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Abstract
Food image analysis is the groundwork for image-based di-

etary assessment, which is the process of monitoring what kinds
of food and how much energy is consumed using captured food
or eating scene images. Existing deep learning-based methods
learn the visual representation for downstream tasks based on hu-
man annotation of each food image. However, most food images
in real life are obtained without labels, and data annotation re-
quires plenty of time and human effort, which is not feasible for
real-world applications. To make use of the vast amount of unla-
beled images, many existing works focus on unsupervised or self-
supervised learning of visual representations directly from unla-
beled data. However, none of these existing works focus on food
images, which is more challenging than general objects due to its
high inter-class similarity and intra-class variance.

In this paper, we focus on the implementation and analysis of
existing representative self-supervised learning methods on food
images. Specifically, we first compare the performance of six se-
lected self-supervised learning models on the Food-101 dataset.
Then we analyze the pros and cons of each selected model when
training on food data to identify the key factors that can help
improve the performance. Finally, we propose several ideas for
future work on self-supervised visual representation learning for
food images.

Introduction
Poor diet choices are linked to several health conditions such

as cancer, heart diseases, and diabetes, some of the leading pre-
ventable causes of death. Additionally, the CDC reports that 9 in
10 Americans consume too much sodium, which may cause high
blood pressure, heart disease, and strokes. Furthermore, nearly
$173 billion is spent annually on health care for obesity [1]. How-
ever, it is difficult to accurately assess the dietary intake of a per-
son, as traditional methods [2, 3] are based on self-reported in-
formation which may include errors due to recall or bias. On the
other hand, image-based dietary assessment technologies [4] uti-
lize eating occasion images captured by participants to determine
their dietary intake. Due to the reduced amount of human input,
such technologies can greatly improve the accuracy and reliability
of a person’s dietary information.

Nowadays, the vast majority of image-based dietary as-
sessment technologies leverage deep learning for food recog-
nition [5, 6, 7, 8], segmentation [9] and portion size estima-
tion [10, 11, 12]. One of the major challenges of existing super-
vised methods, however, is their requirement for large amounts
of annotated training data. Since most food images in real world
are captured without labels, an additional step for data annotation
is needed, which would be expensive and time-consuming. On
the other hand, unsupervised and self-supervised learning mod-

Figure 1: An overview of supervised and unsupervised visual rep-
resentation learning.

els [13, 14, 15] can learn visual representations directly from un-
labeled data to perform downstream tasks. As shown in Fig. 1,
unsupervised learning trains a feature encoder from unlabeled im-
ages to classify the image into a certain category. We will focus on
self-supervised learning as it concentrates on downstream tasks
while unsupervised learning is more for clustering and dimen-
sionality reduction. Though numerous deep learning approaches
have been developed for self-supervised learning of general tasks,
none of them have been tested specifically on food images, which
is known to be more challenging due to their intra-class diversity
and inter-class similarity [5].

In this paper, we aim to explore the performance of exist-
ing self-supervised learning methods on food images and provide
insightful potential directions on improving the performance in
future works. We select six state-of-the-art self-supervised learn-
ing methods including SimCLR [16], SwAV [17], BYOL [18],
SimSiam [19], MoCo v2 [20, 21], and DINO [22], which are
representative contrastive based, non-contrastive based and vi-
sion transformer based methods, respectively. We evaluate and
analyze the self-supervised learning performance on Food-101
dataset [23], which contains 101 different foods with 1000 images
each. Specifically, we first show that self-supervised learning on
food images is more challenging by comparing the performance
between Food-101 and reported results on ImageNet [24]. Then,
we analyze the pros and cons of each selected model based on
their performance on Food-101 to identify several insights and
propose possible future steps for increasing the accuracy and effi-
ciency of self-supervised learning on food images. The contribu-
tion of this work can be summarized as the following.

• To best of our knowledge, we are the first to systematically
study the existing representative self-supervised methods on
food images.

• We conduct extensive experiments on Food-101 to identify
the challenges behind learning on food images compared to
general tasks such as ImageNet.

• By analyzing the results, we provide insightful directions to
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potentially improve the performance in future works.

Related Work
Self-supervised learning (SSL) and unsupervised learning

are two types of models that are trained on completely unlabeled
data. Unsupervised learning methods mainly focuses on finding
patterns and clustering the data based on similar features. On the
other hand, SSL methods attempt to solve tasks by augmenting
the unlabeled data, such as rotating the images or taking two dif-
ferent augmentations of the same image.

