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Abstract
Real-time video super-resolution (VSR) has been considered

a promising solution to improving video quality for video con-
ferencing and media video playing, which requires low latency
and short inference time. Although state-of-the-art VSR meth-
ods have been proposed with well-designed architectures, many
of them are not feasible to be transformed into a real-time VSR
model because of vast computation complexity and memory occu-
pation. In this work, we propose a light-weight recurrent network
for this task, where motion compensation offset is estimated by an
optical flow estimation network, features extracted from the previ-
ous high-resolution output are aligned to the current target frame,
and a hidden space is utilized to propagate long-term informa-
tion. We show that the proposed method is efficient in real-time
video super-resolution. We also carefully study the effectiveness
of the existence of an optical flow estimation module in a light-
weight recurrent VSR model and compare two ways of training
the models. We further compare four different motion estimation
networks that have been used in light-weight VSR approaches and
demonstrate the importance of reducing information loss in mo-
tion estimation.

Introduction
Video super-resolution (VSR) is the process of reconstruct-

ing high-resolution frames from a sequence of low-resolution
frames. There has been a trend of increasing usage of video con-
ferencing and video telephony for remote communication in both
professional and private life. In these scenarios, as well as media
video playing, low-resolution videos exist, which hinder effec-
tive communication and degrade the video watching experience
because of small and blurry target regions. Real-time VSR is a
promising solution to this problem. However, this task is chal-
lenging due to the trade-off between model capacity and network
latency.

In recent years, state-of-the-art VSR approaches are adopting
CNN [1, 2, 3] and Transformer [4, 5, 6] architectures. Although
having different backbone structures, CNN-based models and
Transformer-based models are both exploiting correspondence
between video frames. Because CNN-based models have inher-
ently inductive biases of locality and each convolution step can
only focus on the area near the central position [4, 6], the align-
ment module is essential for performance improvement [3, 1].
While in a Transformer attention window, there is no locality
inductive bias, and therefore Transformer can handle misalign-
ment within the attention window [6]. When the pixel movement
is large, Transformer-based models also need alignment modules
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[4, 6].
Many state-of-the-art models, both CNN-based and

Transformer-based, are highly computationally expensive and are
thus not feasible for real-time VSR applications. Another branch
of VSR explores efficient VSR modules, including recurrent
latent space [7, 8], light-weight alignment network [9], and
deformable attention [10]. These works achieve real-time video
reconstruction on a high-end GPU. In order to achieve real-time
VSR on lower-end and mobile devices, experiments have been
conducted on network pruning and neural architecture search
[11, 12, 13, 14].

In this work, we propose a light-weight recurrent model for
real-time video super-resolution, investigate the effectiveness of
the existence of the motion estimation module in a lightweight
VSR network, and compare different motion estimation networks
and two strategies to train a network with an alignment module.
Specifically, the proposed VSR model has two main networks, the
flow estimation network, Fnet, and the super-resolution network,
SRnet. The model warps features extracted from the previous
high-resolution output by a motion compensation offset estimated
by Fnet. The transformed high-resolution features, extracted low-
resolution features from the current target frame, and the hidden
state are then concatenated and fed to the SRnet to reconstruct the
current target frame.

We make the following contributions: 1) We propose an effi-
cient recurrent video super-resolution network. It aligns features
for better temporal correspondence and is trained by a two-term
loss function; 2) We demonstrate that the SpyNet flow estimation
network in a VSR task performs better if guided by a loss term
measuring the difference between the warped neighbor frame and
the target frame; 3) Different flow estimation networks have been
used in VSR methods, of which each has its advantages. We com-
pare SpyNet [15], U-net, modified U-net, and CNN, and show that
a skip concatenation improves the performance and can deal with
the information loss caused by the max-pooling layer in a U-net
flow estimation network.

