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Abstract
Generative Adversarial Networks (GAN) have been widely

investigated for image synthesis based on their powerful represen-
tation learning ability. In this work, we explore the StyleGAN and
its application of synthetic food image generation. Despite the im-
pressive performance of GAN for natural image generation, food
images suffer from high intra-class diversity and inter-class simi-
larity, resulting in overfitting and visual artifacts for synthetic im-
ages. Therefore, we aim to explore the capability and improve the
performance of GAN methods for food image generation. Specif-
ically, we first choose StyleGAN3 as the baseline method to gen-
erate synthetic food images and analyze the performance. Then,
we identify two issues that can cause performance degradation
on food images during the training phase: (1) inter-class feature
entanglement during multi-food classes training and (2) loss of
high-resolution detail during image downsampling. To address
both issues, we propose to train one food category at a time to
avoid feature entanglement and leverage image patches cropped
from high-resolution datasets to retain fine details. We evaluate
our method on the Food-101 dataset and show improved quality
of generated synthetic food images compared with the baseline.
Finally, we demonstrate the great potential of improving the per-
formance of downstream tasks, such as food image classification
by including high-quality synthetic training samples in the data
augmentation.

Introduction
Healthy diet is one of the key factors for human wellness and

disease prevention. There is a growing trend for people to track
their dietary intake to adhere to or maintain a healthy diet. Tra-
ditional dietary assessment methods [1, 2] rely on manual self-
reporting, which can be tedious and time-consuming. Image-
based dietary assessment [3, 4] aims to develop automated meth-
ods to analyze consumed food types[5, 6], portion size [7, 8, 9]
directly from captured eating occasion images. One of the ma-
jor challenges of image-based dietary assessment is the lack of
enough food images in existing datasets [10, 11] to train a robust
deep learning model for food analysis. For example, the food
recognition performance on less commonly seen food categories
could drop significantly [12, 13] due to the few available train-
ing data. Many efforts have been made to solve the problem of
lacking enough food images, such as for long-tailed classifica-
tion [14] to address severe class-imbalance issue, continual learn-
ing [15, 16, 17] to learn from new data incrementally, and other
food analysis scenarios [18, 19] that focus on real world food data
distribution.

Generative network is widely applied as an effective data

augmentation method to help address the issue of insufficient
training data. Over the years, generative networks have been rev-
olutionized from a basic autoencoder for reconstructing input data
to a learning feature representation for creating non-existent ob-
jects. In recent years, the paradigms of the state-of-the-art gener-
ative models focus on three structures: Variational Autoencoders
(VAEs) [20] (VDVAE [21] offers high image diversity), Diffusion
models [22] (DDPM2 [23] offers advanced image quality and va-
riety, but low sampling speed), and Generative Adversarial Net-
works (GANs) [24] (StyleGAN [25] offers good image quality
and sampling speed). In general, GANs have been demonstrated
to generate high-fidelity synthetic images efficiently.

Food image synthesis using GAN has been widely investi-
gated such as CookGAN [26], built on a cycle-consistent network
[27], RamenGAN [28], built on a standard conditional network
[29], and multi-ingredients pizza generator [30], built on Style-
GAN2 [31] have shown a decent performance on food image gen-
eration. However, the food images generated by these methods
either do not provide sufficient details or contain many artifacts.
Among existing GAN methods, StyleGAN3 [32] shows an abil-
ity to generate highly realistic images. In this work, we explore
StyleGAN3 with its capability of generating food images corre-
sponding to their labels.

Despite several improvements had been made in Style-
GAN3, we discovered two issues could be addressed when gener-
ating synthetic food images: (1) inter-class feature entanglement
(the generated image for a specific class contains features from
other image classes) and (2) loss of high-resolution details during
data normalization (e.g., image size rescaling and downsampling).
Then, we propose two training strategies to address these issues,
including single-class training to avoid features being correlated
between different classes, and image-patches training on any-
resolution data to avoid image normalization. We evaluate our
proposed method on the Food-101 dataset [33] with the Frechet
Inception Distance Metric (FID) [34] and a subjective survey to
demonstrate the effectiveness in improving the visual resolution
and fidelity of our generated food images. Finally, we use our
synthetic food images as additional training images for training a
food image classifier to explore the impact of data augmentation
using synthetic images.

