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Abstract

Video conferencing usage dramatically increased during the
pandemic period and is expected to remain high in hybrid work.
One of the key aspects of video conferencing experience is back-
ground blur and background replacement. In order to achieve a
high-quality background blurring effect, an accurate portrait seg-
mentation and high-quality blurring effect are necessary. Since
depth sensors are becoming ubiquitous on mobile devices, soft-
ware and hardware manufacturers are working together to utilize
depth maps to improve the background blurring quality. Depth
map has been used as an auxiliary input to categorize foreground
and background human during post-processing in existing works.
We further exploit the information in depth map by using depth
map during inference and post-processing. In this paper, we pro-
pose an improved CNN model based on the well-known Portrait-
Net method, a depth-assisted mask refinement that can correct
error predictions using depth information, and a bokeh effect ren-
dering module that can produce a photo-realistic bokeh effect for
the background.

Introduction

Online video conferencing has been playing an increasingly
important role since the pandemic, which is widely used in teach-
ing, working, and entertainment. Users share their portrait videos,
which contain the upper body parts and backgrounds of their
rooms across the meeting software. An important feature of on-
line conferencing software is background blurring, which is used
to protect users’ privacy by blurring the contents in the users’ por-
trait video background.

Background blurring involves portrait segmentation, which
masks the human part in the portrait video and separates the hu-
man from the background. Most current methods for video por-
trait segmentation utilize Convolutional Neural Networks (CNN)
to generate the portrait segmentation masks. The blur effect is ap-
plied to the extracted background and the blurred background is
combined with the human foreground to produce the new video
with the background blurring effect.

However, several problems exist in the current methods of
background blurring. Inaccurate portrait segmentation can lead to
a rough visual effect on the boundary after background blurring.
Models that utilize temporal information to reduce flickering and
variation suffer from error propagation and reveal objects in the
background that should have been blurred. The current practice
of using a unified kernel on the entire background does not fit the
human perception with a depth of field, thus looking wired when
objects of different distances get equally blurred.

To address these challenges, we propose a new method that
leverages depth maps to generate a bokeh effect, which simu-

IS&T Infernational Symposium on Electronic Imaging 2023
Imaging and Multimedia Analytics af the Edge %O 3

lates the depth of field in photography. Our method consists of
a lightweight and accurate portrait segmentation model, a depth-
assisted mask refinement module, and a bokeh effect render mod-
ule. By using depth maps, our approach achieves highly accurate
portrait segmentation and produces visually pleasing background
bokeh effects. With the increasing availability of depth sensors on
mobile devices, our proposed method can significantly enhance
the visual quality of online video conferencing.

Related Work

Portrait Segmentation. Portrait segmentation has attracted
great interest in recent years, which crops out a person from an
image where a person’s upper body is shown. Researchers have
been developing methods to generate more accurate pixel-wise
masks. With the development of Convolutional Neural Networks
(CNN) over the years, lightweight but accurate models, such as
the PortraitNet [1] and SINet [2], have been proposed. Portrait-
Net [1] presents a UNet [3] like encoder-decoder network that
adopts MobileNetV?2 [4] as its feature extractor. The encoder and
decoder have 5 layers and each layer downsamples the feature
map by 2x to learn the spatial relationship. SINet [2] presents an
extremely lightweight model with 0.087 million parameters, yet
achieves the third-best segmentation accuracy on portrait image
dataset EG1800 [5] as reported in their paper. The design of SINet
[2] contains a sequential encoder-decoder, which significantly re-
duces the CNN channel numbers used in the decoder. The accu-
racy of SINet is guaranteed with the spatial squeeze modules and
information blocking decoder, which together separate the high-
resolution feature and merge the necessary ones with the lower-
resolution feature maps during decoding.

RGB-D Segmentation. RGB-D segmentation methods per-
form portrait segmentation with both the RGB image and depth
map as their inputs. Taking depth map into account has the benefit
of being able to identify the boundary of the segmentation object
easier and providing additional 3D spatial information to the CNN
models. Kumar et al. [6] proposed a method that first performs
foreground extraction on RGB frame and depth map separately.
Both results are sent into a voting engine to generate the segmen-
tation mask. Recently, Singh et al. [7] proposed a method that
performs portrait segmentation using dual-focus images as input.
Their method first generates a trimap by calculating the error be-
tween the dual-focus images. The tri-map is used as guidance to
perform portrait segmentation on the near-focus RGB image us-
ing a CNN model. The mask is finally refined using Graph Cut
before being used for further post-processing.

