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Abstract 
 
We present a head-mounted holographic display system for 
thermographic image overlay, biometric sensing, and wireless 
telemetry. The system is lightweight and reconfigurable for multiple 
field applications, including object contour detection and 
enhancement, breathing rate detection, and telemetry over a mobile 
phone for peer-to-peer communication and incident command 
dashboard. Due to the constraints of the limited computing power 
of an embedded system, we developed a lightweight image 
processing algorithm for edge detection and breath rate detection, 
as well as an image compression codec. The system can be 
integrated into a helmet or personal protection equipment such as a 
face shield or goggles. It can be applied to firefighting, medical 
emergency response, and other first-response operations. Finally, 
we present a case study of "Cold Trailing" for forest fire 
containment. 

  

 

Introduction  
 
Telemetry is a critical component to allow emergency response 
teams to sense the situation around them. Existing augmented reality 
(AR) interfaces [12-15] are not built for extreme environments such 
as smoke, dark, noisy, and poor communication conditions. We 
need affordable AR platforms that can survive extreme 
environments and provide on-demand information for first 
responders and command posts.  
  In this study we develop a head-mounted holographic display 
system for thermographic image overlay, biometric sensing, and 
wireless telemetry. The system is lightweight and reconfigurable for 
multiple field applications, including object contour detection and 
enhancement, breathing rate detection, and telemetry over a mobile 
phone for peer-to-peer communication and incident commanding 
dashboard. Due to the constraints of the limited computing power of 
an embedded system, we developed a lightweight image processing 
algorithm for edge detection and breath rate detection, as well as an 
image compression codec. The system can be integrated into a 
helmet or personal protection equipment such as a face shield or 
goggles. It can be applied to firefighting, medical emergency 
response, and other first-response operations. Finally, we present a 
case study of "Cold Trailing" for forest fire containment in the wild. 

 
The Multispectral Imaging Helmet 
 
The spectral imaging and telemetry helmet system contains a 
microprocessor, with a microphone, Wi-Fi, and Bluetooth. We 
identify it as “multispectral” because of its capability for integrating 
and overlaying thermal, visible, and other available electromagnetic 
spectrum images, as well as provision for future integration and 
overlaying of non-electromagnetic imaging modalities, e.g., 
ultrasound. The microprocessor is connected to basic sensors for 

firefighters: thermal camera, a 10-DOF IMU motion sensors, and 
tactile button. The system can be expanded with add-on sensors such 
as 1-dimensional laser distance measurement sensor (1D-LIDAR), 
depth sensor, stereo vision cameras, and GPS, and a more powerful 
embedded computer.  Figure 1 shows the thermal imaging and 
telemetry helmet for firefighters. 
 

Figure 1. The thermal imaging and telemetry helmet for firefighters. 

Software Architecture 
 
The thermal imaging module provides a real-time thermal image 
overlay to help first responders navigate environments with limited 
visibility.  The helmet’s tactile button is used to cycle between 
states. Pseudocode for the basic demo software is below. The IMU 
provides direction and altitude information. The first step in the 
demo is calibrating this unit. We tried to use runtime calibration, but 
that delivers less accurate results than offline calibration. Thus our 
protocol includes the calibration step of briefly rotating the helmet 
in all three natural planes. After this stage the program displays a 
screen of current IMU information about position and direction. 
 
Start 
Initialization for sensors and calibration 
Read IMU data 
Do While checking button status 
   Overlay Heading, Altitude, and Temperature readings 
   Demo 1: Display raw thermal video 
   Demo 2: Overlay thermal video on the target (zoomed) 
   Demo 3: Overlay edge of thermal image on the target 
End While 

 
The thermal imaging demonstration is the hyper-reality overlay as 
shown in Figure 2.  It displays a real time thermal image with the 
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heading “H”, the temperature “T”, and the altitude “A”.  We 
included four modes for displaying the thermal image with a normal 
grayscale thermal image, a view using Canny edge detection, and a 
zoom option for both to magnify far away objects.  After the initial 
IMU calibration, the demo cycles between these viewing modes 
when the button is pressed. 
 

