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Abstract
Simulating the effects of skincare products on face is a po-

tential new way to communicate the efficacy of skincare products
in skin diagnostics and product recommendations. Furthermore,
such simulations enable one to anticipate his/her skin conditions
and better manage skin health. However, there is a lack of ef-
fective simulations today. In this paper, we propose the first sim-
ulation model to reveal facial pore changes after using skincare
products. Our simulation pipeline consists of 2 steps: training
data establishment and facial pore simulation. To establish train-
ing data, we collect face images with various pore quality indexes
from short-term (8-weeks) clinical studies. People often experi-
ence significant skin fluctuations (due to natural rhythms, exter-
nal stressors, etc.,), which introduces large perturbations in clin-
ical data. To address this problem, we propose a sliding window
mechanism to clean data and select representative index(es) to
represent facial pore changes. Facial pore simulation stage con-
sists of 3 modules: UNet-based segmentation module to localize
facial pores; regression module to predict time-dependent warp-
ing hyperparameters; and deformation module, taking warping
hyperparameters and pore segmentation labels as inputs, to pre-
cisely deform pores accordingly. The proposed simulation is able
to render realistic facial pore changes. And this work will pave
the way for future research in facial skin simulation and skincare
product developments.

Introduction
Consumers prefer smooth and flawless skin that makes them

look youthful and healthy. Skin texture plays a key role in the
perception of human facial beauty [1, 2]. However, skin texture
can appear rough and bumpy when facial pores enlarge. There are
various exogenous and endogenous factors, such as gender, race,
aging, and hormones that cause enlarged facial pores. Higher ca-
sual sebum levels in the nose and medial cheek area explain larger
pores observed from these areas [3, 4]. Skincare products for pore
care are widely available. Although there is a number of skin-
care diagnostic and recommendation capabilities available, to our
knowledge, there is a lack of effective simulations today that re-
flect true facial pore transformation using available skincare prod-
ucts. Therefore, this paper proposes a complete pipeline to sim-
ulate the facial pore changes across a short-term period. Tem-
poral analyses of changes in facial pores and simulation of these
changes are helpful for the consumers to dynamically understand
their skin and evaluate the potential benefit of skincare products.
Such a realistic simulation not only guides customers to buy the

right skincare products but also helps develop effective skincare
technologies. Additionally, facial pore simulation can play a role,
for example, in simulating the elongated effect of facial pores dur-
ing the aging process. It enriches aging signs and contributes to
the development of better aging models.

A realistic short-term simulation of the efficacy of skincare
products builds upon truthful clinical studies. Similar to [5], clin-
ical studies were conducted on 60 young Japanese females to re-
veal facial pore changes after applying specific skincare products
A and B (in product code). The eMR Pro devices, designed for
portable self-facial imaging with constant positioning and bright-
ness [5], were provided for participants to capture side-face im-
ages three times a day (morning after wake up; morning after face
wash; and evening after face wash). Facial pore changes correlate
with the initial skin condition, which varies among the 60 partic-
ipants. Following [6], various indexes are used to evaluate facial
pore condition and we observe large perturbations in the index
values due to daily skin fluctuations [5]. Based on this complex
clinical data, we expect first to select valuable index(es) that re-
flect facial pore changes before and after using skincare products,
regardless of different initial skin conditions. We further propose
a sliding window mechanism to reduce the data perturbations ef-
ficiently and get the data ready for training.

Our next step is to perform a facial pore simulation. To real-
istically simulate changes in facial pores while maintaining image
fidelity, we need to pay attention to three aspects: morphological
modification of all facial pores, precise control of the modifica-
tion to reflect the real changes, and the non-pore areas remain-
ing unchanged. Nowadays, GAN-based architectures [7, 8, 9]
are famous for generating high-quality images. However, these
methods have limitations in maintaining non-pore facial region
features. And the facial pore transformations after using skincare
products correlate with the initial condition, which is also chal-
lenging for GAN-based methods to capture such changes. From
Figure 1, we can see that GAN-based architecture is weak at sim-
ulating the detailed variation of facial pores (blurring effect in the
cheek area) and maintaining the non-pore facial features.

