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Abstract
Few shot learning (FSL) describes the challenge of learning

to classify when there are only a few labeled examples. The goal
is to adapt to a new classification task using a minimum amount of
new data. However, when applying FSL to real-world problems,
there exist a number of constraints and challenges that are not
addressed in benchmark datasets.

In this paper, we consider a realistic problem that fits per-
fectly with the narratives of FSL: to classify animal species that
appear in our in-the-wild camera traps located in Senegal, when
these species have yet to appear in popular animal datasets. Us-
ing the philosophy of FSL, we would train a FSL network to learn
to separate animal species, using large public datasets, and then
implement the network with our data where there are fewer la-
beled images. To explore this framework, we construct two sepa-
rate testing datasets using our data, to reflect 1) challenges due to
our unique imagery properties and environments, and 2) assump-
tions made in benchmark datasets that do not hold in real-world
scenarios. We then conduct a comparison between FSL models,
which illustrates the drastic difference between testing in bench-
mark settings and potential implementation on real data.

Introduction
A conventional deep learning classifier requires massive

amounts of training data for each of the categories it attempts
to classify, which can be difficult to obtain in many real-world
problems. Few-shot learning (FSL) is proposed to deal with
this challenge. Ideally, a FSL network learns to extract gener-
alized information that separates classes, and is therefore able
to adapt to any new task with only a small amount of labeled
data [1–3]. Many ideas to achieve this have been proposed, and
will be discussed further in Section “Background – Few Shot
Learning Methods”. Researchers have then constructed several
benchmark datasets designed to represent such scenarios, and ap-
ply these datasets for comparing results between algorithms. We
discuss more about benchmark datasets in Section “Background
– Benchmark Datasets and Evaluation Protocols”.

In this paper, we present a real-world scenario for few-shot
learning — species classification for in-the-wild camera trap data.
Our project aims to explore the ecological basis of hunting and
meat sharing in female savanna chimpanzees [4, 5]. A key com-
ponent of the project is species classification of animals detected
by numerous camera traps in Senegal. By experimenting with
traditional deep learning models, we discovered two major chal-
lenges: 1) site-specific species (e.g., green monkey, patas monkey,

red-flanked duiker, oribi, giant eland, etc.) are not available with
off-the-shelf models such as Species Classification tool1, and 2) a
lack of clean and annotated data to train a large network from
scratch. More details about our data are described in Section
“Challenges with Real Data”.

To deal with the problem of not having an extensive set of
labels, we recognize that our case is a good application of few-
shot learning. If we apply the logic of few-shot learning to our
case, we could utilize public camera trap datasets with annotations
for different species. Ideally, a few-shot learning network could
learn to extract what separates animal species, and we could apply
that knowledge on our camera sites and species, with relatively
fewer labels to create.

We constructed two datasets from our camera trap data; the
first one follows the traditional few shot evaluation protocol, and
the second one incorporates additional challenges we observed
with real-world data which were not considered with benchmark
datasets. Through testing with these two datasets, we then re-
vealed that a network’s performance on benchmark settings may
not transfer well into more realistic settings, where some strong
assumptions made in benchmark evaluation protocol do not hold.

This work is intended to serve as a starting point of bridging
the gap between benchmark evaluations protocol and real-world
applications.

Background
Few-Shot Learning Methods

Few-shot learning networks aim to learn to separate, rather
than to assign deterministic classifications like traditional one-hot
encoding. During testing/implementation, the idea is for user to
only label a few images per class (known as the support images),
and unknown images will be classified through comparison with
the support images.

To formally compare results under the FSL philosophy, re-
searchers constructed benchmark evaluation protocols. A classic
few-shot learning evaluation setup can be described as a N-way
K-shot classification problem — “N” denotes number of classes,
and “K” denotes the number of support images per class. Each
of the small sample problems consisting of N classes, K support
images (per class), and several query images (assumed to be un-
known) is called an “episode”.

For example, in “5-way 5-shot classification”, the evaluation
program randomly samples 5 classes (5-way), and then 5 sup-

1https://github.com/microsoft/SpeciesClassification
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port images (5-shot) per class, and (for example) 15 images that
are considered unknown. The evaluation program then takes any
FSL network, uses it to extract features from these selected im-
ages, conducts classification by comparing an unknown image’s
feature to the support images, and quantifies its performance by
top-1 match rate of the 15 “unknown” images. The procedures
above constitute one “episode”. Typical testing of few-shot learn-
ing algorithms is performed with many iterations of episodes, ei-
ther randomly selected, or pre-determined.

