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Abstract
Hand hygiene is essential for food safety and food handlers.

Maintaining proper hand hygiene can improve food safety and
promote public welfare. However, traditional methods of evalu-
ating hygiene during food handling process, such as visual au-
diting by human experts, can be costly and inefficient compared
to a computer vision system. Because of the varying conditions
and locations of real-world food processing sites, computer vi-
sion systems for recognizing handwashing actions can be suscep-
tible to changes in lighting and environments. Therefore, we de-
sign a robust and generalizable video system based on ResNet50
that includes a hand extraction method and a 2-stream network
for classifying handwashing actions. More specifically, our hand
extraction method eliminates the background and helps the clas-
sifier focus on hand regions under changing lighting conditions
and environments. The results show that our system is more ro-
bust and generalizable when evaluated on completely unseen data
by achieving over 17% improvement on the overall classification
accuracy.

Introduction
Food safety and the prevention of food-borne illnesses is crit-

ical to promote public welfare. To improve food safety, food han-
dlers should follow the handwashing steps from the WHO (World
Health Organization) [1] to ensure all surfaces of their hands are
properly rubbed and sanitized. More specifically, the WHO hand-
washing steps include the following 7 rubbing actions: rub hands
palm to palm, rub back of each hand, rub palm to palm with
fingers interlaced, rub with back of fingers to opposing palms,
rub each thumb, rub tips of fingers, and rub each wrist. Because
these actions are fine-grained with high inter-class similarity, tra-
ditional methods of hand hygiene monitoring require auditing by
human experts, which can be labor-intensive and inefficient. Fur-
thermore, food handlers that have different skin tones often wash
their hands at locations with various lighting conditions. There-
fore, having an efficient method that is robust to domain shifts is
essential for handwashing monitoring during food handling.

Compared to auditing by experts, more advanced methods
using wearable devices have been developed recently. Armbands
are used in [2] to classify and monitor handwashing activities.
Furthermore, a handwash monitor and feedback system using a
smartwatch was presented in [3]. Using wearable sensors can be
much more efficient than auditing by human experts. However,
wearable sensors can be intrusive and inconvenient for users, es-
pecially for food handlers who may work outdoors. Therefore, we
design a video analytics system using only a camera and a laptop

to assess handwashing. This is more efficient, more practical, and
less intrusive compared to traditional methods and wearable de-
vices.

Our goal is to design an accurate, robust, and generalizable
action recognition system for different steps of handwashing. To
build such a system, we recognize that rubbing actions are chal-
lenging to classify because of heavy occlusion and low inter-class
variance. In particular, heavy occlusion occurs when two palms
are overlapped or interlaced, causing hands to appear incomplete
in RGB images. Moreover, changes in lighting conditions, such
as indoor vs. outdoor lighting, and sunny vs. cloudy conditions
make classification challenging. It is important that a handwash-
ing monitoring system be robust and generalizable across differ-
ent environments. Therefore, in this paper, we design a robust
classifier for the WHO handwashing steps by incorporating both
a hand extraction method and a hand pose estimator. More specif-
ically, the hand extraction method enables us to remove the back-
ground from images and focus on the hand regions. In addition,
our goal for applying hand pose estimation is to eliminate the ef-
fects of lighting changes and variations in skin tones. We also
apply a 2-stream network with RGB and hand streams to further
improve performance. We show that our system is robust and gen-
eralizable by evaluating the classification accuracy using 3 differ-
ent datasets captured across varied environments.

The rest of this paper is structured as follows. We begin
by introducing existing works regarding handwashing monitoring
and recognition. Next, we discuss details about the dataset we
created and the public dataset we used for evaluation. Then, we
provide an overview of our system and a detailed description of
each component within our system. Finally, we demonstrate our
system’s recognition accuracy using different evaluation datasets.

Related Work
In this section, we review existing works and systems related

to handwashing recognition. In recent years, researchers have de-
signed camera-based video systems for monitoring handwashing
activities. For example, a handwashing station [4] was deployed
in a school during the COVID-19 pandemic, which consisted of
a camera, a UV light component, and a pressure mat. Addition-
ally, a UV fluorescent compound was applied on hands to monitor
which surfaces have been rubbed. They have shown that deploy-
ing a handwashing station is practical and useful for improving
handwashing quality among children. Moreover, object track-
ing and a Markov decision process were applied in a real-time
vision system for assisting people with dementia to wash their
hands [5]. Similarly, hand detection and motion trajectory analy-
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sis were used to monitor handwashing activities for older adults as
potential indicators of dementia [6]. Although these systems have
demonstrated the effectiveness of camera-based approaches, they
do not focus on classifying the challenging fine-grained actions
required in the WHO guideline.