To address the above-mentioned challenges, we propose a
facial pore simulation model that consists of three modules: seg-
mentation module, regression module, and deformation module.
The segmentation module is to provide accurate spatial informa-
tion by detecting and localizing visible and enlarged facial pores.
Existing pore detection works [6, 10, 11, 12, 13, 14] take tradi-
tional approaches: setting threshold values carefully to segment
facial pore features. Clinical imaging devices, such as, Visia-CR
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[6, 12] and Dermascore [11] are used to capture high-resolution
images at the same time to control lighting conditions and posture.
[10, 11, 12, 13, 14] are also limited to processing only small skin
regions instead of full faces due to the threshold mechanism. By
contrast, our UNet-based segmentation model is trained to learn
robust facial pore features and to detect visible and enlarged pores
in full side-face images. Our data-driven model detects pores with
different sizes & shapes, and it can handle images with different
lighting to a certain extent. In parallel, a random forest regres-
sion model is expected to learn the pattern of facial pore changes
over time from the training data and to further predict the time-
dependent warping hyperparameter. The warping hyperparame-
ter is to control the degree of facial pore deformation. Lastly, in
the deformation module, the local scaling warp method [33] is
modified to calculate a flow-field grid with taking pore segmenta-
tion labels and warping hyperparameters as inputs. The flow-field
grid assures that only facial pores are deformed, leaving the non-
pore facial region unchanged. The original input image is then
deformed accordingly to simulate facial pore changes after using
specific skincare products.

To summarize, the contributions of this work are as follows:

• We propose a suite of customized analytical tools to process
complex facial pore clinical data. We demonstrate that the
sliding window mechanism helps clean the data by reducing
perturbations due to significant skin fluctuations.

• We propose a facial pore simulation that consists of three
modules: segmentation module, regression module, and de-
formation module. We show that by incorporating facial
pore segmentation labels and predicted warping hyperpa-
rameters, the deformation module can precisely deform fa-
cial pores with accurate control, while leaving the rest of the
face unchanged.

• We propose a complete simulation pipeline that has two
steps: training data establishment and facial pore sim-
ulation. Our results show that the simulation produces
high-quality images which demonstrate realistic facial pore
changes over time.

Related Work
Facial Pore detection

Facial pore detection is a challenging task as facial pores
are delicate with different shapes (circular or elongated) [12, 18]
& sizes (from 50 µm to 500 µm) [16]. It requires images to
be sharp enough to contain pore-level features. Existing works
[6, 11, 12, 13, 14, 15, 18, 19] require professional equipment to
capture high-quality facial skin in a fixed pose under consistent
light. [17, 19] only output the overall grading of facial pores. Tra-
ditional approaches are mainly used to detect facial pores: mark
pores on melanin layers derived from digital images [16, 20]; us-
ing the difference of Gaussian (DoG) filters [6]; based on Fast
fuzzy c-mean algorithm [14]. However, these methods are con-
strained to work on skin patches, and often perform poorly on
images with varied lighting. Our proposed UNet-based model is
capable of detecting skin pores on full side-face images with sat-
isfactory performance and addresses different lighting problems.

GAN-based 
model

Input

Figure 1: Sample results using a GAN-based method.

Face Simulation
Existing GAN-based works [21, 22, 23, 24, 25, 26] focus on

simulating the human face aging process. For instance, facial at-
tributes are used to guide wavelet-based GANs [24] to simulate
aging effect. [25] learns about people’s age progression by un-
raveling subject-specific features and age-specific effects. Triple-
GAN [26] proposes to learn the interrelationships between differ-
ent age groups. Aging simulation is at a larger scale than simulat-
ing skin changes. To the best of our knowledge, no work has been
done to simulate the efficacy of skincare products on the face.