In this work, we analyze three main categories of SSL mod-
els: Contrastive Based Learning, Non-Contrastive Based Learn-
ing and Vision Transformers (ViTs) Based. We selected these three
categories because of their proven effectiveness on the ImageNet
dataset, and because they are three of the most common types of
self-supervised image classification models. Furthermore, both
Contrastive and Non-contrastive based models that we examine
are Siamese models, which are models that compare two augmen-
tations of the same image to learn visual representations. Below
we summarize and illustrate each category in detail.

(1) Contrastive-based learning is a common self-
supervised learning algorithm that takes two augmentations of the
same image, called positive pairs, and maximizes the agreement
between the two, while also minimizing the agreement between
two augmentations of different images, called negative pairs. One
common drawback of contrastive models, however, is their ne-
cessity for larger batch sizes, since they require both positive and
negative pairs. We selected two most popular methods in this
category including SimCLR [16] and MoCo v2 [20, 21], which
has a similar structure and comparable performance. Addition-
ally, SimCLR and MoCo v2 are based on similar ideas, with
MoCo coming out first and later revised after SimCLR’s pub-
lish to MoCo v2 [21]. SimCLR follows the straightforward con-
trastive learning framework of comparing both positive and neg-
ative pairs, with an additional custom optimizer. MoCo instead
uses a memory bank to store negative pairs, with MoCo v2 utiliz-
ing multi-crop to further increase the performance.

(2) Non-contrastive based learning models also utilize the
idea of positive pairs while excluding the negative pairs. They uti-
lize additional techniques to improve performance and also pre-
vent the model from collapsing [25], which is a common failure
in Siamese models when the encoder outputs a constant represen-
tation regardless of input. On the other hand, contrastive-based
learning models do not collapse since they also contrast negative
pairs. For this category, we selected SwAV [17], BYOL [18], and
SimSiam [19], three models that each have their own unique com-
ponents. SwAV incorporates online clustering within a Siamese
model. Similar to MoCo v2, this model also uses multi-crop. Al-
ternatively, BYOL employs two neural networks, called the on-
line and target network, to predict each other’s representation of
the same image, along with a momentum encoder. Finally, Sim-
Siam [19] is a simplistic network that only uses positive pairs
and a stop-gradient operation, which prevents certain parts of the
model from being updated to prevent collapsing.

(3) Vision Transformers [26] are another type of frame-
work based on the self-attention-based Transfomer [27], which
is the main method used in Natural Language Processing (NLP).
For image tasks, attention-based models have historically under-
performed compared to convolutional models such as CNNs and

ResNet [28] due to inefficiencies, but are recently improving in
accuracy and computational speed due to modifications on the at-
tention portion of ViTs. One of the main discrepancy between
the CNN and ViTs is that Vision Transformers [26] lack certain
inductive biases that CNNs are able to produce, such as local-
ity. However, ViTs’ accuracy scale up based on the amount of
image data, making them ideal for self-supervised image classifi-
cation where models are typically trained on millions of images.
For this category, we selected DINO [22], a state-of-the-art ViT-
based model that also utilizes knowledge distillation [29]. We se-
lected DINO because of its high performance and uniqueness and
also we hope to explore other self-supervised learning approaches
outside of contrastive and non-contrastive learning to see if they
would perform better on food images.

Method
In this section, we illustrate the selected methods in detail

from the perspective of each main category.

Contrastive based Learning
SimCLR and MoCo v2 both exhibit all the features of con-

trastive learning, using both positive and negative pairs. A brief
overview of contrastive learning framework is shown in Fig. 2,
which include four main components: (1) a data augmentation
module that randomly generates the two different views of the
same image x, denoted as xi and x j, (2) the common ResNet [28]
encoder, represented as f (•), that extracts representation features
from the image, (3) a projection head g(•) that calculates con-
trastive loss, defined as an multilayer perceptron (MLP) with one
hidden layer for SimCLR and two hidden layers for MoCo v2 with
ReLU [30], and (4) a contrastive loss function used to maximize
the similarity between positive pairs and minimize the similarity
between negative pairs.

Figure 2: An overview of contrastive learning framework.