Related Works
VSR deep learning approaches have been adopting sliding-

window and recurrent frameworks to input neighboring frames
into the models for temporal redundancy exploitation. The sliding
window methods [3, 16] employ the LR images within a window
for the restoration of the target frame. Sajjadi et al. [17] pro-
posed a recurrent framework, FRVSR, using the previous high-
resolution output to ease the burden of frame reconstruction. Be-
sides the previous output, RLSP [8] and RRN [7] also take a latent
space as one of the inputs to propagate temporal information in
an implicit manner. We choose a recurrent structure to design our
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model because of its potential for long-term information propaga-
tion and the feasibility of utilizing previous reconstruction results.

To acquire information from frames at a longer temporal dis-
tance, some VSR approaches [1, 2, 4] take all frames as input and
allow information propagation in both forward and backward di-
rections. Different from the methods that output one frame at a
time, these approaches usually output all reconstructed frames to-
gether. In this work, we take the current and the past information
as input and only allow forward propagation, as low latency is
needed in real-time VSR applications.

Finding correspondence and exploiting temporal informa-
tion has been shown to be essentially important in achieving
performance gain for video super-resolution. Several methods
[18, 17, 9] use optical flow to estimate motions and perform ex-
plicit motion compensation by warping the images using the op-
tical flow. TDAN [19] and EDVR [3] utilize deformable convo-
lution [20] to align images without warping. BasicVSR++ [2]
employs optical flow to guide deformable alignment to overcome
the problem of training instability introduced by the deformable
alignment module. Transformer-based models [4, 5, 6] can im-
plicitly explore spatial and temporal correspondence within an at-
tention window. DAP [10] replaces the attention window with
sampled locations to reduce computation complexity and utilize
the Transformer attention mechanism to directly retrieve infor-
mation from neighboring frames without explicit alignment. We
adopt motion estimation and explicit alignment in our model.

Proposed Methods
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Figure 1. Architecture of our proposed model. The flow estimation network,

Fnet, is a light-weight version of SpyNet [15]. The super-resolution network,

SRnet, consists of residual blocks.

Aiming at discovering frameworks for generic real-time
VSR, we confine our architecture design to commonly-adopted
light-weight elements. An overview of the proposed network is
depicted in Figure 1.

Propagation Propagation specifies what temporal informa-
tion is accessible for the current reconstruction. The sliding-
window methods allow local information propagation within a
window. Recurrent frameworks either take local information
when the previous outputs are used as input or employ unidi-
rectional propagation implicitly from the past to the current time
when the hidden space is also used as input. VSR approaches
that take all frames as input can employ bidirectional propagation.
The implementation of the bidirectional propagation methods oc-
cupies a lot of memory and causes time delays. These methods
are more suitable for offline video restoration rather than real-time
VSR applications. We take the recurrent structure as our super-
resolution network and input the current frame, previous output,
and hidden space into the model to exploit current and past infor-
mation.

Alignment To aggregate information from corresponding lo-

cations, recent CNN-based networks usually perform an implicit
or explicit alignment. However, many proposed alignment meth-
ods are computationally expensive. We experimented with flow-
guided deformable alignment [2] and pyramid, cascading, and de-
formable (PCD) alignment [3] in a light-weight recurrent model.
Because inference time is sensitive for real-time VSR, we add the
alignment modules and keep the inference time unchanged (37
ms per frame on an Nvidia GeForce RTX 2080) by reducing the
number of channels. We observed a 0.48 dB drop for flow-guided
deformable alignment and a 0.34 dB drop for PCD alignment.
We concluded that when the number of channels is small, com-
putationally expensive alignment cannot offset the negative influ-
ence of fewer channels, especially when the number of channels
is close to or less than that needed for reconstruction, e.g. 48
for RGB videos when pixel shuffling is used for 4× upsampling
VSR.

We perform explicit alignment and use a flow estimation net-
work, Fnet, to compute the optical flow from the previous low-
resolution frame to the current low-resolution frame. We choose
SpyNet [15] as Fnet and modify it to a light-weight version. We
then upsample the optical flow and use it to warp features ex-
tracted from previous output Ot−1. Note that we estimate the opti-
cal flow from the images but use them to warp features. In Chan’s
experiments [1], image alignment results in a 0.17 dB drop com-
pared to feature alignment. The potential reason is the inaccuracy
of optical flow estimation and error propagation. The process to
obtain warped high-resolution features from t − 1 can be formu-
lated as:

f eahr
t−1 =Conv(Ot−1) (1)

f lowlr = Fnet(It−1, It) (2)

f eahr,wp
t−1 =W p(U p( f lowlr), f eahr

t−1) (3)

We experiment with three other flow estimation network
structures and compare two methods of training a super-resolution
network with flow estimation. Details are in the next section.