Preliminaries
The main idea of Generative Adversarial Networks[23] is

to train a generator network (G) that maps the noise vectors to
real training data distribution to create realistic image instances.
Meanwhile, the discriminator model (D) attempts to distinguish
the real data from generated samples via an estimated probability.
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The two networks are optimized simultaneously during training.
Following the idea of GAN, StyleGAN3 [32] also uses a gen-

erator to generate synthetic images and a discriminator to distin-
guish real from synthetic samples. However, the generator net-
work is made more complex. Instead of directly feeding the noise
vector to the generator, StyleGAN3 goes through a mapping net-
work to reduce correlation among different features during train-
ing. With different combinations of style (feature) information
learned from the network, StyleGAN3 has a synthesis framework,
which composes 14 layers to collect and generate coarse and fine
styles sequentially to generate high-quality synthetic images. The
improvements of StyleGAN3 also include solving the feature ad-
hesion under coarse layers and making the generation process in-
variant to image translation and rotation.

In order to generate synthetic food images corresponding
to their class label, we investigate conditional image generation
where the image class labels are supervised during training. The
StyleGAN3 network controls the generation of image class from
two basic parts: the mapping network in the generator and the
discriminator network. The mapping network conditions the la-
tent code with a one-hot label vector which defines a set of spe-
cific characteristics from a certain class for the generator to study,
while the discriminator is trained to classify real and generated
data conditioned on their class labels. Therefore, with a feature
vector to control the image’s underlying content spatial structure,
the generator can generate synthetic images for specific classes.

Proposed Methods
The proposed methods aim to improve the training of Style-

GAN3 for generating realistic synthetic food images. The first
method involves training with a single-class food dataset to avoid
feature entanglement, while the second method involves train-
ing with any-resolution data to capture fine-grain details in high-
resolution images. These approaches have the potential to address
specific challenges in training and enhance the performance of
StyleGAN3.

Training StyleGAN3 with a single-class at a time. Ac-
cording to the results of training StyleGAN3 on low-resolution
multi-class food datasets in the Experiment section, we find that
even though the conditional StyleGAN3 model is trained to sta-
bilize and converged based on the FID metric evaluation on gen-
erated synthetic images, the results of generated synthetic food
images still look unnatural and the reason of artificial-looking
and distorted synthetic images are caused by inter-class feature
entanglement (e.g., Figure 4 shows that synthetic hamburger im-
ages include features from spring roll). Either features in differ-
ent classes are not well-distributed in the mapping network, or
the discriminator could not classify the real and synthetic images
into their perspective classes due to complex and similar features
learned in different classes. To avoid features being correlated and
affecting each other, we trained StyleGAN3 with a single-class
food dataset one at a time to avoid feature entanglement.

Training StyleGAN3 with any-resolution data. After an-
alyzing the results from StyleGAN3, we found that this baseline
method has a few drawbacks. To train a network, the input im-
ages have to be fixed at certain resolutions, such as 256× 256,
512×512, or 1024×1024. This requirement could lead to image
warping and loss of image details when downsampling the input
images from high-resolution to the required low-resolutions. To

avoid losing fine-grain details in high-resolution images during
downsampling, we adopt the method from Anyres GAN [35] to
project and capture previously discarded high-resolution image
details.

Figure 1: Training Architecture of Anyres GAN.

More specifically, Anyres GAN [35] includes two stages of
generator training: global fixed-resolution pretraining and mixed-
resolution patch-based training. In the first stage, the network
follows the standard training procedure of StyleGAN3, which is
trained on 256×256 resolution of single food class images (e.g.,
images from hamburger class) to capture the global structure of
the given training images. This model is then used as a teacher
model during the second stage of training. To better learn the
fine-grain details for synthetic images, we randomly crop square-
shaped patches from the same class of high-resolution images
with any resolutions in the second stage of training. These im-
ages include synthetic food images generated by our pretrained
StyleGAN3 and high-resolution images scrapped from Google at
various random scales and locations. The generator takes three
inputs: normalized pixel coordinates of our sampled patches, the
original image resolution which the patches are created from, and
the latent code z representing the underlying features of the origi-
nal image for the generator to produce synthetic square patches.