SimCLR and MoCo v2 use different contrastive loss func-
tions. SimCLR uses NT-Xent (the normalized temperature-scaled
cross-entropy loss), defined as in Eq. (1).

ℓi, j =− log
exp(sim(zi,z j)/τ)

Σ2N
k=11[k ̸=i] exp(sim(zi,zk)/τ)

(1)

where sim(u,v) = uT v/|u||v|, N is the batch size, 1[k ̸=i] ∈ 0,1 is
an indicator function evaluating to 1 iff k ̸= i and τ denotes a
temperature hyper-parameter. MoCo v2, on the other hand, uses
InfoNCE, defined as in Eq. (2).

Lq =− log
exp(q · ki)/τ

Σk
i=0 exp(q · k+)/τ

(2)

where q is the query, k+ is the positive key, ki are the other keys,
and τ also denotes a temperature hyper-parameter. These equa-
tions represent the final step of Fig. 2, and both of these functions
aim to maximize the similarity between positive pairs and mini-
mize the similarity between negative pairs. In this work, we select
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these two methods to represent the contrastive-based models and
further evaluate the performance on food images, which can be
more challenging due to the intra-class diversity and inter-class
similarity.

Non-Contrastive based Learning
SwAV, BYOL, and SimSiam are non-contrastive based

models as they do not incorporate negative pairs, but they are all
Siamese models because they compare positive pairs. Addition-
ally, since all three models are structured the same conceptually,
we will examine SimSiam in detail as it is more representative
compared to BYOL and SwAV, which both have additional unique
features. SimSiam also demonstrates that they can learn visual
representations with only a stop-gradient operation. In Fig. 3,
an overview of non-contrastive learning is shown, which demon-
strates the fundamental framework of our three models. Similar
to SimCLR, f (•) represents an encoder while h(•) denotes the
MLP head.

Figure 3: An overview of non-contrastive learning framework.

SimSiam utilizes a simplistic loss function defined as in
Eq. (3):

L =
1
2
D(a1,stopgrad(b2))+

1
2
D(a2,stopgrad(b1)) (3)

where a1 = h( f (x1)) and b2 = f (x2) and D(a1,b2) represents
the negative cosine similarity: − a1

∥a1∥2
· b2
∥b2∥2

, where ∥ · ∥2 is the
l2-normalized vector. Since both SwAV and BYOL are differ-
ent from SimSiam, we will consider their unique features, repre-
sented by g(•). SwAV utilizes online clustering with Sinkhorn-
Knopp transform [31] and BYOL directly predicts the output of
one view from another view using a momentum encoder. Both
these methods are used to prevent collapsing and improve accu-
racy. Although non-contrastive methods do not utilize negative
pairs, they are all still Siamese networks. Therefore, we evaluate
their performance to see if visual representations of food images
will be learned well by these methods.

Vision Transformer-based Learning
DINO is the representative model we selected in Vision

Transformer based category. It is a self-supervised learning ap-
proach that utilizes self-distillation with no labels. In addition to
SSL, it utilizes knowledge distillation [29], which involves train-
ing a student network’s probability distribution based on an input
image to match the output of a teacher network. By maximiz-
ing the similarity between their predictions and propagating the
information to update the networks, the model is able to learn vi-
sual representations of different images. An overview of DINO is
shown in Fig. 4. A positive pair is passed into the two networks
represented by g, which are composed of a backbone ViT and a
projection MLP head similar to the one used in SwAV. The loss
function is defined as minH(Pt(x),Ps(x)), which takes the cross-
entropy loss of probability distributions of the teacher and student

network. H(a,b) =−a logb and Ps is defined as in Eq. (4):

Ps =
exp(gθs(x)/τs)

ΣK
k=1 exp(gθs(x)/τs)

(4)

with τs as a hyperparameter. Additionally, a stop-gradient op-
erator (SG) is applied to propagate gradients only through the
student, while the teacher parameters are updated with an ex-
ponential moving average (EMA), defined by the formula θt ←
λθt + (1− λ )θs, where θt and θs are parameters, and λ fol-
lows a cosine schedule from 0.996 to 1. We chose this Vision
Transformer-based model because it was fundamentally different
from the other methods while also achieving high performance
on the ImageNet dataset. Additionally, DINO also uses knowl-
edge distillation, which is another technique we hope to explore
on food images.

Figure 4: An overview of the DINO model.