Reconstruction Residual mapping between layers with
identity skip connections preserves the texture information and
keeps fluent information flows over long periods. The structure
is used in many VSR approaches that output one frame at a time,
regardless of variant propagation and alignment methods [7, 9, 3].
We adopt residual blocks in our network as the reconstruction
module.

Experiments
Training Datasets and Details

Datasets and Settings We use Vimeo-90K [21] for training,
which has a training set of 64,612 7-frame sequences, with fixed
resolution 448×256. To produce LR images, we blur the HR im-
ages with a Gaussian kernel and then downscale the images 4×
with nearest-neighbor interpolation. Furthermore, we apply ver-
tical and horizontal flipping as augmentation. We test our model
on Vid4 [22], UDM10 [23], and SPMCS [24] datasets.

Training Details The modified SpyNet has 4 resolution
scales, {H ×W,H/2 ×W/2,H/4 ×W/4,H/8 ×W/8}, where
we assume that the pixel movement is relatively small for real-
time VSR applications and the receptive fields are not necessarily
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large. There are 3 convolutional layers for each resolution scale.
We use 5 residual blocks for the reconstruction module to extract
high-frequency features. The channel size in each residual block
is set to 64. The mini-batch size is set to 16. We use two loss
terms to train our model. The first term is the Charbonnier loss
[25] between the ground truth, GT, and the output, Ot , defined by

Lsr =
√

||GT −Ot ||22 + ε2 (4)

ε is set to 1× 10−3. The second term guides the Fnet to
estimate optical flow. We calculate the Charbonnier penalty of
the difference between the warped previous input, It−1, and the
current input, It :

L f low =
√
||W p(It−1)− It ||22 + ε2 (5)

The total training loss is L = Lsr + L f low. The reasons for
using the flow loss term are twofold. One is that the ground truth
optical flow is unavailable for this dataset. The other is that the
optical flow should be task-specific [21]. Even though an optical
flow can be computed by a pre-trained network like the original
SpyNet, the optical flow obtained this way is not optimal for the
SR task and tends to generate blurry scenes [26]. The optical flow
estimation network introduced in an SR task should be re-trained
or fine-tuned implicitly or guided by a loss term.

We train our model with the Adam optimizer and set the ex-
ponential decay rate for the first and second moment estimates to
be β1 = 0.9 and β2 = 0.999, respectively. The learning rate is ini-
tialized as 1×10−4 and later down-scaled by a factor of 0.1 after
60 epochs.

Results
We compare our 10-layer model (10 residual blocks in SR-

net) with three state-of-the-art VSR approaches: TOFlow [21],
FRVSR [17], and RRN [7]. TOFlow adopts SypNet [15] for mo-
tion estimation, but it upsamples frames before model inference
which is highly inefficient. FRVSR warps images rather than fea-
tures with motion offsets estimated by a U-net flow estimation
network. RRN [7], which does not explicitly align images or fea-
tures, propagates historical information by leveraging the hidden
state. As shown in Table 1, our method outperforms TOFlow by
0.28 dB on the Vid4 dataset and 0.84 dB on the UDM10 dataset
with fewer parameters and can run 18 times faster. Compared
with FRVSR, our model achieves competitive results while hav-
ing much lower computational complexity and less runtime. RRN
outperforms our approach, but the runtime is about twice as long.

Ablation Study
Alignment and loss function We compare different config-

urations to validate the effectiveness of the alignment method and
the loss term for the optical flow. We train a super-resolution
network without flow estimation and alignment, referred to as
Method 1, SRnet, which has 67 channels to keep the computa-
tional complexity comparable to our proposed model. Method 2
has the same architecture as our proposed network but was trained
with a super-resolution loss Lsr only. Each of the three models has
5 residual blocks in SRnet. Quantitative and qualitative results are
shown in Table 2 and Figure 2, respectively.