As for training a few-shot learning algorithm, there are two
major categories — episodic, or non-episodic. Episodic training
partitions the training data into small “episodes” as well, usu-
ally having the same N-way K-shot setup as the testing scenario.
Within each episode, the network attempts to minimize loss by
maximizing the similarity (or minimizing distance) between a
query images and its corresponding support images, and some-
times also minimizing the similarity (or maximizing distance) be-
tween a query images and support images of other classes. Typi-
cal episodic training networks include Matching Net [2] and Proto
Net [6].

The episodic training scheme can be also viewed as a kind
of meta-learning, where the network learns the task (N-way K-
shot classification) through many small sample tasks of the same
nature. Hence, meta-learning networks such as [7] and [8] are
also used for few-shot learning tasks.

More recently, several non-episodic training algorithms have
demonstrated better performance on benchmark datasets. Non-
episodic training does not mimic the testing setup (i.e., N-way
K-shot episode), but rather takes the entire training set at once,
and learns to separate different classes. During testing, they still
follow the same episode setup when comparing with other few-
shot learning methods. Such networks include [9] and [10].

Benchmark Datasets and Evaluation Protocols
Popular few-shot learning datasets include Omniglot [11],

primarily designed for a character recognition task, and Mini-
ImageNet [2] — a subset of ImageNet — primarily designed for
a general image classification problem. There also exist several
alternatives in constructing a few-shot dataset from ImageNet, in-
cluding tiered-ImageNet [12] and better-tiered-ImageNet [13].

For testing/evaluation, the episode-based method is now the
dominant protocol after being proposed in [2] and further elab-
orated in [14]. As briefly mentioned in the background section,
each “N-way K-shot” episode consists of N classes, K support
images (per class), and several query images. Besides an equal
number of support images per class, we observed that current
evaluation protocols sample an equal number of query images
per class as well. Note that the assumption of equal number of
query images per class are not being explicitly mentioned in pa-
pers; instead, we made the observations through multiple well-
recognized few-shot learning repositories on GitHub — such as
[14]2 and [15]3.

However, the true objective of any machine learning ad-
vancement is to help people solve real problems. Hence, bench-
mark datasets should not be the ultimate goal, but rather a rep-
resentation of how a system would perform in real world. As

2https://github.com/twitter-research/meta-learning-lstm
3https://github.com/RL-VIG/LibFewShot

researchers advance in developing algorithms that achieve better
results, we should also examine the difference between bench-
mark datasets and potential real-world problems.

Many researchers have already started to explore the gap be-
tween benchmark datasets and realistic problems. In [16], the
authors argued that despite disjoint classes, training and test-
ing on the same dataset does not necessarily replicate the do-
main difference likely to be observed in real-world problems.
The authors then created a cross-domain testing case by train-
ing few-shot learning networks using a benchmark dataset (mini-
ImageNet) and testing on a fine-grained classification dataset
(Caltech-UCSD Birds 200 [17]), re-partitioned to fit the few-shot
learning benchmark style. In [13], the authors criticized current
benchmark datasets for lacking realistic meaning between classes
in each sub-task (i.e., an episode). They proposed a relevance
measure between classes using semantic structures, and use that
measure to create a dataset with more relevant class sampling.

In the next section, we will discuss more about limitations of
benchmark datasets and challenges we observed with real-world
data.

Challenges with Real Data
Real world data is very different from benchmark datasets.

Due to factors like camera condition, environment, and target
class of interest, real-world data may pose challenges that are not
addressed in benchmark datasets.

Our data, specifically, are taken from motion-triggered cam-
era traps around two major sites in Senegal — Assirik and Fon-
goli. As of now, we have received 6 data shipments, totaling
55,269 videos, 122,228 images from 287 camera locations; the
entire data volumn is 2,716 GB (Gigabyte). Details of our data
collection can be seen in Table 1; note the term “CT days” (Cam-
era Trap days) is counted as days between when a camera started
to record and when it recorded its last video/image. For this pa-
per, we consider 114 camera locations from data shipments 2 and
3, apply an off-the-shelf animal detector4, and label about 8,000
bounding boxes of detected animals, including some false posi-
tives that were mis-detected.