Bokeh Effect Rendering. Bokeh is a photography term that
describes out-of-focus objects getting blurred according to their
distance to the focus point. Bokeh effect rendering refers to blur-
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ring the out-of-focus regions of an image in a natural way during
post-processing, where objects closer to the focal plane get less
blurred and further away objects are more blurred. Wang et al.
[8] purposed a UNet-like encoder-decoder network with a Swin-
Transformer encoder to perform depth estimation from a monocu-
lar image. To create a photo-realistic bokeh effect, the depth map
is divided into several different clusters based on the depth value.
Layer masks are generated from the separated clusters and used
to divide the RGB image into different sections according to their
depth. The blurring kernel size for each section is calculated using
the difference average distance of that section to the focus point.
A smaller depth difference results in a smaller blur kernel, and a
greater difference results in a larger blur kernel. Ignatov et al. [9]
proposed a CNN model which is trained layer by layer to perform
bokeh rendering directly. The model renders images with bokeh
effect recursively from lower resolutions to higher resolutions.
Mask Refinement. Since portrait video segmentation is typ-
ically performed on mobile devices and require real-time process-
ing, it is a common practice to perform inference at a lower res-
olution (e.g., 224 x 224 or 384 x 192) to trade-off speed. The
lower-resolution predicted masks need to be up-sampled to the
original resolution and filtered before they can be used for back-
ground editing. Wilms et al. [10] purposed to use superpixel and
attention mask produced by a CNN model to perform mask re-
finement. The superpixel algorithm divides the image into several
segments and the attention mask is responsible for guiding which
superpixel to keep. The output foreground is a combination of all
kept superpixels. GrabCut [11] is a probabilistic model that uses
Gaussian Mixture Models to identify foreground and background.
When used as a refinement for segmentation, the RGB image un-
der the coarse segmentation mask area is set as the possible fore-
ground. GrabCut algorithm models the masked foreground and
inversely masked background area each with 2-D Gaussian Dis-
tributions and iteratively updates the refined segmentation result.

Methods

Our proposed depth-assisted portrait video background blur-
ring method consists of three parts: a lightweight CNN-based por-
trait segmentation model, a depth-assisted mask refinement mod-
ule, and a bokeh effect rendering module as shown in Figure. 1(a).

RGB-D Portrait Net with MV3 Encoder

In portrait segmentation, the foreground object typically oc-
cupies a majority of the image, thus it is important for the model
to understand both global and spatial information. Our proposed
model is designed based on PortraitNet [1], which shows the best
performance on the portrait image dataset EG1800 [5]. Portrait-
Net [1] consists of a MobileNetV2 (MV2) [4] encoder and UNet-
like decoder. The encoder module is used to extract features from
raw RGB images. The MV2 [4] encoder has five layers, each of
which has a down-sampling rate of 2x,4x,8x,16x,32x. With
such a pyramid design, the MV2 [4] encoder is capable of under-
standing rich global and spatial information. The decoder block
in PortraitNet is a modification of a residual block, where a 1 x 1
point-wise convolution is used to adjust channel size instead of
concatenating the input directly with the output. All convolution
layers in the decoder blocks are replaced with depth-wise sepa-
rable convolution layers to improve inference speed. To better
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Figure 1: (a) The overall diagram of depth-assisted portrait video back-
ground blurring. (b) The RGB-D PortraitNet with MV3 Encoder. The
D-block in the decoder is the same as in PortraitNet[1].

utilize the features extracted by the MV2 [4] encoder, PortraitNet
[1] combines the feature maps during the decoding process with
the according fusion maps. Each fusion map is concatenated with
the feature map from the same encoder layer before being further
upsampled and fed into the next decoder layer.

We replace the MV2 [4] encoder with MobileNetV3 (MV3)
[12] encoder to further speed up inference and improve the seg-
mentation accuracy as shown in Figure 1(b). MV2 [4] layers are
made up of inverted residual and linear bottleneck, where the in-
put and output channels are both very narrow and do not contain
non-linearity inside the layers. MV3 [12] encoder, however, re-
places the linear design with the squeeze and excite block. To
further speed up the inference, the 3 x 3 convolution layers in-
side each MV2 [4] blocks are replaced with depth-wise separa-
ble convolution, which helps to reduce parameters and multipli-
cations. In our work, we adopt the MV3-Large encoder, which is
the largest variation of MV3 [12], as our encoder.

As discussed in PortraitNet and SINet, it is essential for por-
trait segmentation models to understand as much global informa-
tion across the entire image as possible. To strengthen such abil-
ity, we choose the Lite Reduced Atrous Spatial Pyramid Pool-
ing (LR-ASPP) [12] as our network’s bottleneck. Atrous Spa-
tial Pyramid Pooling (ASPP) proposed in DeepLabV3 [13] has
the ability to mix spatial information at different scales, yet still
maintain a small convolution kernel size. The design of LR-ASPP

IS&T Infernational Symposium on Electronic Imaging 2023
Imaging and Multimedia Analytics af the Edge 2023



carefully chose to combine the feature maps from the last layer
(3—12 layer) and the é layer to produce the coarse segmentation
mask. A large pooling layer with a large stride is applied on the
% feature map to reduce parameter size. ASPP is only applied on
the last layer to extract dense spatial features while maintaining
low computation costs.