Methodology
Training Data Establishment

8-week clinical studies have been conducted on 60 young
Japanese females from 22 to 34 years old: they used product A
and/or B on the left/right side of their faces. Participants used
eMR Pro devices [5] connected to smartphones to capture side-
face images three times a day: morning after wake-up; morning
after face wash; evening after face wash. Various pore statistics
were measured using the method from [6]: pore count; total pore
area; mean pore area; pore shape; orientation; mean L*/a*/b*-
channel value in CIELAB color space. [5] examines the notice-
able fluctuations in the skin that people experience every day, es-
pecially with facial pores. We use similar approaches from [5]
to analyze these measured indexes while focusing on the 4-week
observation period with applying products A and B. Our dataset
consists of 12,531 images in total, and participants have different
initial skin conditions with diverse pore size scales (from grade
0 to grade 5) [18]. To observe the facial pore changes among
participants equally, we first normalize index value for every par-
ticipant. On each observation day, a mean value of each index
is computed to represent facial pore condition among the group.
This averaging operation is designed to consider the different ini-
tial skin conditions of 60 participants. Linear regression analysis
is then conducted to study index patterns before and after using
skincare products. Valuable index(es) are to be selected to repre-
sent facial pore changes. Considering people have different de-
grees of skin fluctuation across days, we propose a n-day sliding
window mechanism to reduce the data perturbations: gradually
group n-day values in 1-day steps and then remove extreme val-
ues by the n-day mean and standard deviation. In addition, we
observe that facial pore changes are developed slowly over the 4-
week period of using skincare products, and we propose to split
the 4-week observational duration into 3 discrete time windows to
investigate skincare efficacy. The cleaned dataset contains 3,025
images and each participant has multiple sets of images to reflect
their facial pore changes across time windows, which is used as
the training set to develop a facial pore simulation model.
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Figure 2: Pore Area total index analysis.

UNet-
based

DoG- 
based

Input

Figure 3: Qualitative results of Facial Pore
Segmentation models.

Facial Pore Simulation
UNet-based Facial Pore Segmentation

Pore segmentation labels lay the foundation for developing
a good simulation of facial pore changes. In contrast with exist-
ing threshold-based traditional works [6, 10, 11, 12, 13, 14], we
propose a deep learning-based data-driven model to detect visible
and enlarged facial pores on side-face images captured by smart-
phones. We use 9,506 out of 12,531 images as the segmentation
training set. It is time-consuming and labor-intensive if we were
to manually annotate facial pores. Additionally, the simulation
does not require exhaustive detection of facial pores. Hence, we
propose a new approach to generate satisfactory labels to improve
productivity. Inspired by [31], we use the Photocopy filter to ex-
tract facial details and then apply various post-processing opera-
tions to reduce excessive noise: morphological dilation and ero-
sion; setting thresholds for pore area, size [16], and shape [12, 18].
Lastly, the pore segmentation labels were manually checked and
the necessary refinements were made.

Witnessing the outstanding performance of UNet-based ar-
chitectures in medical image segmentation, we train a pore seg-
mentation model on 9,506 images using UNet [32] architecture.
By measuring the similarity between the predicted segmentation
label and the true segmentation label, the loss function penalizes
the model to learn in the optimal direction. We add cross entropy
loss and F1 score to form our loss function:

L = Cross Entropy+F1 Score. (1)

Our selfie images are captured at 1920 x 1080 pixels. To avoid
large memory overhead over training, images are cropped into
patches with size of 256 x 256 with batch size of 24. RMSProp
optimization algorithm is used with learning rate = 1e-5, weight
decay = 1e-8, and momentum = 0.9.

Random Forest Regression
The regression module is to build up the relationship be-

tween the selected index and time window statistically. Our data
indicate that participants experience different facial pore transfor-
mations with varied initial skin conditions, making it challenging
to build an appropriate regression model. In addition, our data are
considerably large in size. Therefore, we exploit Random Forest
[28] as our regression model. Random Forest consists of a forest

of classifying decision trees: it selects a subset of data randomly
over training at each split and efficiently improves accuracy and
controls over-fitting by using average values based on all aggre-
gations [29, 30].

Facial Pore Deformation
Local scaling warp from [33] creates the possibility for pre-

cise manipulation. It achieves pixel-wisely manipulation by map-
ping points from input space to warping space without changing
the colors, and the mapping is computed by:

fs(r) =

(
1−
(

r
rmax

−1
)2

a

)
r. (2)

One minimum enclosing circle is found for each detected pore
and the radius of each enclosing circle is rmax. Variable r mea-
sures the distance between the target pixel and the center of the
enclosing circle, and parameter a controls the degree of deforma-
tion. Instead of implementing this method in an interactive man-
ner, a well-fit random forest regression model is trained to pre-
dict parameter a. Based on Equation 2, mappings for all detected
pores are gathered to compute a flow-field grid. Each size-2 vec-
tor in the flow-field grid is used to interpolate the corresponding
output value. The bilinear interpolation method is used here and
border values are used for out-of-bound grid locations. The face
deformation operation is also optimized and it takes only about
5-10 seconds to manipulate one full side-face image of size 1920
x 1080.