The discriminator compares the synthetic patches with real
patches to help the generator for obtaining fine details in gen-
erated image patches. The generated patches are then adjusted
to match the teacher’s global fixed-resolution output after proper
downsampling and alignment. In the end, the patch features are
projected into global fixed low-resolution images to obtain fine
details in those high-resolution images. The training architecture
of the Anyres GAN is illustrated in Figure 1.

Experiments
In this section, we evaluate our proposed method by conduct-

ing different experiments on low-resolution multi-class datasets,
low-resolution single-class datasets, and any-resolution single-
class food datasets. In addition, we perform both objective and
subjective tests to show the perceptual visual realism of our gen-
erated food images. Finally, we demonstrate the effectiveness of
using synthetic data as data augmentation to improve the perfor-
mance of food image classification.

Datasets
Low-resolution Multi-class and Single-class Food Dataset

We construct a dataset with ten random food classes selected from
the Food-101 dataset [33] for evaluating the baseline conditional
StyleGAN3. These ten food classes include cannoli, cupcake,
donut, hamburger, pancake, strawberry, shortcake, pizza, spring
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roll, panna cotta, and waffle images. Each class contains 1,000
images, and each image has a maximum resolution of 512 pix-
els and a minimum resolution of 384 pixels. We pre-process the
images to a dimension of 256×256 to meet the input image res-
olution requirement of StyleGAN3 and refer to this dataset as the
low-resolution food dataset (LR). In contrast, the low-resolution
single-class Food Dataset consists of only hamburger food images
from Food-101 downsampled to 256×256.

Any-resolution Dataset for Anyres Training. We use 600
high-resolution hamburger images scraped from Google as part of
our selected dataset for training the second stage of any-resolution
GAN. In this dataset, the minimum side length is 512 pixels,
the maximum side length is 5,472 pixels, the mean side length
is 1,250.06 pixels, and the median side length is 1,000 pixels.
We combine the images from the Food-101 dataset and the high-
resolution hamburger images from Google to form the selected
Any-resolution dataset where all images have a resolution greater
than 256. During image-patches training, image patches with 256
resolution are cropped from both Any-resolution and LR datasets.

Evaluation Metrics
The Frechet Inception Distance (FID) [34] is a commonly

used metric to evaluate the similarity between the distribution of
real and synthetic images. The lower the FID scores, the more
realistic of generated images are. The FID metric is been shown
to be computationally efficient and consistent with human assess-
ment of synthetic image discrimination [36]. In our experiment,
we compute the FID for every five training epochs based on the
saved model and sample results. In addition, we also conducted
a subjective study to qualitatively evaluate our model, where we
ask 82 adult participants to assess the perceptual realism of our
synthetically generated food images.

Results on Low-resolution Multi-class Food
Datasets

During conditional StyleGAN3 training, we calculate the
FID score to evaluate the network’s performance and report the
lowest FID metrics. As shown in Figure 2, we select the synthetic
hamburger images as a representative class to show that the FID
metric effectively evaluates the efficiency of the StyleGAN3 net-
work and the visual quality of the generated image. We record
the FID score for every 20 iteration of training until the network
converged at the score of 17.348.

Figure 2: Evaluation of Synthetic Multi-Class Food Images on condi-
tional StyleGAN3

Figure 3 shows some example of synthetic food image re-
sulted from conditional StyleGAN3. However, the generated im-
ages do not look realistic and contain obvious visual artifacts.

The most obvious artifact we notice in those generated im-
ages is the inter-class feature entanglement. For example, in Fig-

Figure 3: Example of conditional synthetic images results from global
fixed resolution

Figure 4: An Illustration of Inter-class Feature Entanglement Issue in
Synthetic Hamburger Images

ure 4, the small disc-shape feature appears in the synthetic ham-
burger images, but it should only appear in the spring roll food
images. This issue can be resolved when we only train one class
at a time.