 
Figure 2. The overlaid thermal image (left) and contour (right) on the 
head-up display in the helmet. 
 
Telemetry from a Wearable Computer 
 
Telemetry is critical to many first responders for transmitting the 
real-time sensory data from the field to the commending center. The 
challenge is how to transmit the critical data from a wearable 
computer over an unstable and narrow bandwidth network. 
  Typically, mobile videos can be transmitted over Wi-Fi or cellular 
data networks. However, many wearable computers have very 
limited computational power for video encoding and decoding 
algorithms. For example, TCP/IP protocol performs rigid error 
checking and resending that many embedded systems cannot afford. 
The UDP protocol on the other hand, requires less error-checking 
and less onboard computation, which is a preferred alternative to our 
telemetry process. 
   On top of the transmission protocol, we have to compress and 
decode the thermal video in real-time without cost too much 
computing resources from the wearable computer. There are many 
image compression algorithms such as Discrete Cosine Transform 
(DCT) and Discrete Wavelet Transform (DWT), et al. But they are 
computationally expensive unless special chips are provided. In our 
project, we use the Least Significant Bit (LSB) compression method 
[17].  
   A pixel in an image normally contains either 8-bits or 24-bits of 
information. The 8-bit resolution is good enough for representing 
gray-scale images, which has 255 shades of gray. The 24-bits 
resolution is appropriate for representing color images, which 
consist of red, green, and blue (RGB) channels with 8-bit resolution 
for each, which can represent up to 16,581,375 colors. 
  For example, if we take one pixel out of a gray-scale image. It is 
an 8-digit number in the binary form: 11000011. We can break the 
number into two parts: the left most four digits are the most 
significant bits (MSB); and the right most four digits are the least 
significant bits (LSB). Any changes in the most significant bits will 
make a noticeable difference. On the other hand, any changes in the 
least significant bits won’t make a perceptively noticeable 
difference, so won’t have much visual impact. 
  How do we measure the image distortion due to the video 
compression? For computerized image quality evaluation, we can 
view the compressed image as a noisy image and use the Peak Signal 
to Noise Ratio (PSNR) for an objective measurement. Assume the 
maximum possible pixel value of the cover image is MAX. When 

the pixels are represented in 8 bits per sample, it is 255. Also assume 
we have the mean squared errors (MSE) of pixels of the cover image 
and the resultant steganographic image. We have,  

   
          
PSNR models the human eyes’ logarithmic response to the visual 
differences between the two images. It has been widely used for 
measuring the performance of image compression algorithms. The 
higher the PSNR value the better the image quality. Typical values 
for the PSNR in video compression are between 30 and 50 dB, 
provided the bit depth is 8 bits. For 16-bit data typical values are 
between 60 and 80 dB. Acceptable values for wireless transmission 
quality loss should be between 20 and 25 dB. Therefore, the PSNR 
of the compressed image cannot be lower than the typical range to 
avoid noticeable imagery distortion [17].  
     