Hand hygiene also plays an important role in health care. A
handwashing monitoring system was built by first tracking hands
using Particle and Kalman filters by Lacey et al. [7]. Later, a
handwashing pose classifier was introduced using a multi-class
SVM ensemble [8]. Next, a visioin-based system for assessing
handwashing quality was designed by combining object tracking
and multi-class SVM [9]. Then, RGB-D videos were utilized for
classifying different handwashing actions [10]. Finally, a hand-
washing tutorial system was developed for deployment in hospi-
tals [11][12][13]. Although this series of work focuses on clas-
sifying the WHO handwashing steps, they have only considered
indoor scenarios in hospitals, whereas we are interested in outdoor
settings for food handling. Also, the evaluation dataset used in [8]
and [9] only consisted of 6 short videos. Our goal is to evaluate
a system using videos captured with outdoor lighting conditions
and various participants with diverse characteristics.

Moreover, with recent advancement in neural networks and
computer vision, many deep-learning based handwashing systems
have been developed. A two-stream network using RGB and op-
tical flow for classifying egocentric handwashing activities was
introduced by [14]. They then extended this work by adding a
coarse-to-fine classification strategy and motion histogram im-
ages [15]. Additionally, a multi-view camera system for classi-
fying hand-to-object interactions was introduced in [16]. These
existing systems have focused more on hand-to-object actions and
coarse-grained rubbing actions instead of fine-grained actions.
Self-attention blocks were combined with a CNN feature extrac-
tor to classify challenging rubbing actions in [17]. The authors
have also created and published a dataset of different handwash-
ing actions. Another public dataset was created in a hospital set-
ting [18]. These datasets lack outdoor lighting changes and varia-
tions in skin tones, which are important for building a robust and
generalizable system.

Dataset
There are public datasets available for handwashing recogni-

tion [17][18]. However, as discussed in the related work section,
existing datasets lack the outdoor lighting changes and variation
in participants that we are interested in. Therefore, we recorded
videos of handwashing activities using a portable sink and col-
lected video data from a wide range of participants. All hand-
washing steps follow the WHO guideline as shown in Figure 1.
In the following subsections, we discuss details regarding our
Portable51 dataset, our Farm23 dataset, and a public Hand Wash
Dataset [19] that we use for evaluation.

Portable51 Dataset
We recorded people washing their hands on a portable sink

using an OAK-D camera in 1080P resolution at 30 frames per
second. We invited 51 participants from the general public to
wash their hands following the WHO steps. Brief instructions and
demonstration of the handwashing steps were given to the partic-
ipants prior to each recording. To best consider the real applica-
tion settings of such a recognition system and best evaluate our

system, we recorded videos under a wide range of lighting con-
ditions, including sunny outdoor, cloudy outdoor, rainy outdoor,
and indoor lighting. The participants also had different skin tones
and ages. Furthermore, data collection was done across multiple
days and at different locations. Figure 1 shows one sample frame
for each action. Lighting changes and skin-tone variation can be
seen from the sample frames.

(a) (b) (c)

(d) (e) (f) (g)
Figure 1: (a) rub palm (b) rub palm with fingers interlaced (c) rub
back of hands (d) rub back of fingers (e) rub thumb (f) rub finger
tips (g) rub wrist

Farm23 Dataset
We collected a second set of videos at the Purdue Stu-

dent Farm, following the same recording setup as the Portable51
dataset. 12 new participants, completely different from those in
Portable51, helped record videos. This dataset contains more
challenging videos because the light source (the sun) is behind
the participants during recording, which casts large shadows in-
side the field of view. 23 new handwashing videos were recorded
and used for evaluating the robustness of our system.

Hand Wash Dataset
The Hand Wash Dataset [19] contains video clips of 7 rub-

bing actions following the same WHO guideline. Videos were
recorded using different types of sinks as background. The dataset
contains 300 short video clips of handwashing actions. 25 videos
are available for each of these two actions: rubbing hands palm to
palm and rubbing palm to palm with fingers interlaced. 50 videos
are available for the other 5 actions. Figure 2 shows examples of
the same action being recorded using different sinks.