Results on Low-resolution Single-class Food
Datasets

Figure 5 shows the comparison results of synthetic ham-
burger images between multi-class and single-class trained on
StyleGAN3. Without inter-class feature entanglement, our gen-
erator only captures in-class features and the synthetic hamburger
image results are much more realistic compared to the baseline of
training with multiple food classes.

Figure 5: Sample Synthetic Hamburger images from Baseline and Im-
proved Methods

Similar to the multi-class training, we train the network for
about 2,000 iterations for the network to converge at 17.295. With
the trained StyleGAN3 model on hamburger image samples, we
use it as our pretrained model for our next phase of any-resolution
training. Results are shown in Figure 6. Although the FID score is
similar to training on multi-class food images, the visual artifacts
are significantly reduced.

Results on Any-resolution Single-class Food
Datasets

To avoid image warping and loss of high-resolution de-
tails during image normalization using StyleGAN3’s fixed reso-
lution, we train square-shaped image patches cropped from any-
resolution datasets. Following the two-phase training of any-
resolution dataset, we train the StyleGAN3 model with 256×256
low-resolution hamburger images from Food-101 for the first
stage of StyleGAN3 pretraining and our HR dataset for second
stage image-patches training. Figure 7 shows the comparison of
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Figure 6: Evaluation of Synthetic Hamburger Images on StyleGAN3

the synthetic hamburger images between the first improvement
on StyleGAN3 with single-hamburger class training and the sec-
ond improvement with our any-resolution training. The visual
quality of hamburgers is further improved, and details are better
preserved.

Quantitative Results
As shown in Table 1, we calculate the standard FID metric

for the first and second improvements made to the StyleGAN3
training strategy. The standard FID metrics between training us-
ing single-class and image-patches are similar, despite the obvi-
ous visual improvement from image-patches training. This is be-
cause the standard FID metric assumes all the training images are
of 256×256 resolution, which ignores the fine-grain details in the
training dataset. Thus, the standard FID scores is not suitable for
evaluating our image-patches training results. Instead, we adopt
the patch-FID (pFID) metric, which extracts 50K image patches
cropped from our Any-resolution dataset at various scales and lo-
cations. To avoid downsampling the training images, it computes
the FID score on the generated patches and real patches with cor-
responding scales and locations. The pFID score in Table 1 con-
firms our observation that with image-patches training, the food
images contain details and are visually more realistic.
Table 1: FID and patch-FID Metric Evaluation on Two methods at 256
Image Resolution

Improvement Methods FID pFID
Train with Single-class Dataset 17.871 90.113
Train with any-resolution Dataset 17.723 30.863

Subjective Study
We conduct a subjective study to assess the perceptual real-

ism of synthetically generated food images to qualitatively evalu-
ate our conditional synthetic food image generation model. This
subjective measure is an important complement to the Frechet In-
ception Distance (FID). The synthetic food image should look re-
alistic so that it can be used for downstream tasks such as food
image classification as training examples. In the survey, 82 adult
participants were asked to evaluate 88 food images which contain
51 synthetic food images and 37 real food images. The synthetic
images are evenly distributed among three classes — hamburger,
pizza, and spring roll. For real food images, we select 12 images
of hamburgers, 12 images of pizzas, and 13 images of spring rolls.
Participants were asked to select images that looked real to them
(i.e., did not look synthetic) and were asked to look at each im-
age for no more than 3 seconds. We also set a scoring system to
evaluate our model performance — 51 is the full score since they
are 51 synthetic images, and participants received one point for

Figure 7: Comparison between two improved methods on StyleGAN3

selecting the synthetic image.
On average, participants scored 33.02 out of 51, which

means that they mistook 64.75% of the generated synthetic food
images as real images. Every synthetic food image has at least
twenty-five participants who thought it is real. Among the 17 syn-
thetic pizza images, on average, participants selected 45.65% of
them as real images. Among the 17 synthetic hamburger images,
on average, participants selected 38.29% of them as real images.
Among the 17 synthetic spring roll images, on average, partici-
pants selected 52.17% of them as real images. From our survey
results, more than half of our generated synthetic images are real-
istic enough to make participants select them as real images. We
can conclude from the subjective study that our proposed methods
can effectively learn realistic features from the real samples and
may be good enough to be used as representative training exam-
ples for downstream tasks, such as food image recognition when
there is a lack of training images.

