The goal of this method is to provide an objective 

measurement of slow motion video quality, so that it could be used 

as an efficient baseline score for further evaluation. 

Related Work 
Conventionally, the quality of video frames can be evaluated 

using pixel-based metrics like mean square error (MSE), peak 

signal-to-noise ratio (PSNR), or structural similarity index (SSIM). 

However, these metrics have two drawbacks: (i) they require 

reference frames and (ii) they don't correlate well with the motion 

blur level [8]. 

For camera system performance, the modulation transfer 

function (MTF) is a well-established measurement for sharpness. 

There are various methods for MTF evaluation. The most common 

method is the slanted-edge, which derives the MTF from a 

standardized test chart. Recent work [8] have examined MTF of VFI 

and show the sharpness loss in the interpolated frames. 

  

 

Figure 1: Sharpness loss in interpolated frames [8]. 
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This is seen in Figure 1, where the MTF was measured from 

interpolated frames in comparison to key frames. It shows that 

interpolated frames with larger distance to their key frames exhibit 

lower MTF. MTF evaluation based on slanted edge method is 

appropriate for translational motion, but exhibits challenges for 

rotational motion.      

Apparatus 
We designed a test apparatus to study the motion blur in slow 

motion videos capturing moving objects. The requirements are: 

1. Compact for repeatable experimentation with various 

targets 

2. The sensor and phone holder can be easily swapped. 

3. The target speed can be controlled 

4. The luminance is adjustable 

 

 

Figure 2: (a) front-view of the apparatus. (b) schematic of the apparatus setup. 

 

Figure 2 depicts the apparatus designed for capturing videos 

for motion blur analysis. A test chart depicting a colored Siemens 

star mounted on a motorized plate is used for the evaluation. The 

rotation speed can be adjusted from 0 to 300 rounds-per-minute 

(rpm). Two daylight light-emitting diode (LED) floodlights with 

5600 K color temperature are placed at 45° angle with respect to the 

test chart normal. These LEDs are controlled by a constant current 

LED driver which allows adjustable luminance without flickering. 

The illuminance, at the test chart could be adjusted from 0 to 12,000 

lux. The tested mobile phone or camera is held by a holder that can 

be moved in left-right and up-down direction. The holder is placed 

11 cm away from the test chart. Videos are captured by rotating the 

disk while keeping the holder still. 

Calculate Blurred Edge Width by Curve Fitting 
The intensity profile across the edge is evaluated using the 

Blurred Edge Width (BEW), which is defined as the width (in 

pixels) along which the intensity changes from 10 to 90 percent of 

its local range. Frame interpolation and sharpening algorithms may 

introduce extra noise or over/under-shooting along these edges. As 

shown in Figure 3(a), different curves sampled from the same edge 

from different frames may have different minimum and maximum 

references, which causes inconsistency when calculating 10 to 90 

percent values (blue and red lines). Moreover, noise or over/under-

shooting also leads to multiple 10 to 90 percent values (red line). As 

a result, it is difficult to obtain valid BEW for a fair comparison. To 

solve the above mentioned issues and obtain an accurate estimation 

of BEW, we introduce a curve-fitting method. The target function 

selected for curve fitting is a sigmoid function. A few parameters 

are added to tune the shape of the sigmoid function for better fitting: 

𝑆(𝑥) = |𝑌1 − 𝑌2|
1

1 + 𝑒−(𝑎𝑥+𝑏)
+min(𝑌1, 𝑌2). 

Here, Y1 and Y2 are the minimum and maximum luma values, 

|Y1-Y2| is the edge contrast and min(Y1, Y2) controls the up/down 

shift of the fitting curve. The fitting parameters a and b are 

introduced to control the slope and position of the edge obtained by 

regression among sampled edge points. As shown in Figure 3(b), the 

proposed curve fitting method is capable to determine the edge 

width correctly even in noisy condition. 

 

 

Figure 3: Blue and red curves are sampled intensity profiles from the same 
edge but different frames. (a)BEW without curve fitting. (b)BEW with proposed 
curve fitting 

Experimental Setup 

 

Figure 4: Sample of data collected from a phone with multiple illuminance levels 
and rotation speed. 

A colored Siemens star is imprinted on a motorized disk 

surface. The disk can be controlled to rotate at different speeds. Two 

flag-ship mobile phones – phone A (7680 fps, 720p, 4x frame rate 

interpolation) and phone B (960 fps, 720p, 2x frame rate 

interpolation) are used in the evaluation. Different ambient light 
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conditions are also evaluated. A color star test chart is chosen 

instead of a gray-scale target in order to study color artifacts 

commonly observed in interpolated videos. Figure 4 depicts slow 

motion video frames captured under varying ambient light 

conditions and rotation speeds. 

 

 

 

Figure 5: An automated pipeline to calculate BEW with given input test frame. 
(a) auto-edge detection, (b) automatically generated samples perpendicular to 
the edges, and (c) apply the proposed curve fitting method to calculate BEW.  