To further elaborate on our challenges with real-world data,
we face several major issues. First, most of our data come in
as unlabeled videos, without annotations of whether an animal
is present, bounding boxes of animals, or what species an ani-
mal is. Second, many animal detections yield low-quality im-
ages; these causes include distance to camera (too close leading
to only partial image of the animal, and too far leading to lower
resolution), and occlusion. Third, we observe heavy imbalance
between classes; during initial annotating of the 8,000 images, we
observed 1,624 baboons (Papio papio), but only 247 green mon-
keys (Chlorocebus sabaeus), and 54 patas monkeys (Erythrocebus
patas). The number of labels for each species is listed in Table 3.
In addition, we observe the presence of “distractor” images, in-
cluding non-animal objects being falsely detected as animals, and
other animals occasionally appearing in camera trap videos that
are not species-of-interest for this research project.

We divide this section into two major parts: challenges
that might make classification task harder, and differences where
some assumptions made in benchmark dataset do not hold.

4https://github.com/microsoft/CameraTraps
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Shipment Videos Images Size (GB) Cameras

1 2998 106283 187 48
2 25606 10433 1304 110
3 3489 2392 132 31
4 6894 1410 284 37
5 11523 356 642 39
6 4759 1354 167 22

Total 55269 122228 2716 287

Table 1: Data Shipments We Have Received

Challenges
The major challenges we face can be categorized into im-

age quality factors, and the overall data context or relationship
between images.

We begin with the imagery factors of our data. Unlike many
benchmark datasets that obtain generic images from the internet,
our data that was captured in the wild suffers much more from
poor image quality. Such factors include but are not limited to:
low resolution due to animals being detected far from the camera;
occlusion due to plants or other animals; incomplete animal due
to animals being detected too close to the camera or at the edge of
the frame.

Another challenge lies within the general context of the data,
namely separation between classes, and variation within the same
class. To begin with, we observed many cases of small inter-
class (between-class) separation. The cause of such small sep-
aration is mostly due to 1) inherent similarity (build, color, etc.)
in species or 2) similar background since our data came from sta-
tionary camera traps in the same region.

Figure 1 shows an example of such challenges. Despite be-
ing from two species, these two images can easily cause confu-
sion even to human viewers, due to their similar build and color.
Relatively low quality of the images also harm the separability
between species.

(a) Crowned duiker (Sylvicapra
grimmia coronata)

(b) Oribi (Ourebia ourebi)

Figure 1: Hard-to-distinguish species with similar build and color

On the other hand, intra-class difference can sometimes still
be large, meaning that images that belong to the same species
can look drastically different, due to the aforementioned imagery
factors. To quantify the difference within each class, we apply
dataset analysis proposed in [18], and use spatial information
(SI) and colorfulness (CF) to measure imagery variation within
datasets. In Figure 2, we plot the SI (y-axis) x CF (x-axis) map
within all labeled images and within five sample species. The
coverage area indicates how diverse the images are, and we can
see that the variations within several classes are close to the vari-

ation within the entire dataset. This result coincides with what we
observed with the actual images, as the same species’ image can
be very different depending on the environments.

(a) All images (b) Duiker (c) Roan antelope

(d) Baboon (e) Patas monkey (f) Chimpanzee

Figure 2: SI x CF plots of various classes in our data

Differences
In this section, we describe differences between assumptions

made in the benchmark evaluation protocol and in real-world data,
which adds difficulties to the problem.

As stated in the background section, to compare results for
few-shot learning networks, most benchmark datasets simplify
the problem. For each episode of the “N-way K-shot classifica-
tion” task, all the queries, or unknown images, are selected from
the N classes — which means these algorithms do not have to
consider that an image might not belong to any of the classes.
However, real data does not fulfill this assumption; our data con-
tains many images not belonging to any of the species we are
interested in. Most of these images are caused by false detections
of background objects that are not animals; in addition, a few of
these images are other animals not fitting in our research scope.
Another key issue to note is that these “distractor” images do not
actually belong to one same class, as they do not necessarily share
common features. Hence, the problem is more “identify image not
belonging to any class” instead of “identify images belong to the
‘distractor’ class.”

In addition, the sampling of “unknown images/queries” in
benchmark dataset is also evenly distributed, which is another as-
sumption not applicable to real data. During initial screening and
labeling of our data, we randomly selected 8,000 images to be la-
beled, and the result can be seen in Table 3. As we can see here,
we have heavily unbalanced classes — commonly found species
like baboons have 1,624 images, while rarer animals like Patas
monkey only have 54 images.