Thermal Calibration 
 
The thermal camera, FLIR Lepton 3.5, has a stated accuracy of +/- 
9 F (5 C) which is obviously not suitable for fever tracking where a 
difference of just 1 F (0.6 C) could be critical. Measurements from 
the thermal camera were recorded for multiple water sources and 
compared with a digital thermometer. It was found that the thermal 
camera had an offset value which would change with each Flat Field 
Correction (FFC) which is an offset calibration to compensate for 
errors that build up over time in the camera.  
 After correcting this offset value by manual or automated methods, 
the accuracy of the thermal chip is much improved. The temperature 
accuracy analysis is carried out and an accuracy of +/- 1 F (0.6 C), 
an interquartile range of 0.5 F (0.3 C), and a standard deviation of 
0.44 F (0.24 C). 
   As the ambient temperature of the room changes the output of the 
thermal camera changes, even if we are measuring a fixed point with 
a constant temperature. Also the thermal camera performing an FCC 
will change the output temperature from the thermal camera. By 
measuring the temperature of a point in the background manually, 
in this case with a thermal measurement gun, we can then compare 
the temperature of the point from the thermometer and the thermal 
camera and generate an offset value to apply to the frame. 
  The next step could include a fixed point with a measuring device 
that could communicate with the thermal imaging system so not to 
have to rely on manual measurements. 
   Initial prototyping of the system was done at a lower resolution to 
optimize for speed. At 480p for the RGB frame the face detection 
could operate at a maximum distance of 8 feet (2.4 m). After 
optimizing the software the fever screening system could run at high 
speed at a higher resolution of 720p, extending the distance of face 
detection to 13 feet (4.0 m). 
   The distance between the subject and the thermal camera has an 
effect on measured temperature. We can correct for this effect using 
the distance sensor. We standardize by always measuring to the 
subject’s forehead. The perturbation is due to atmospheric 
attenuation between the thermal imaging camera and the human 
subject. We carried out tests to measure the change in measured 
temperature of a subject as they walked towards the thermal camera, 
with their distance to the camera calculated by tracking the target in 
the depth image.  The results are shown in Figure 3. For the distance 
of 1 - 13 feet (0.3 – 4.0 m) the measured temperature declines more 
rapidly at short distances and less rapidly at larger distances, as 
shown in blue. This is consistent with the expected Beer-Lambert 
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Law of exponential attenuation with distance. By applying the 
measured correction to the raw temperature measurement the 
adjusted temperature accurately describes the actual temperature of 
the measured subject independent of distance over a useful distance 
range. The corrected temperature, shown in orange, is now 
essentially flat.  Random variations around this corrected 
temperature are likely due to the tracked point on the forehead 
changing slightly when the subject walks towards the thermal 
camera, and to small inaccuracies inherent to the camera. 
 

 
Figure 3.  Temperature vs distance from thermal camera. 
 
Tracking Camera Motion 
 
We tested the Scale-Invariant Feature Transform (SIFT) key point-
based tracking with a single camera on the mobile phone Samsung 
S6. The number of matched tracking points depends on the texture 
features in the scene and motion. The algorithm requires a minimum 
number of matched points in individual frames. When the camera 
turns around, old key points may be lost, and new key points have 
to be added automatically. This demands fast frame capture and 
computation in order to track properly. We also tried to find the key 
points from the thermal imaging frames (160 x 120 pixels). The 
algorithm did not find any key points. We have to find better ways 
to extract tracking points. For example, corner detection instead of 
SIFT key points and incorporating IMU sensors to understand the 
pose and dynamics of the camera.       
 

 
Figure 4. SIFT key point tracking while the camera moved around the 
office. Note the blackout on the 3rd image. 
 

Tracking Corners and Edges  

We tried to extract corner feature points and edges from the FLIR 
Lepton 3.5 thermal images at 160 x 120 pixels resolution. The 
detection algorithm is based on the Harris filter method. The results 
appear reasonable. See Figure 5 and 6. The Lepton 3.5 camera had 

some dead pixels on the horizontal line of the middle of the image. 
They were mistaken as corners. This error can be reduced by 
replacing the camera or linear interpolation in software. We aim to 
use corners to replace the SIFT key points. We can track those 
corners for localization and landmark detection. We also use the 
Canny edge detection algorithm to extract edge contours. Edge 
tracking may be used for tracking directly, but it can be used for 
highlighting objects on the see-through HUD. It can be helpful in 
smoky environments. Contour rendering can also be helpful if the 
line color indicates temperature or other physical properties. 
  

 
Figure 5. Tracking corners from thermal images. 

 

 
Figure 6. Tracking edges from thermal images. 
 
Tracking Gloves in Thermograph 
 
We experimented with thermal imaging-based glove tracking. Due 
to the thermal isolation of the firefighter’s gloves, it is challenging 
to detect the temperature difference between the glove and the 
environment. So we attached a thermal reflective tag on the glove. 
From the thermograph, the reflective tag exhibits easy-to-track high 
contrast. We also tested thermal reflective tags on fire alarms and 
door handles. We found that it is possible to spray thermal reflective 
paint onto a glove to make it easier to track in thermal videos. Figure 
7 shows the glove with the thermal reflective tag and the result on 
the thermal image. 
 