Figure 2: Hand Wash Dataset Examples

Method
Overview

To reduce the effect of lighting changes and make our sys-
tem more robust, we use a hand extraction method to remove
the background and focus only on the hand regions which con-
tain the fine-grained rubbing actions. Moreover, we apply a two
stream network with RGB and hand streams to further leverage
both high-level and detailed features. In addition, we explore ap-
plying a hand keypoint estimator and classifying hand skeletons
to reduce the impact of appearance changes and domain shifts.
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In this paper, we consider the handwashing-step recognition
problem as an image classification problem because of realistic
limits of computational resources in a real-time system. One of
the most popular methods to incorporate motion information is
to use optical flow. However, optical flow can increase compu-
tational cost significantly. To demonstrate this, we compare the
run-time of three optical flow methods, Farneback [20], TV-L1
[21], and RAFT [22], against color thresholding. Farneback, TV-
L1, and color thresholding are run using an Intel i7 CPU, while
RAFT is run on a GPU. For 1080p images, Farneback and TV-
L1 took 477ms and 6492ms, respectively. The GPU-based run-
time for RAFT is 550ms on 1080p images. However, applying
color thresholding on 1080p images only took 2.6ms. As can be
seen from the results, color thresholding is much faster to com-
pute compared to optical flow methods. Therefore, unlike in [14]
and [23], we choose to not use optical flow in our two stream
network.

Figures 3 and 5 show the block diagrams of our hand extrac-
tor and two stream network, respectively. The hand classifier is
built by finetuning a ResNet50 model with hand images. In addi-
tion, the two stream network combines RGB and hand streams.
Each stream is trained individually with the corresponding in-
put images, while both streams use ResNet50. The individually
trained models act as feature extractors in the two stream network.
Finally, features are averaged at the end and fed into two fully
connected layers for final classification.

Hand Extraction

Figure 3: Hand extraction block diagram
The hand extraction method transforms RGB images into

hand images by applying HSV color thresholding. For this pro-
cess, we manually select one frame at the beginning of each indi-
vidual long video because we need to make sure hands are present
in this frame for successful hand extraction. Then, we apply a pre-
trained DeepLabV3[24] image segmentation model on this frame
to find regions that belong to the class “human”. These segmented
regions contain skin areas for each individual. Next, we use these
skin regions to form a set of adaptive HSV thresholds. Each chan-
nel in the HSV color space has its own threshold. More specifi-
cally, we build color histograms for each channel and define the
upper bound of H channel to include 90% of the found skin re-
gions. Additionally, the lower bounds of S and V channels are set
to include 85% of skin regions. The lower bound of H channel is
set to 0 and the upper bounds of S and V channels are set to 255.
These percentiles are determined through empirical observation.
Next, we apply the found thresholds to extract hand regions for the
remaining frames of the long video. By applying this procedure
to each individual, we can adjust to different lighting conditions
and ensure the best quality for extracting hand images.

Figure 4 shows successful and failed examples of hand ex-
traction. Successful hand extraction can eliminate all background
including the portable sink and other irrelevant objects. On the

other hand, failed hand extraction usually contains portions of the
sink and background. Also, failed extraction can result in large
holes in hands because of thresholding.

Two Stream Network
As can be seen in Figure 5, the two stream network utilizes

the RGB stream and hand stream pretrained on our RGB images
and hand images, respectively. The RGB and hand models act
as feature extractors with their weights fixed and final layer re-
moved. 2048-dimensional features from each stream are averaged
and then passed through 2 fully connected layers. Our goal is to
combine both high-level information from the RGB stream, and
lower-level information from the hand stream to improve perfor-
mance.

Hand Pose Estimation
To address the problem of appearance changes and domain

shifts, we notice there are distinct hand shapes and positions dur-
ing each rubbing action. For example, rubbing the back of fingers
with palms interlaced requires fingers of two hands to be inter-
locked. Moreover, rubbing thumb requires one hand to grab the
thumb of the other hand. All 7 rubbing actions require different
hand positions and shapes. By considering hand poses, we believe
we could eliminate the effects of varying lighting conditions and
other appearance differences that impact model robustness. Thus,
we explore whether the addition of hand keypoint estimation is
helpful for recognizing different rubbing actions.

For hand keypoint estimation, we experiment with 3 differ-
ent models [25], [26], and [27]. Through empirical observation,
we choose to apply the MediaPipe Hands [25]. It estimates the
3D coordinates of 21 important hand keypoints: 4 joints for each
finger and 1 point for the palm location.

Also, we combine our hand extraction method with Medi-
aPipe. The hand keypoint estimator requires a bounding box for
each hand. Therefore, we generate a bounding box for each hand
from our hand images. To accomplish this, we find a large enclos-
ing bounding box for the overall hand region inside the hand im-
age and create two equal-sized bounding boxes for the two hands.
Here, we assume that both hands are always visible in our im-
ages because of the nature of handwashing and rubbing actions.
The bounding box for one hand is centered at x+ 3/8 ⇤w, with
x representing the starting x coordinate of the larger hand-region
bounding box and w representing the width of the hand-region
bounding box. In addition, the bounding box for the other hand
is centered at x+ 5/8 ⇤w. With these bounding boxes, we apply
the MediaPipe hand model to estimate the coordinates of 21 hand
joints. Figure 6 shows two successful examples and two failed
examples of hand keypoint estimation. As can be seen, the first
failed example is due to overlapping hands and heavy occlusion.
The second failed example is due to only one set of fingers being
visible, confusing the keypoint model to estimate fingers for both
hands at the same location.