Experiments
To address the aforementioned challenges as well as to com-

pare results with different setups, we created two testing datasets
from the camera trap video we have collected. Notice that as the
first step of making this a viable few-shot learning problem, we
are not training on our data. Instead, we train using either 1)
benchmark few-shot learning datasets, or 2) the publicly avail-
able camera trap dataset Snapshot Serengeti [19], which is from a
different geographic region and has different animal species. We
mostly focus on using Snapshot Serengeti dataset as the training
set, as it fit the few-shot learning narrative best — using available
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data with similar context for training, while only labeling a few
images on the target data.

Data Setup
To formally evaluate a network’s performance on our

data, we constructed two datasets from our images. Senegal-
benchmark (Senegal-B) mimics a benchmark evaluation proto-
col, and enables us to focus on easy and straightforward compar-
ison between networks. And Senegal-implementation (Senegal-
I) is for in-depth exploration of difference between benchmark
datasets and potential real-world implementation.

Dataset 1: Benchmark Style
To begin, we selected a small amount images per species and

constructed a small dataset, Senegal-B. The number of images
per species can be found in Table 2. The purpose of this dataset
is to address the first part of the challenges with real data (i.e.,
“Challenges”), and compare FSL networks’ performance under
our environment.

Species Images Species Images

Baboon 108 Hartebeest 25
Buffalo 74 Oribi 22
Bushbuck 126 Patas monkey 30
Duiker 53 Roan antelope 97
Green monkey 99 Warthog 83
Guineafowl 86

Table 2: Images of each species for our benchmark-style dataset
(Senegal-B)

We consider this dataset to be simple and straightforward
since the evaluation protocol is the same as other FSL benchmark
evaluation protocols. The main purpose of this dataset is to com-
pare a network’s cross-domain performance in our environment,
as we attempt to leverage publicly available data to achieve clas-
sification on our data.

To select images, we take an extra step to eliminate repetitive
images to make the variation within each class larger; e.g., if an
animal stays in the same spot and is detected multiple times, only
one image will be preserved. We then employ the benchmark style
evaluation, using 5-way, 5-shot settings with randomly sampled
classes, support images, and query images.

In summary, Senegal-B mimics the typical benchmark style
for straightforward comparison, and uses our images to reflect the
aforementioned imagery/environment challenges.

Dataset 2: Implementation Style
For Senegal-I, we mimic a real implementation process of

few-shot learning. Instead of carefully selecting images with rea-
sonable quality and avoiding repetitive images, we directly sam-
pled and labeled 8,000 detected animals from shipment 2 and 3 of
our data, while excluding those already selected for Senegal-B.
Therefore, the two datasets have disjoint image sets.

As mentioned in the second part of the challenges with real
data (i.e., “Differences”), several assumptions made in benchmark
datasets do not hold anymore with non-curated data. To begin
with, unknown images (queries) do not follow a nicely balanced

distribution between classes. As can be seen from Table 3, some
of the species are more frequently detected than others. In addi-
tion, a testing episode in the benchmark datasets’ evaluation does
not consider images not belonging to any of the classes. However,
in our case, we observe about 30% distractor images that do not
belong to any of the classes; these images are often background
objects, such as branches or rocks that have been mis-detected
as an animal. As these images are from multiple different object
types, they do not share inherently similar features to be regarded
as one single classes.

Species Images Species Images

Baboon 1,624 Hartebeest 21
Buffalo 566 Oribi 10
Bushbuck 46 Patas monkey 54
Duiker 212 Roan antelope 167
Green monkey 247 Warthog 245
Guineafowl 1,831 Distractors 2,586

Table 3: Images of each species for our implementation-style
dataset (Senegal-I)

As we have mentioned earlier, traditional few-shot learn-
ing evaluation protocol does not consider distractor images (im-
ages not belonging to any class) and always assigns a class to
an unknown image. Therefore, for this implementation-oriented
dataset, we need an extra step in our evaluation protocol, to decide
whether an images should be classified into one of the classes or
not.

In this evaluation protocol, we do not randomly sample 5 or
10 classes; instead, we mimic an implementation scenario where
all classes are considered at the same time. We select 10 images
per class from the relatively-higher-quality Senegal-B dataset,
and treat them as the support images for each class; the 8,000
images from this dataset (Senegal-I) are then treated as queries.
Since we have a large amount of distractor images, an additional
decision rule must be applied. To start with a straightforward
method, we choose K-nearest-neighbor as our decision rule, and
require that at least 3 of top 5 matches agree on the same class
before an unknown image can be classified.