Results
Our complete simulation pipeline consists of 2 stages: train-

ing data establishment and facial pore simulation. First, we show
the analytical patterns of facial skin quality indexes over time.
Next, we present the evaluation for facial pore segmentation, ran-
dom regression, and facial pore simulation.

Training Data Establishment
Various indexes were measured in digital images. People’s

skin fluctuates a lot within a day and/or from day to day, and
we can observe large data perturbations in pore quality index val-
ues. After careful analysis of the statistics, we observe that index
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Figure 4: Qualitative result of Facial Pore Simulation.

Pore Area total demonstrates a jittery decreasing pattern across 3
time windows (shown in the first column in Figure 2), and this
pattern is consistent with the visual analysis by domain experts.
Index Pore Area total is then selected as the representative index
to reflect facial pore changes after skincare. With implementing
the sliding window mechanism in the observation period, outliers
are removed, and the data display fewer perturbations (shown
in the second and third columns of Figure 2). The 3-day slid-
ing window mechanism retains most data and it is then utilized
to clean the data. After splitting the 4 observation week into 3
time windows, we further investigate the changes in value of in-
dex Pore Area total. The box plot also shows a jittery decreasing
pattern in Figure 2, and it supports our observation.

Table 1: Qualitative Evaluation in Face Pore Segmentation
Metrics UNet-based DoG-based

Dice 0.6663 0.4418
IoU 0.5139 0.2851

Precision 0.6790 0.4388
Accuracy 0.9936 0.9896

Facial Pore Simulation
UNet-based Facial Pore Segmentation

A test set of 30 images is manually annotated for quantita-
tive evaluation of facial pore segmentation. These test images are
carefully selected from the cleaned facial pore simulation train-
ing set (consisting of 3,025 images), which considers different
facial pore conditions and lighting conditions. As existing works
are implemented in traditional threshold-based methods, we only
compare our UNet-based pore segmentation model with the DoG-
based method [6]. Multiple standard metric results in Table 1
show that the UNet-based segmentation model outperforms the
DoG-based methods by a large margin. Figure 3 shows the visual
comparison and we can conclude that our UNet-based segmenta-
tion model is capable of segmenting facial pores of different sizes
and shapes. The model is also performing well in facial cheek
area where we can observe specular effect in the first two input
images in Figure 3.

Random Forest Regression
Random forest regression is trained to learn the relationship

between metric Pore Area total and time windows. R2 Score and
Mean Average Error (MAE) are utilized here to evaluate regres-
sion performance. The results in Table 2 show the random forest
regression model fits well with low error.

Table 2: Random Forest Regression Analysis
Metrics Time Window 1 Time Window 2 Time Window 3

R2 Score 0.9905 0.9941 0.9564
MAE 0.6344±2.20 0.6039±1.85 1.3498±5.12

Table 3: Quantitative Evaluation on Simulation Image Quality

Metrics Simulation images
PIQE 11.86
NIQE 3.41

Facial Pore Deformation
As we have discussed previously, existing face simulation

methods focus on age regression and their evaluation metrics are
not applicable here. Similar to image super-resolution [34, 35],
face image quality is a significant factor to develop a high-quality
simulation system. In our dataset, side-face images are inevitably
misaligned even with using the eMR Pro devices [5]. In addition,
image registration methods do not work well for side-face images.
Therefore, we use No-Reference Image Quality Assessment (NR-
IQA) for evaluation: NIQE [36] and PIQE [37]. The detailed re-
sults in Table 3 indicate the high quality of the simulated images.
In Figure 4, we show qualitative results of our model simulating
the facial pore changes of 3 subjects after using skincare prod-
ucts. For each subject, the leftmost image shows the condition of
his skin before using skin care products. Real images shown in the
top row demonstrate his real skin condition after 10/20/30 days of
skincare. Correspondingly, the bottom row presents the simulated
skin condition of the facial pores for each time window (TW10,
TW20, TW30). As can be seen, our model captures the delicate
facial pore changes across the three time windows and modifies
the input image to reflect realistically his facial pore changes over
time. We can also observe that the model only modifies facial
pore appearance while leaving other facial features unchanged, as
shown in Figure 4.