Experiments and Results
Hand Extraction and Hand Classifier

We finetune a ResNet50 model pre-trained on ImageNet
[28] using our extracted hand images. Moreover, we finetune a
ResNet50 model with RGB images as our baseline method, and
this also serves as a feature extractor in the two stream network.
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Figure 4: Hand extraction examples: first two columns are successful examples, the last two columns are failed examples

Figure 5: Two stream network with RGB and hand streams

We split the Portable51 dataset into training and testing sets us-
ing a 7:3 ratio in terms of total number of videos, i.e. 36 train-
ing videos and 15 testing videos. We split data this way instead
of randomly splitting the entire collection of frames because we
want to ensure there is enough lighting and skin tone variation
in both training and testing. To evaluate our classifiers, we use
3 different datasets: 15 long videos of 15 different participants
from Portable51 dataset, Farm23 dataset with 23 long videos of
12 different individuals, and the Hand Wash Dataset with 300 to-
tal action clips.

All models are trained for 10 total epochs with a batch size
of 64. We use the SGD optimizer with a learning rate of 1e-3 and
momentum of 0.9 for all model training. Training and testing is
done using a single NVIDIA TITAN GPU. In the tables, the best
performance per row is highlighted in bold.

Hand Pose Estimation
With 21 hand joints estimated, we experiment with 4 differ-

ent feature representations. The first representation is the normal-
ized 3D XYZ coordinates of the 21 hand joints. The second repre-
sentation is a simple hand skeleton with 5 vectors, from the palm
point to each fingertip. The third representation is a pre-defined
full hand skeleton with 21 vectors, as shown in Figure 7. The last
representation is the combination of normalized 3D coordinates
and full 21-vector skeleton.

For classification, we choose to compare results using 3 dif-
ferent classifiers: a multi-class SVM, a Random Forest classifier,
and a 2-layer MLP. The training and testing data split is the same
as in the experiments for hand images. We evaluate by training
on Portable51 data and testing on both Portable51 and the Hand
Wash Dataset.

Hand Classifier Results
We evaluate our hand classifier and two stream network us-

ing top-1 classification accuracy. As can be seen from Table 1,
the two stream network achieves the highest overall classification
accuracy of 72.4%. The hand classifier outperforms the baseline
RGB model by 1.9% in terms of overall accuracy. Moreover, the

Action (# of images) RGB Hand Two
Stream

Rub back (2811) 83.6% 81.0% 83.0%
Rub back fingers
(2784)

53.7% 63.1% 60.5%

Rub palm (2502) 79.6% 77.0% 83.6%
Rub palm fingers in-
terlaced (1687)

47.4% 49.4% 52.0%

Rub thumb (2475) 78.1% 74.9% 79.6%
Rub tips (2481) 48.6% 52.3% 56.5%
Rub wrist (2905) 77.4% 83.0% 83.4%
Overall (17645) 68.1% 70.0% 72.4%

Table 1: Results on Portable51

hand classifier outperforms the RGB model for 5 out of 7 rubbing
actions. The two stream network outperforms the hand classifier
by another 2.4% and the RGB classifier by 4.3% in overall accu-
racy. In addition, it obtains higher individual-action accuracy for
5 out of 7 actions compared to the hand classifier. When com-
pared to the RGB model, the two stream network is better for 6
out of 7 rubbing actions, except for rubbing back of fingers.

Action (# of images) RGB Hand Two
Stream

Rub back (19490) 17.3% 64.7% 49.2%
Rub back fingers
(20743)

52.5% 50.3% 69.3%

Rub palm (11735) 9.5% 58.1% 64.8%
Rub palm fingers in-
terlaced (9755)

7.1% 31.0% 33.8%

Rub thumb (19946) 2.3% 51.8% 16.5%
Rub tips (17626) 34.6% 12.7% 24.2%
Rub wrist (16608) 97.0% 81.5% 96.4%
Overall (115903) 33.4% 50.9% 50.4%