For comparing results, we will look at three metric:

• Accuracy on those that passes the decision rule.
• False Positive Rate (FPR) as number of distractor images

that pass the decision rule divided by the total number of
distractor images. FPR measures a network’s effectiveness
at eliminating distractor images.

• True Positive Rate (TPR) as number of animal images that
passes the decision rule AND are correctly classified, di-
vided by total number of animal images. TPR measures a
network’s effectiveness at admitting correct animal images.
Due to the very low quality on some of the animal images,
we do expect some animal images to not get a classification
result.

Evaluation Setup
For evaluation, we choose five networks that we regard as

representative.
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• ProtoNet [6] is one of the most iconic and well-recognized
few-shot learning structures;

• Baseline and Baseline++ are proposed in [16] and are re-
ported to be effective at cross-domain few-shot learning
cases;

• RFS [9] discarded the commonly used episodic training
scheme in few-shot learning and achieved good results;

• R2-D2 [8] is the representative of meta-learning, where few-
shot learning is only one of many potential applications of
the network.

To minimize variations between training settings, we used
ResNet-12 [20] as the backbone and trained for 1,000 epochs.
For networks using episodic training, we choose 5-way 5-shot in
training. For all of them, we apply 5-way 5-shot setup during test-
ing. Under Few-Shot Learning’s philosophy, we train the network
using an off-the-shelf large dataset, with the goal that it learns to
extract relevant information for separating image classes. Specif-
ically, we choose two publicly available datasets for training:

1) Mini-ImageNet [2] is the standard benchmark dataset
representation; previously, the cross-domain experiment in [16]
has demonstrated the effectiveness of a potential cross-domain
FSL scenario by training on mini-ImageNet, and testing on CUB-
Birds-200 dataset.

2) Snapshot Serengeti [19] is a large camera trap dataset
taken in Tanzania, with 49 labeled species. We used the meta-
data available to extract animal bounding boxes and labels, and
constructed a training set similar in few-shot learning style.

We will then test on the two testing datasets that we created
using our data collected from Senegal.

Results and Discussions
Senegal-B

The networks’ performance when trained with mini-
ImageNet (left column) and when trained with Snapshot Serengeti
(right column) are shown in Table 4.

Network Mini-ImagNet Snapshot Serengeti

ProtoNet [6] 62.161 60.972
RFS [9] 62.961 71.557
Baseline [16] 67.544 71.981
Baseline++ [16] 54.386 56.494
R2-D2 [8] 63.931 67.631

Table 4: Top-1 accuracy (%) when trained on mini-ImageNet /
Snapshot Serengeti, and tested on Senegal-B

As can be seen, four out of five networks (RFS, Baseline,
Baseline++, R2-D2) performed better when trained with Snapshot
Serengeti than when trained with mini-ImageNet. This shows the
importance of creating a smaller domain gap when considering
cross-domain problems.

The Snapshot Serengeti training set we constructed (49
classes, 8,558 images) is smaller than mini-ImageNet’s training
set (64 classes, 38,400 images); in addition, Snapshot Serengeti
has less variation within class when compared to mini-ImageNet,
because its images are taken from stationary cameras rather
than internet images from various sources. However, Snapshot
Serengeti has similar camera settings (stationary camera traps)

as well as a similar classification problem (animal species, de-
spite different species) to our data, and this is why we believe
networks trained with Snapshot Serengeti outperform their coun-
terpart when trained with mini-ImageNet.

Interestingly, of all networks, only ProtoNet’s performance
degrades when trained with Snapshot Serengeti, where the do-
main gap is smaller. In the original paper [16] where Baseline and
Baseline++ are proposed, it is noted that Baseline performed bet-
ter in cross-domain scenarios; the same is observed here. Baseline
performs best with both small domain gap (Snapshot Serengeti to
Senegal-B) and large domain gap (mini-ImageNet to Senegal-B).
Baseline++, however, performs quite poorly for both domain gap
scenarios. On the other hand, RFS performs almost as well as the
best (Baseline) for the small domain gap scenario, despite average
performance with large domain gap.