Perception Study
We further conduct a perception study to evaluate our UNet-

based segmentation model and facial pore simulation model. To
be fair, we selected 40 images of facial pore segmentation results
with diverse pore conditions under different light conditions. Sim-
ilarly, 20 sets of simulation images were prepared.

We invited 30 respondents to this study: 15 women and 15
men, from ethnicity: Chinese and Indian. From the age range
graph in Figure 5, we can see that more than 90% of the respon-
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Figure 5: Meta information of
respondents.
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Figure 6: Respondents’ Score on Facial
Pore Segmentation.
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Figure 7: Respondents’ Score on Facial
Pore Simulation.

dents are in their 20s, which is consistent with the young Japanese
participants in our clinical studies. In addition, we asked the re-
spondents to carefully self-assess their facial pore status with ref-
erence to a clinical standardized scale of pore size from [18]. The
pore size scale pie chart in Figure 5 shows that the facial pore sta-
tus is diverse among the 30 respondents, which shares a similar
distribution to our clinical study.

Facial Pore Segmentation
Respondents were to ask 3 questions when observing 40 pore

segmentation results:

· Q1: How do you observe the overall detection results?
(Choose one: Very Good; Good; Bad)

· Q2: Are there any incorrectly detected pores? (Choose one:
A few; Moderate; Many)

· Q3: Overall, how does the algorithm perform? (Choose one:
Very Good; Good; Fair; Poor; Very Poor)

The first and second questions are to evaluate the perfor-
mance of the UNet-based pore segmentation model in terms of
false negative and false positive respectively. Respondents an-
swered Q1 and Q2 for each image and grade the overall perfor-
mance in Q3 after viewing 40 images. As shown in Figure 6, 95%
of the responses show satisfaction with our pore detection results
(54% Very Good; 41% Good; and 5% Bad). In Q2, 60% of re-
sponses indicate there are a few false positives in segmentation
results and 35% indicate a moderate number of false positives.
Overall, more than 75% of the respondents feel good or very good
at facial pore segmentation, with no negative comments.

Facial Pore Simulation
Our simulation progressively predicts facial pore changes at

each time window. Respondents were invited to answer 3 ques-
tions by seeing 20 sets of images to evaluate each time window as
well as the entire process.

· Q1: Do the simulated images conform with the real im-
ages at TW10 (i.e., Time Window of 10-day using skin-
care)/TW20/TW30? (Choose one: Very Similar; Similar;
Different)

· Q2: Are you satisfied with the simulation of facial pore
changes over time? (Choose one: Very Satisfied; Satisfied;
Ambiguous; Unsatisfied; Very unsatisfied)

· Q3: Overall, how does the simulation perform? (Choose
one: Very Good; Good; Fair; Poor; Very Poor)

In Q1, respondents compared real and simulated images at
each time window and scored their similarity in terms of facial
pore condition only. And Q2 focused on whether the simulation
model captured the pattern of facial pore changes across time.
Respondents then graded the overall performance after viewing
20 sets of images in Q3. Figure 7 shows that more than 90% of
the responses vote that the simulated images are similar or very
similar to the real images at each time window. Over 80% of re-
spondents rate the simulated facial pore changes as satisfied or
very satisfied by looking at the 1-month duration. The bottom
plot from Figure 7 shows that 90% of the respondents (27 per-
sons) perceive that this simulation faithfully reflected the facial
pore changes over 4 weeks of skincare use.

Conclusion
In this paper, we present a realistic short-term facial pore

simulation model to evaluate the efficacy of skincare products.
We demonstrate that the sliding window mechanism is useful in
reducing data perturbations caused by daily fluctuations in skin.
The complex facial pore clinical data is then reorganized and pre-
pared for training. Moreover, to achieve a realistic simulation on
facial pores while maintaining image fidelity (i.e., the non-pore
facial areas remain unchanged), we propose a facial pore sim-
ulation that precisely localizes visible and enlarged facial pores
and further modify facial pores morphologically to reflect facial
pore changes after applying skincare product over a short-term.
Our method delivers promising results for facial pore segmenta-
tion and facial pore simulation.
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