There are several benefits of considering a depth map as an
additional input to the RGB image. For example, when the fore-
ground and background of a frame has similar color, it could be
difficult to distinguish their boundaries. However, they would
have much clear boundaries in the depth map. A clear bound-
ary can help the CNN model to achieve a high segmentation ac-
curacy. We modify the first layer of the MV3 encoder so that it
accepts a 4-channel RGB-D image as input. We sample the av-
erage depth of the masked area on the previous frame and apply
the depth cutoff to only keep pixels within a threshold, illustrated
by Equation (1), where D;_; and M,_; denotes the depth map
and the predicted mask from time 7 — 1, respectively. In Equation
(2), the number 700 is used to accommodate typical human body
thickness ( 300 mm) with additional tolerance (400 mm) for body
movement between frames.

d =mean(D;_1 X M;_) €))
threshold = d +700 2)

Depth assisted mask refinement

Since the segmentation mask is predicted at low resolution
for real-time inferencing, it is crucial to refine the mask before
applying it to image editing. Otherwise, we see a loss of accuracy
on the mask boundary due to up-sampling. Instead of applying a
Gaussian filter directly to the up-sampled mask, we choose Grab-
Cut [11] to refine the segmentation mask, so that error predic-
tions on the mask boundary can be minimized during this process.
GrabCut divides the input image into four categories: foreground,
possible foreground, background, and possible background. As
the common practice, methods [14], [15] either input the entire
CNN predicted mask as the possible foreground, or assume the
boundary of CNN predicted mask as the possible foreground and
set the center of the mask to be the foreground. Since GrabCut
tends to find the minimum cut for the foreground, existing meth-
ods using GrabCut cannot fix the error of missing in-hand objects.
We propose a new method to determine the area to set as fore-
ground with the help of the depth map. First, we apply the depth
cutoff calculated from Equation (2) to the current frame depth
map to extract the human shape and binarize it to form a mask.
Then, we find the intersection between the predicted mask and
the binarized depth mask and set it as the foreground for Grab-
Cut. The remained non-overlapping pixels of the predicted mask
and binarized depth mask are set as the possible foreground. The
rest of the image is set as the background.

Bokeh effect rendering

Different from background blurring, where a uniform blur-
ring effect is applied to the entire background, bokeh effect ren-
dering attempts to create a natural blurring effect where out-of-
focus objects are blurred at a different rate determined by their
distance to the focus plane. For each pixel in the RGB frame,
the distance between it and the focus plane is determined and the
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radius of the blurring kernel is calculated proportionally to the
calculated distance. The rendering process combines the blurred
pixels together to generate the final output.

To speed up the calculation, we split the image into differ-
ent focal planes instead of blurring the background pixel by pixel.
To extract the different focal planes in an image, we first apply
the depth cutoff at a threshold equal to 4 the average depth of
the foreground. Any depth value greater than the threshold is re-
placed with the threshold. The depth map is then normalized to
0-1 to ensure the max extent of blur looks uniform for all back-
grounds with different depths. We separate the background of the
depth map into N segments evenly according to the depth value,
where N is chosen to be 4 in our implementation for efficient com-
putation.

As proposed by Wang et al., the blur radius scale is directly
proportional to the distance between the focal plane and the object
plane, which is calculated using Equation (3). The absolute depth
value difference between the focus frame Dy and the target plane
Dyarger is used to determine the relative degree of blur for different
target planes. The blur coefficient p in this equation decides the
final value of the blur kernel size. The RGB frame of the original
resolution is blurred N times using the N different blur kernels
calculated.

With the extracted N focal planes from the depth map, we
binarize them to keep any values greater than zero to form layer
masks. The layer masks are used to decide which part of the
blurred images are used for the bokeh output. The final rendering
combines the N blurred RGB images into one frame by keeping
only the selected parts of each blurred layer.

k= |Df - Dtarget| Xp 3)

By applying the bokeh effect rendering, we are able to achieve a
similar visual result of the background bokeh, which has a more
natural look than background blurring using a unified kernel.

Experiments
Datasets

We train and evaluate our proposed method and base-
line methods on portrait segmentation datasets. Our selection
of datasets includes four public segmentation portrait image
datasets, two private segmentation portrait image datasets with
more complex backgrounds, and a portrait video dataset. The
four public datasets are baidu-V1 [16], baidu-V2 [16], EG1800
[5], and SuperviselyPortrait [17]. We removed the wrongly anno-
tated images and relabelled some of the images to include in-hand
objects as part of the foreground. The datasets are then divided
into training, validation, and testing in an 8:1:1 ratio as shown in
Table 1.