SPMCS
land9 007

SPMCS
hbclub 003 001

SPMCS
philips hkc05 001

UDM10 cafee

UDM10 camera

bicubic SRnet FSnet Lsr

FSnet

(Ours) truth
Figure 2. Qualitative results of SRnet, FSnet without flow loss, and our

proposed method, FSnet trained with two-term loss, on the UDM10 [23] and

SPMCS [24] datasets for 4× VSR.

Our proposed network and training configuration outper-
forms SRnet by 0.85 dB and FSnet without flow loss L f low by
0.81 dB on the UDM10 dataset. Visually, the proposed method
generates sharper and more detailed results.

Flow estimation network In this work, we estimate the op-
tical flow by SpyNet [15], which is also used in TOFlow [21].
SpyNet first learns to generate an optical flow at the lowest res-
olution (H/8 × W/8 in this work), upsamples this optical flow,
and learns a residual to modify the upsampled flow. It then re-
peats this process until generating an optical flow at the full res-
olution (H × W). It can be viewed as coarse-to-fine optical flow
learning. Both in the SpyNet and in our network, there are oper-
ations that warp the previous frame using the upsampled optical
flow, where the upsampling is performed by bilinear interpolation.
This could potentially cause detail loss because of the inaccuracy
of flow introduced by the upsampling method. FRVSR [17] and
EGVSR [9] adopt the U-net structure for flow estimation. Similar
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Table 1. Quantitative comparison (PSNR and SSIM) on Vid4 and UDM10 for 4× VSR. Y and RGB indicate the evaluation on the
luminance channel or RGB channels, respectively. Runtime and MACs (multiply-accumulate computations) are evaluated for an
LR image of size 180×320 on an Nvidia GeForce RTX 2080.

Method Bicubic TOFlow [21] FRVSR[17] RRN [7] Ours (10-64)
# Param. [M] N/A 1.4 5.1 3.4 1.1
MACs [G] N/A 135.9 352.1 193.9 56.0
Runtime [ms] N/A 1070 126 100 55
Vid4 (Y) 21.80/0.5426 25.85/0.7659 26.48/0.8104 27.41/0.8466 26.13/0.7826
Vid4 (RGB) 20.37/0.5106 24.39/0.7438 25.01/0.7917 25.91/0.8288 24.66/0.7604
UDM10 (Y) 28.47/0.8523 36.26/0.9438 37.09/0.9522 38.74/0.9642 37.11/0.9506
UDM10 (RGB) 27.05/0.8267 34.46/0.9298 35.39/0.9403 36.83/0.9530 35.24/0.9363

Table 2. Quantitative comparison (PSNR(dB) and SSIM) of dif-
ferent configurations of VSR network for 4× VSR. Results are
tested on RGB channels. Red text indicates the best perfor-
mance.

Method 1. SRnet 2. FSnet 3. FSnet (Ours)
# channel 67 64 64
loss Lsr Lsr Lsr +L f low
# Param. [M] 0.60 0.70 0.70
MACs [G] 34.4 34.7 34.7
Runtime [ms] 49 49 49
Vid4 23.72/0.7042 23.77/0.7083 23.92/0.7354
SPMCS 27.41/0.7981 27.35/0.7974 27.49/0.8054
UDM10 33.75/0.9221 33.79/0.9211 34.60/0.9301

to SpyNet, the U-net structure has a large receptive field at the
low-resolution convolutional layers. Another advantage of U-net
is that more neurons and channels can be used while maintaining
comparable inference time or computation complexity. However,
because of the existence of the max-pooling layer, details may be
lost in the optical flow estimation. A concatenation operation has
the potential to deal with this information loss. Another optical
flow estimation network contains only convolutional layers at full
resolution.

Table 3. Quantitative comparison (PSNR(dB) and SSIM) of
four optical flow estimation networks for 4× VSR. Results are
tested on RGB channels. Red text indicates the best perfor-
mance.