Experiments
In this section, we first evaluate the selected six self-

supervised method by comparing the performance on both general
object dataset and food image dataset. Then, we specifically ana-
lyze the results on food data and summarize the pros and cons of
each selected model. Finally, we provide insights as future work
to further improve the performance on food images.

Experimental Setup
Datasets: we used the Food-101 dataset, which includes 101

different food classes with 1,000 images each, providing a total of
101,000 food images. Each food class is further divided into 750
training images with 250 test images. Additionally, some of the
images are purposely uncleaned with a certain amount of noise,
such as intense colors and mislabeled images. We selected this
dataset as it is one of the most well-known food datasets used for
various downstream tasks.

While focusing on food images, we also leverage Ima-
geNet dataset containing images of general objects as a refer-
ence compared to Food-101. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012-2017 contains 1000 im-
age classes and over 1.2 million images, 50,000 validation images
and 100,000 test images, which is commonly used as a bench-
mark to evaluate the model performance especially on image clas-
sification tasks.

As shown in Fig. 5, the images in Food-101 is of higher intra-
class diversity and inter-class similarity compared to ImageNet
datasets, making it more challenging to learn the visual represen-
tation from unlabeled data.

Evaluation metric: we use the widely applied Linear Eval-
uation as the evaluation metric, which trains a supervised lin-
ear classifier on frozen features learned by self-supervised visual
representation learning. Specifically, a fully-connected layer fol-
lowed by softmax is trained on the test images, and the gradients
are not propagated back to the frozen features which ensure the
feature extractor does not learn anything from supervised labels.
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Figure 5: Intra-class diversity and inter-class similarity in Food-101 compared to ImageNet.

SimCLR SwAV BYOL SimSiam MoCo v2 DINO
Batch
Size

256 256 128 128 256 64

Epochs 100 100 100 100 100 100
Backbone ResNet-

50
ResNet-
50

ResNet-
50

ResNet-
50

ResNet-
50

ViT-S

Optimizer LARS SGD SGD SGD SGD AdamW

Table 1: Implementation Details

SimCLR SwAV BYOL SimSiam MoCo v2 DINO
Accuracy
(%)

51.0 54.7 47.7 44.5 53.9 61.4

Training
Time

2 days 2 days 3 days 2 days 3 days 2 days

Memory
Size

107M 217M 283M 292M 305M 672M

Table 2: Experimental results on Food-101

Implementation details: In Table 1, we summarize the im-
plementation details of each selected model. We selected 100
epochs for all the models and ResNet-50 for contrastive and
non-contrastive-based models. Additionally, we chose reason-
able batch sizes of 128/256 for the contrastive and non-contrastive
models, which were the maximum allowed by our computational
resources. For DINO, we chose 64 batch size due to it being a
ViT-based model, which claims to require less batch size.

Results on Food-101
The experimental results of six selected self-supervised

methods on Food-101 are summarized in Table 2. We include
the top-1 linear evaluation accuracy (%) along with training time
and how much memory the model parameters use to show that
our trained models require a similar amount of computational re-
sources. Only DINO takes up significantly more memory, which
is due to ViTs requiring storing more memory after training.
From the results, we observe that DINO performed the best while
BYOL and SimSiam performed the worst. We expected slightly
lower accuracy in SimSiam because it had no unique method to
improve accuracy, but BYOL’s lower accuracy was unexpected.
Additionally, we notice that the other three models, SimCLR,
SwAV, and MoCo v2, have similar accuracy, showing that each
model’s unique methods increased their accuracy. The perfor-
mance difference between the best and worst model is approxi-
mately 18.5%, which is quite significant.

Comparison Between Food-101 and ImageNet
In Fig. 6, we included the results on Food-101 side-by-side

with the results on the ImageNet dataset. These results were ob-
tained using the same number of epochs and backbone encoder.

Figure 6: Linear evaluation results on ImageNet and Food-101.

Our experimental results on Food-101 are much lower than
the results on ImageNet. This observation also shows that the vi-
sual representation on food images can be more challenging than
general objects in real life due to higher intra-class diversity and
inter-class similarity, resulting in the lower accuracy. Another rea-
son for the lower accuracy could be that the Food-101 contains
fewer images than ImageNet, which hurts the performance of ex-
isting self-supervised models as they rely on massive amounts of
data for training.