Figure 5 illustrates key aspects of the algorithm calculating the 

BEW. Firstly, an edge detection module is introduced to identify the 

edges of the color disk.  Secondly, a series of sample points with a 

total length of 30 pixels perpendicular to the target edge at any given 

radius is generated. Thirdly, the proposed curve fitting method is 

applied to calculate BEW based on the sampled intensity profile. 

Analysis of Experimental Results 
First, the BEWs between key frames and interpolated frames 

are analyzed. The results shown in Figure 6(c) and 6(d) are the 

average BEWs among a series of frames from two slow motion 

videos recorded under different light conditions. The two plots both 

demonstrate that the key frames always have smaller BEWs than the 

adjacent interpolated frames. These results agree with [8] that the 

sharpness of interpolated frames is often reduced. The results shown 

in Figure 6(a) and 6(b) are BEWs of the same edge captured under 

different lighting conditions. The change in BEW can be explained 

by auto exposure forcing a longer exposure at reduced scene 

luminance. 

Figure 7 shows the overall BEW distribution from videos 

recorded under different light conditions and motion speed. It 

appears that BEW is proportional to motion speed and exposure time 

of the key frames. It also appears that smaller interpolation ratios 

result in larger the BEW.  

Motion Speed 
To evaluate the effect of motion speed on BEW, we calculate 

the BEW at different radii as well as rotational speeds. In Figure 8, 

each dot represents the average BEW from every edge of every 

frame from slow motion videos recorded under the exact same 

condition. Within each subplot of Figure 8(a)-(d), the dots with the 

same color have different linear speed while keeping all other 

factors (exposure time, interpolation ratio and interpolation 

algorithm) the same. It can be observed that an increased linear 

speed leads to larger BEW. It is worth mentioning that the flat 

regions in Figure 8(a) (b) are limited by the spatial resolution of the 

edge in the frame. The change of edge width from 76rpm to 228rpm 

is only approximately 1 pixel due to the high initial key frame rate 

of phone A. One limitation of BEW is the incapability of 

differentiating sub-pixel level edge width accurately. 

 

Figure 6: (a) BEW of an edge under the indoor light condition with longer 

exposure time. (b) BEW of an edge under the outdoor light condition with 
shorter exposure time. (c) Average BEW of a series of frames from a slow 
motion video recorded under the indoor light condition. (d) Average BEW of a 
series of frames from a slow motion video recorded under the outdoor light 
condition. 
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Figure 7: The overall BEW distribution from videos recorded under different 
light conditions and motion speed of the two phones. 

 

 

Figure 8: Effect of motion speed on BEW. 

Exposure Time 
To evaluate the effect of exposure time on BEW, we calculate 

the BEW of slow motion videos recorded for both indoor and 

outdoor conditions.  

 

  

Figure 9: Effect of exposure time of key frame on BEW. 
 

In each subplot of Figure 9, the vertical dash line indicates the 

full frame time = 1/𝑓 , where 𝑓  is the initial frame rate before 

interpolation. As the accurate exposure time from each video is not 

contained in its meta information, the full frame time is used as a 

reference. The dots closer to the reference line are BEWs from 

videos recorded under outdoor light conditions while the dots 

further to the reference line are BEWs from videos recorded under 

indoor light conditions. When comparing each indoor and outdoor 
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pairs within each subplot keeping all other factors (speed, 

interpolation ratio and interpolation algorithm) the same, it can be 

concluded that longer exposure time leads to larger BEW as is to be 

expected.  

Interpolation ratio 
The phones used in the test do not allow customized 

interpolation ratios. To achieve fair comparison, we interpolate key 

frames of videos captured by phone using the RIFE algorithm [5] 

under varying ratio of 2, 4, and 8. When comparing each dashed line 

connected by the dots within each subplot keeping all other factors 

(speed, exposure time and interpolation algorithm) the same, the 

interpolation ratio does not show very obvious influence on the 

BEW. 

 

Figure 10: Effect of interpolation ratio on BEW. 

Conclusion 
We proposed an apparatus and a general objective approach 

based on BEW evaluation for video frame interpolation.  

The reported test fixture has adjustable illumination and motion 

speed control. The ability to swap targets expands the range of 

scenarios that can be captured, and the camera module holder has 

been designed to accommodate a wide variety of modules and 

phones. This versatility makes it an ideal tool for evaluating the 

quality of super slow-motion video in a variety of settings. We 

reported results obtained and analyzed using the proposed approach 

on two flagship phones. The result shows that BEW of slow motion 

videos is impacted by the motion speed of the objects and the 

exposure time of key frames. No obvious change of BEW was 

observed when changing the interpolation ratio of the RIFE 

algorithm between 2 and 8 for the given captured key frames.  

Our approach could be further integrated to use human visual 

system-dependent metrics such as contrast sensitivity function in 

spatial and temporal domain. Various VFI algorithms could be also 

investigated. Furthermore, a method to improve BEW accuracy for 

edges at subpixel level could be studied in future work. 
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