Fnet U-net U-net cat Conv-net SpyNet [15]
# Param. [M] 2.29 2.49 0.79 0.70
FLOPs [G] 39.1 40.71 45.67 34.7
Runtime [ms] 49 50 50 49
Vid4 23.70/0.7032 24.16/0.7386 23.89/0.7147 23.92/0.7354
SPMCS 27.41/0.7975 27.46/0.8042 27.44/0.7982 27.49/0.8054
UDM10 33.74/0.9219 34.59/0.9306 33.87/0.9229 34.60/0.9301

We compare 4 types of flow estimation networks in the VSR
model: SpyNet, U-net, U-net with skip concatenation, and Conv-
net at the full resolution. Figure 3 shows the architectures of the
last two networks. The four networks’ configurations are cho-
sen to have similar inference times using the PyTorch framework
tested on an Nvidia GeForce RTX 2080. The feature extraction
module and reconstruction module are the same for the four flow
estimation networks, where the SRnet has 5 residual blocks. They
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Figure 3. Architectures of two optical flow estimation networks: (a) U-net

with skip concatenation and (b) Conv-net.

are all trained with a two-term loss L = Lsr +L f low. As shown in
Table 3, U-net with skip concatenation outperforms U-net by 0.46
dB on Vid4 and 0.85 dB on UDM10, with a slight increase in the
computational cost. This comparison result backs our hypothesis
that a concatenation operation can overcome the disadvantage in-
troduced by the max pooling layer in the U-net. SpyNet produces
the best results on SPMCS, the best PSNR on UDM10, and nearly
the best SSIM on UDM10, and the second second-best results on
Vid4, while having the least number of parameters among the four
networks.

Failure Cases
Compared with other Fnet and loss function choices in our

experiment, VSR models having SpyNet and U-net with skip con-
catenation as Fnet trained with two-term loss functions achieve
higher PSNR and SSIM. However, these two configurations pro-
duce VSR results with stripe artifacts on a testing video ”foliage”

272-4
IS&T International Symposium on Electronic Imaging 2023

Imaging and Multimedia Analytics at the Edge 2023



Truth

SpyNet, Lsr +L f low

U-net cat, Lsr +L f low

SpyNet, Lsr

U-net, Lsr +L f low

Figure 4. Visual results of the testing video ”foliage” (frame 30) in the Vid4

dataset. VSR models with SpyNet and U-net cat as Fnet generate stripe

artifacts.

in the Vid4 dataset (Figure 4). The super-resolution ”foliage”
video produced by our proposed model, which has SpyNet as
Fnet, has stronger stripe artifacts. We also observed that this ar-
tifact was mild in the first few frames, then it become stronger
and stronger in time (Figure 5). Potential causes of these artifacts
are the inaccuracy of motion estimation for videos having drastic
luminance changes and the error propagation and accumulation
in time in a recurrent neural network. Note that when SpyNet is
trained only with a super-resolution loss (Equation 4), the VSR
model does not generate unwanted artifacts. U-net without skip
concatenation also does not generate this type of artifact.

Conclusion
In this paper, we proposed a recurrent network for real-time

video super-resolution. It extracts features from the previous
high-resolution output and warps them with motion compensation
offsets computed by a light-weight version of SpyNet. Then the
SR network takes low-resolution features, warped high-resolution
features, and the latent space to reconstruct the current frame. Ex-
periments on various benchmark datasets show that our model
is efficient for video super-resolution tasks. The ablation studies
show the effectiveness of our model choice and training strategy.
However, one failure case limits the application scenarios of our
proposed method. Our experiments with four different flow es-
timation networks show the importance of reducing information
loss in the network and that a concatenation operation can over-
come the disadvantage introduced by the max pooling layer in the
U-net.

SpyNet, Frame 20

U-net cat, Frame 20

SpyNet, Frame 49

U-net cat, Frame 49

Figure 5. Super-resolution results for Frame 20 and Frame 49 of the ”fo-

liage” video in the Vid4 dataset generated by VSR models with SpyNet and

U-net cat as Fnet. The stripe artifacts get stronger from Frame 20 to Frame

49.
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