We also notice that BYOL performs worse than expected
with the lowest performance on Food-101 out of all of the se-
lected models, despite it achieving a high accuracy on ImageNet.
One of the possible reason is that the BYOL reuiqres larger batch
size where it achieves 74.3% accuracy after training on 512 TPUs
with 4096 batch size, while our model was only trained on 128
batch size with ResNet-50. Therefore, we speculate that BYOL
and other models could scale up in accuracy with larger batch size
and computation resources. To prove our assumption, we ran in-
termediate experiments using SimCLR as shown in Table 3. The
increased batch size results in a notable increase in accuracy even
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Batch Size 64 128 256
Accuracy 41.8 48.0 51.0

Table 3: SimCLR accuracy on Food-101 with various batch sizes.

without increasing the number of epochs or changing the back-
bone network. However, the computation resource is one of the
major constrains in deep learning especially for real world appli-
cations.

Additionally, we noticed that DINO performed much bet-
ter than all the contrastive models. One possible reason is that
ViTs perform better than ResNet as the backbone for visual rep-
resentation learning. This could possibly be due to the fact that
self-supervised learning uses a large amount of training data,
which benefits ViTs more significantly due to their unique atten-
tion modules. Another possible reason is that the lower batch
sizes hurt more performance of contrastive learning models, as
they require both positive and negative pairs for training. Non-
contrastive models are also impacted by lower batch sizes, al-
though to a lesser extent. Therefore, we have demonstrated that
batch sizes and, in general, computational resources are more im-
pactful for contrastive and non-contrastive models, while ViTs
do not depend as much on batch sizes when compared with con-
trastive and non-contrastive models.

Finally, we compare the performance of four Siamese mod-
els: SimCLR, MoCo v2, SwAV, and SimSiam. We exclude BYOL
due to its lower-than-expected accuracy from our comparison.
Firstly, SimSiam has a lower accuracy than the other three mod-
els, which all have very similar performance, although SwAV
and MoCo v2 perform slightly better as they both adopted some
ideas from SimCLR. This shows that the unique features in Sim-
CLR, MoCo v2, and SwAV improved their accuracy compared
to SimSiam’s stop-gradient operation. Furthermore, both SwAV
and MoCo v2 add an extra layer of complexity with their unique
features, which are online clustering and momentum encoders, re-
spectively. Through this comparison, we see that contrastive and
non-contrastive based models perform similarly. Since both mod-
els achieved similar high performances, we can conclude that the
Siamese learning framework is efficient in learning visual repre-
sentations.

Insightful Directions for Future Work
Based on our experiments and analysis, we proposed three

ideas on how to improve accuracy in the future:

• Fine-Tuning or Transfer Learning. This method involves
training a model on a large dataset, for example ImageNet,
and then transferring on Food-101. This approach could
help resolve the issue of an insufficient amount of training
data since the model will have learned visual representations
on a larger dataset. Therefore, when fine-tuning on a smaller
dataset, the model will not require a large batch size to learn
visual representations from scratch.

• Larger Computational Resources. As already shown in
Table 3, accuracy scales up with larger batch sizes and more
training epochs. Therefore, we would expect better perfor-
mance if the models are trained with larger computation re-
sources.

• Ensemble of Models. We propose that combining certain
models could improve accuracy. We observed that each

method category had its own unique techniques which im-
proved their accuracy, so combining some of the methods
together may be a potential solution. For example, we
researched pre-text tasks, which are unsupervised image-
based problems solved to learn the visual representation of
an image, such as colorizing a black-and-white image. We
will be examining the rotation pre-text task, which predicts
if an image is rotated 0◦, 90◦, 180◦, and 270◦, implemented
by the model RotNet [32]. We propose that combining Sim-
CLR with RotNet, for example, could further improve the
accuracy because it learns more visual representations.

Conclusion
Overall, we explored the performance of 6 state-of-the-art

models from 3 main categories on food images, specifically the
Food-101 dataset. Our experimental results show that visual rep-
resentation learning is more challenging on food images by com-
paring performance on ImageNet and Food-101. Additionally, all
three categories of models show promising results on food data.
The experimental results suggest that ViT models are worth ex-
ploring further for self-supervised image tasks, but contrastive
and non-contrastive models should still be considered when work-
ing on self-supervised classification tasks. Finally, based on our
analysis, we propose that there is also potential for transfer learn-
ing or combining models to help improve accuracy.
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