Senegal-I
The networks’ performance when trained with mini-

ImageNet and tested with Senegal-I, under implementation sce-
narios, is shown in Table 5. Similarly, networks’ performance
when trained with Snapshot Serengeti and tested with Senegal-I
is shown in Table 6. We use the same K-nearest-neighbor decision
rule for all five networks.

With the implementation settings, the effect of domain gap
is even more significant. All networks show much better true
positive rate (TPR) when trained with Snapshot Serengeti, which
means they are all better at correctly identifying animal images
and correctly classifying them. As expected, with higher TPR, the
accuracy among images that pass the decision rule is also higher
when trained with Snapshot Serengeti. However, at the same time,
all networks show higher false positive rate (FPR), which means
they admit more of the distractor images that do not belong to
any class. Notably, Baseline shows an much higher FPR, which
means that it is admitting most of the distractor images.

When trained with mini-ImageNet, R2-D2 obtained best
overall performance, and RFS is a close second. Baseline, de-
spite its best performance on Senegal-B, shows very poor perfor-
mance with implementation settings; specifically, it obtains ex-
tremely high FPR and low accuracy among admitted images.

When trained with Snapshot Serengeti, RFS obtained the
best overall performance, showing lowest FPR, highest TPR, and
best accuracy among images that pass the decision rule.

The difference between a network’s performance on bench-
mark style evaluation (Senegal-B) and implementation style eval-
uation (Senegal-I) clearly show that benchmark datasets are inad-
equate for reflecting a network’s true usefulness in real applica-
tions. When we remove some of the strong assumptions in the
benchmark dataset, a network’s behavior may change drastically;
hence, designing a network purely to fulfill benchmark settings
may not transfer well to the real world.

Conclusion and Future Work
In this paper, we present a real-world problem — animal

species classification in in-the-wild camera trap videos — that fits
the Few Shot Learning (FSL) narrative, but also poses new chal-
lenges. We then constructed two datasets using our data. The first
dataset follows benchmark datasets’ settings; the second dataset
mimics real implementation settings, where we need to consider
additional system components like potential false positive from
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Network Accuracy FPR TPR

ProtoNet [6] 0.286 0.14 0.079
RFS [9] 0.417 0.049 0.065
Baseline [16] 0.253 0.24 0.087
Baseline++ [16] 0.245 0.071 0.038
R2-D2 [8] 0.441 0.089 0.069

Table 5: Network performances when trained on mini-ImageNet
and tested on Senegal-I

Network Accuracy FPR TPR

ProtoNet [6] 0.369 0.26 0.16
RFS [9] 0.562 0.14 0.25
Baseline [16] 0.417 0.32 0.24
Baseline++ [16] 0.212 0.44 0.12
R2-D2 [8] 0.516 0.19 0.22

Table 6: Network performances when trained on Snapshot
Serengeti and tested on Senegal-I

system pipeline, and where some strong assumptions set in bench-
mark datasets do not hold. After conducting experiments on our
datasets using popular FSL networks, we found that performance
under benchmark settings may not reflect a network’s usefulness
under more realistic scenarios. Our goal is to use these results
to inspire people to explore more about how an algorithm would
behave outside benchmark datasets, and design algorithms to ac-
commodate real-world challenges.

For future work, we believe there are additional factors to
be explored for implementing FSL into real-world problems. We
will continue investigating potential factors that may affect im-
plementation of FSL-style classification, including training data
selection, support image selection, and decision rules for elimi-
nating distractor images.
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vanna Chimpanzee Project, Papa Ibnou Ndiaye, and Jill Pruetz.

References
[1] Li Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object

categories,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[2] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra,
et al., “Matching networks for one shot learning,” Advances in
Neural Information Processing Systems, vol. 29, 2016.

[3] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni,
“Generalizing from a few examples: A survey on few-shot learning,”
ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–34, 2020.

[4] Stacy Lindshield, Stephanie Bogart, Mallé Gueye, Papa Ndiaye,
and Jill Pruetz, “Informing protection efforts for critically endan-
gered chimpanzees (Pan troglodytes verus) and sympatric mammals

amidst rapid growth of extractive industries in Senegal,” Folia Pri-
matologica, vol. 90, pp. 124–136, 03 2019.

[5] Jill Pruetz, P. Bertolani, Kelly Boyer Ontl, Stacy Lindshield, Mack
Shelley, and Erin Wessling, “New evidence on the tool-assisted
hunting exhibited by chimpanzees (Pan troglodytes verus) in a sa-
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