VideoMatte240k [18] is a portrait video matting dataset con-
taining foreground only. We manually added backgrounds consist
of indoor images collected from the internet. Since there were few
existing portrait segmentation video datasets available, we applied
a threshold to the alpha mattes provided in VideoMatte240k to
generate the segmentation masks for the foreground. As a result,
all values greater than 0.5 are kept as the foreground, and the rest
of the pixels are set to 0 as the background. A total of 484 video
clips are divided into 474:5:5 for training, validation, and testing.
We randomly select 30 frames from each clip.
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Figure 2: The overview of the bokeh effect rendering process. The blur radius K, are calculated using Equation.3.

Table 1: Semantic Portrait Segmentation Datasets

Train / Validation / Test
4,301 /538/538
4,148 /519 /519
1,360/170/170

Datasets
baidu-V1 [16]
baidu-V2 [16]

EG1800 [5]

SuperviselyPortrait [17] 2,269 /284 /284
HP-multi-person 1,544 /193 /193
HP-portrait 4,300/539/538
VideoMatte240K [18] 14,200/ 150/ 150

Because the datasets used for training do not contain depth
map, we manually generate them using Dense Prediction Trans-
former [19], which is a depth estimation function.

Training

Since depth-wise separable convolution have fewer parame-
ters compared to normal convolution layers, it is more vulnerable
to gradient vanishing during training [20]. To make the training
process more robust and converge faster, we use the MV3-Large
encoder weights pre-trained on ImageNet [21] and the decoder
weights from an unmodified PortraitNet. Our model is trained on
two Nvidia RTX 3090 GPU at a resolution of 224 x 224. First,
we train the model on the segmentation portrait image datasets
for 100 epochs with the initial learning rate set to le~*, and the
learning rate is reduced to le~> after 50 epochs. Then we fine
tune the model on the segmentation portrait video dataset for 50
epochs with the learning rate set to le ™.

Since portrait segmentation is a two-class segmentation
problem, we use the binary cross entropy (BCE) loss during the
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training of the model:

1 N
Loss == Y vixiog(pi)+(1—y;) xlog(1—p;) (4
i=1

where p; and y; denote the predicted probability and the ground
truth label for the ith pixel, respectively.

CNN model accuracy

Our trained model is compared to other PortraitNet modifica-
tions including MaskPortraitNet [22], GRUPortraitNet [22], and
FlowPortraitNet [22] as described in Table 2. The reported test-
ing accuracy is resulted from four public portrait segmentation
datasets and evaluated by mean intersection over union (mloU).
mloU is calculated based on Equation (3).

1 X Pred;NGT;

loU =~y Tl Z0 5
MOUEN l;PrediUGTi ©)

where Pred; and G7T; are the predicted and the ground truth masks
for the ith frames. The accuracy of MaskPortraitNet, GRUPor-
traitNet, and FlowPortraitNet are reported by Xu et al. [22]. Re-
sults show that our method achieves the best performance among
all the modifications to PortraitNet.

Depth assisted refinement accuracy

We compare the refined segmentation mask accuracy of our
method to traditional refinement methods including Slic [10] and
GrabCut [11] as shown in Table (3). We evaluate the accuracy on
all the portrait image segmentation datasets at the original resolu-
tion. Results show that our proposed depth assisted mask refine-
ment achieves the best result among the refinement methods.

IS&T Infernational Symposium on Electronic Imaging 2023
Imaging and Multimedia Analytics af the Edge 2023



Py

1?\

@ o (c

Method Dataset | Guidance mloU
PortraitNet [1] Image None 90.5%
PortraitNet [22] Image Prior Mask | 92.6%
PortraitNet [22] Video Prior Mask | 96.7%
GRUPortraitNet [22] | Video Memory 95.4%
FlowPortraitNet [22] | Video | Optical Flow | 94.3%
Ours Video Depth Map | 97.0%

Table 3: Semantic Portrait Segmentation Accuracy Comparison

CNN Refinement mloU

Ours None 92.3%

Ours Slic [10] 92.1%

Ours Grabcut [11] 92.6%

Ours | Depth assisted | 93.4%
Conclusion

In this paper, we propose a depth-assisted portrait video
background blurring method, which consists of a modified RGB-
D PortraitNet CNN model, a depth-assisted refinement module,
and a bokeh rendering module. Our proposed method is capa-
ble of producing fast and accurate segmentation of human and
in-hand objects compared to existing methods by taking into con-
sideration the depth information. Our bokeh effect rendering is
able to render high-quality bokeh effects that look more natural
and aesthetic. Our method is evaluated on both image and video
portrait segmentation datasets, which outperforms existing meth-
ods in terms of accuracy and speed.
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