Table 2: Results on Hand Wash Dataset

Table 2 shows the evaluation results using the Hand Wash
Dataset [19]. Because this dataset contains different types of sinks
that are significantly different from our portable sink, the RGB
classifier suffers from domain shifts in the background region.
The hand classifier achieves the highest overall classification ac-
curacy, slightly outperforming the two stream network by 0.5%.
However, both the hand classifier and two stream network outper-
form the RGB model by over 17% overall. The addition of hand
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Figure 6: Hand keypoint estimation examples: first two are successful examples, the last two are failed examples

Figure 7: Hand Skeleton

images makes the combination of hand classifier and two stream
network outperform the RGB model in 5 out of 7 actions. The
most significant changes occur for the actions of rubbing palm and
rubbing palm with fingers interlaced. For rubbing palm, the clas-
sification accuracy increased from 9.5% to over 58.1% for hand
classifier and two stream network. For rubbing palm with fin-
gers interlaced, the accuracy increased from 7.1% to over 31.0%
when using hand images. These results show that when evaluated
on completely unseen data with significant domain changes, our
hand extraction method is able to improve model’s robustness and
the ability to generalize.

Action (# of images) RGB Hand Two
Stream

Rub back (1334) 43.9% 54.7% 53.1%
Rub back fingers
(1545)

38.8% 39.8% 45.4%

Rub palm (1221) 19.2% 39.3% 36.4%
Rub palm fingers in-
terlaced (1109)

30.4% 27.2% 33.1%

Rub thumb (1487) 43.4% 69.4% 65.3%
Rub tips (1830) 58.5% 41.5% 53.9%
Rub wrist (1482) 80.2% 75.2% 83.9%
Overall (10008) 46.6% 50.3% 54.2%

Table 3: Results on Farm23

Table 3 shows the results when evaluating on the Farm23
dataset. In this case, the two stream network performs the best
with an overall accuracy of 54.2%, outperforming the hand clas-
sifier by 3.9% and the RGB classifier by 7.6%. The two classifiers
with the hand extraction method outperform the baseline classifier
in 6 out of 7 actions. The most significant increase in performance
occurs for the rubbing thumb action. Classification accuracy in-
creased from 43.4% to over 65.3% for both hand and two stream
classifiers, which is an increase of over 21%. These results further
demonstrate the added robustness and generalizability of using
hand images.

Hand Pose Estimation Results
We report the overall classification accuracy for Portable51

in Table 4 and Hand Wash Dataset in Table 5 when we incorpo-
rate the hand pose. As can be seen, hand pose estimation failed to
achieve satisfactory results even on the Portable51 data. One of
the main reasons this method failed is the inconsistency in hand

skeleton quality. Under heavy occlusion, the estimated hand key-
points are usually inaccurate, which lead to an inaccurate hand
skeleton and hand pose. Another cause of unsatisfactory perfor-
mance is high intra-class variance, which means different individ-
uals perform the same rubbing action in different poses and hand
orientations. Although this method attenuates the environmental
and appearance effects, its performance is limited for our applica-
tion currently.

Classifier XYZ
only

Skeleton5 Skeleton21 XYZ +
Skele-
ton21

SVM 50.5% 42.3% 51.2% 51.5%
Random
Forest

47.7% 47.1% 50.4% 53.7%

MLP 47.3% 45.0% 50.2% 50.1%
Table 4: Results on Portable51 using Hand Keypoints

Classifier XYZ
only

Skeleton5 Skeleton21 XYZ +
Skele-
ton21

SVM 41.5% 38.7% 40.4% 41.8%
Random
Forest

31.4% 38.6% 43.5% 42.0%

MLP 36.8% 42.2% 43.0% 40.7%
Table 5: Results on Hand Wash Dataset using Hand Keypoints

Conclusion
In this paper, we describe the design and implementation

of a classifier for monitoring handwashing actions following the
WHO steps. We applied a hand extraction method, a two stream
network, and a hand pose estimator to build robust and gener-
alizable classifiers for challenging fine-grained rubbing actions.
More specifically, the hand extraction method combines image
segmentation and HSV color thresholding to generate hand im-
ages. By removing the background and focusing on the hand
regions, the hand classifier improves significantly on data from
different domains. By using a two-stream network with RGB and
hand streams, we are able to further improve the model’s per-
formance in 2 of 3 evaluation datasets we have used. The base-
line RGB classifier, however, is less robust and more vulnerable
to environmental changes. Finally, we studied the application of
hand pose estimation to reduce the impact of appearance changes
and domain shifts. However, our experiments and results do not
show improved robustness and generalizability when applying
hand pose estimation. For future research, we will study how mo-
tion information can be efficiently incorporated into a handwash-
ing system to further improve its performance without increasing
computational cost significantly.
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