Impact of Using Synthetic Images on Food Clas-
sification

Most deep learning-based methods require a large number
of training data which can be challenging for many applications.
Synthetic images that closely resemble real ones could be a po-
tential resolution to address this problem. In order to assess the
effect of using synthetic images as part of training data, we design
experiments to explore the impact of synthetic images as data aug-
mentation for the food image classification task.

Our experiment aims to classify food images from three dif-
ferent classes (hamburger, pizza, and spring roll). The images
we used for training are either randomly picked from the Food-
101 dataset (LR dataset) or high-resolution food images from the
Any-resolution dataset. We consider 3 experimental setups as de-
scribed below.

1. We train the ResNet-50 with only 200 real food images (100
from LR and 100 from the Any-resolution dataset).

2. We train the same model with 200 real images from the first
experiment and an extra 200 of our generated synthetic im-
ages.

3. We train the same model with the same 200 real images from
experiment one and an extra 200 real images (100 from LR
and 100 from the Any-resolution dataset). (Upper bound)

All the three experiments use the same testing set containing 100
images (50 from LR and 50 from the Any-resolution dataset). We
apply ResNet-50 as the backbone and keep the training settings
the same with a batch size of 64, and training epoch around 100
for all three experiments to ensure a fair comparison.

Figure 8 shows the comparison of the best training, valida-
tion, and testing accuracy results from three different experiments.
As expected from those plotted figures, Experiment 1 has the
overall lowest accuracy, i.e. 62.33%, since it uses the least amount
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Figure 8: ResNet-50 Training (Blue) and Validation (Orange) Accu-
racy for Three Different Experiments

of training data. Experiment 2 achieves 71.33% accuracy and
greatly improves the model by almost 10% by training with the
additional synthetic images. Finally, Experiment 3 (upper bound)
has the highest testing accuracy, 76.67%. As observed from the
plotted figure of Experiment 2, the validation accuracy is lower
than the training accuracy, which is caused by different data dis-
tribution between training and testing datasets since our generated
synthetic images still contain unnatural artifacts. Nonetheless, our
preliminary experiments demonstrate that using synthetic images
to augment datasets is effective in improving the model’s perfor-
mance on the food image classification task. Furthermore, com-
pared to pizza, hamburgers and spring rolls have lower accuracy
due to their more complex and dynamic features, which is still
difficult for our food image generation model to produce good
feature representation. This is consistent with our visual observa-
tion that the synthetic images of hamburgers and spring rolls are
less realistic than pizzas. Overall, we show that the generated syn-
thetic images are realistic enough to be used as training samples
when real data is scarce and can greatly improve the performance
of a deep learning model (in our case food classification).

Conclusion
In this paper, we propose an improved conditional synthetic

food image generation based on the StyleGAN3 baseline method.
The first improvement uses single-class training instead of multi-
class to avoid the inter-class feature entanglement. Next, we
leverage square-shaped image patches training to retain high-
resolution details in our generated images as opposed to a fixed
resolution input. With our improved methods, our synthetic food
image generation results are more realistic and contain more de-
tails compared to the baseline method. In addition to the quan-
titative evaluation of our proposed method, we conduct a subject
study to qualitatively assess the perceptual realism of generated
synthetic images. On average, participants mistaken 64.75% of
the generated synthetic food images as real images. To show the
impact of synthetic images for downstream tasks, we conducted

a set of experiments where synthetic images were used to aug-
ment training data for the food image classification task using a
ResNet-50 model. Results show significant improvement in clas-
sification accuracy. Our future work will focus on developing a
multi-label training strategy to generate multiple food classes in a
single image and apply it to other vision tasks such as food image
localization and volume estimation.
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