 
Figure 7. Thermal Reflectors for the Glove (left) and Thermal Imaging. 
 
Breath Rate Detection 
 
Respiratory rate (RR) or breath rate (BR) is essential data in 
determining emergency medical responses. There are many contact-
based respiratory rate sensors or blood oxygen-based sensors. 
Thermal imaging, on the other hand, provides remote sensing 
capability for first responders or drones in the field for triage 
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purposes. When we breath, the air temperature from the nasal area 
changes correspondingly, which change is reflected in the pixel 
values around the nose and perhaps the mouth. In our system, we 
track the nasal area with a bounding box. The wearable computer 
calculates the intensity variations in the nasal area and summarizes 
the respiratory rate or breath rate within 30 or 60 seconds. Figure 8 
shows the first responder aims the thermal camera at the nasal area 
of the simulated disaster victim (left) and the overlaid breath rate 
and dynamic patterns on the glass attached to the helmet (right). In 
order to maximize the sensitivity of the pixel value variation in the 
nasal area, we place the thermal camera below the nose so that the 
dynamics can be more visible.  
   Table 1 shows the sample of experimental results at the lab and a 
bar with 5 subjects, including 4 male and 1 female. The average 
accuracy is 85.7%, assuming the respiratory rate is consistent 
throughout the measurement period. 
 

 
Figure 8. The first responder aims at the nasal region of the victim (left) 
and the overlaid breath rate and dynamic pattern on the glass (right). 
 
Table 1. Experimental results at the lab with 5 subjects (breath per minute) 

Self-Count 12 14 22 18 13 

Thermal Data 14 17 24 15 12 

 
Cold Trailing 
 
Wildfire fighting is a growing challenge as global warming 
accelerates. Normally, after a wildfire, firefighters need to survey 
the ground temperature of the burnt field to prevent returning fires, 
called “Cold Trailing” according to the Department of Agriculture 
of USA. The prevailing survey method is to touch the ground with 
a bare hand, which is neither safe nor inefficient.  
 

 
Figure 9. The firefighter walks in the field to take the ground temperature 
(left) and the cellphone maps the ground temperature data and transmits it 
to the command center (right). 
 
In this study we use the thermal imaging sensor to measure the 
ground temperature by pressing a button or speaking a verbal 
command into the microphone on the helmet. The onboard computer 
sends the temperature data to the firefighter’s mobile phone via 
Bluetooth, and the mobile phone maps the temperature data in 
colored dots with GPS coordinates. In parallel, the mobile phone app 
sends the Cold Trailing data to the Incident Command Center. We 
tested the wearable thermal imaging and telemetry system at 

Schenley Park, Pittsburgh, Pennsylvania, through a wooded area. 
We recorded a data point every 5 feet (1.5 m) along the path. The 
map reflects the Cold Trailing data in real-time. See Figure 9.   
 
Conclusions 
 
In this study we develop a head-mounted holographic display 
system for thermographic image overlay, biometric sensing, and 
wireless telemetry. The system is lightweight and reconfigurable for 
multiple field applications, including object contour detection and 
enhancement, breathing rate detection, and telemetry over a mobile 
phone for peer-to-peer communication and incident command 
dashboard.  
  Due to the constraints of the limited computing power of an 
embedded system, we developed a lightweight image processing 
algorithm for edge detection and breath rate detection, as well as an 
image compression codec. The system can be integrated into a 
helmet or personal protection equipment such as a face shield or 
goggles. It can be applied to firefighting, medical emergency 
response, and other first-response operations. Finally, we present a 
case study of "Cold Trailing" for forest fire containment in the wild. 
  The wearable thermal imaging and telemetry system is still in its 
early stage. We need further improvement of the accuracy, 
robustness, and affordability of the system. 
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