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Abstract. Event cameras are novel bio-inspired vision sensors
that output pixel-level intensity changes in microsecond accuracy
with high dynamic range and low power consumption. Despite
these advantages, event cameras cannot be directly applied
to computational imaging tasks due to the inability to obtain
high-quality intensity and events simultaneously. This paper aims
to connect a standalone event camera and a modern intensity
camera so that applications can take advantage of both sensors.
We establish this connection through a multi-modal stereo matching
task. We first convert events to a reconstructed image and extend
the existing stereo networks to this multi-modality condition. We
propose a self-supervised method to train the multi-modal stereo
network without using ground truth disparity data. The structure loss
calculated on image gradients is used to enable self-supervised
learning on such multi-modal data. Exploiting the internal stereo
constraint between views with different modalities, we introduce
general stereo loss functions, including disparity cross-consistency
loss and internal disparity loss, leading to improved performance
and robustness compared to existing approaches. Our experiments
demonstrate the effectiveness of the proposed method, especially
the proposed general stereo loss functions, on both synthetic and
real datasets. Finally, we shed light on employing the aligned events
and intensity images in downstream tasks, e.g., video interpolation
application. c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.6.060402]

1. INTRODUCTION
Event cameras measure changes in brightness at each
pixel independently instead of reporting pixel activations.
Event cameras have attracted increasing attention for their
high temporal resolution, high dynamic range and low
power consumption features, and have been applied to
various computer vision tasks [1–5]. However, existing event

†Work was done when they were interns at SenseTime Research.
Received July 5, 2022; accepted for publication Oct. 28, 2022; published
online Dec. 15, 2022. Associate Editor: Marius Pedersen.
1062-3701/2022/66(6)/060402/16/$25.00

cameras are either unable to obtain high-quality image pixel
intensities (DVS [6] sensors only output events) or suffer low
spatial resolution and lack of color information (dynamic
and active-pixel vision sensors [7]). These limitations make
it difficult for event cameras to assist computational imaging
tasks, as we cannot obtain high-resolution intensity images
and events simultaneously.

In this paper, we aim to connect a standalone event
camera and a separate modern intensity camera so that
applications could exploit the advantages of both sensors
(see Figure 1). Such application scenarios are not uncommon
for most consumer-level imaging devices, simply because
acquiring colorful visual contents with high resolution, high
speed, and low power consumption is without the scope
of any individual image sensors. We establish a connection
between these two sensors through a computational stereo
matching model and estimate their disparity. This disparity
describes the relationship between these two sensors and
allows the sensors to be combined to complete the task
that one sensor cannot achieve, e.g., obtaining both high-
resolution images and events simultaneously for downstream
tasks.

However, studying this problem is NOT a naive
extension of the existing stereo matching methods on a new
sensor setting, owing to the following technical barriers.
First, the current stereo networks are not optimal for
multi-modal problems. They assume that left and right
view images have the same modality and use the weights
shared feature extraction model for these images. Second,
it is challenging to obtain multi-modal data for training as
the acquisition of ground truth disparity for each different
setting is expensive. To practically apply amulti-modal stereo
framework, we need a robust training strategy and get rid of
the shackles of data annotation.On this front, self-supervised
learning provides a promising perspective to use the inherent
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Figure 1. The proposed intensity-event stereo setting, in which we use an event camera and an intensity camera. With the proposed self-supervised stereo
matching model, we can not only obtain the disparity used to calculate the depth map, but also build a connection between these two sensors. (a) The
signals are from these two displaced sensors and are unaligned. (b) We align these two signals by the proposed method.

Figure 2. This figure shows the overall framework of the proposed method. We first obtain rough reconstruction results using the existing methods from the
right view events. The multi-modal stereo network predicted a disparity map based on the right reconstructed results and left intensity images. The whole
system uses three kinds of loss functions for self-supervised training.

constraints and characteristics of the data to learn the desired
stereo matching without ground truth disparity indirectly.
However, the prerequisite for the success of the existing
self-supervised stereomatching framework is to establish the
photometric consistency relationship between the projected
images from two views. This brings up the third problem.The
left and right view signals have different physical meanings
and data structures in our setting. This causes the failure
of the self-supervised learning framework as the previous
photometric constraint does not hold.

In this work, we propose a self-supervised method
for learning the multi-modal stereo matching without any
ground truth disparity (see Figure 2). To facilitate the
existing outstanding image stereo models on the proposed
intensity-event setting, we first convert the event stream
to roughly reconstructed images through the off-the-shelf
models [8, 9]. The roughly reconstructed images are still in
a different modality from the images of the other view as
the color and detail information cannot be well restored.
We improve the existing stereo networks and make images
with different modalities to use modality-specific feature
extraction sub-modules. In the proposed self-supervised
method, we introduce a gradient structure consistency loss
for the geometry constraints between the intensity and
the reconstructed images after projection, which mainly
leverages the edge information provided by events. Last but
not least, only using the structure consistency may result in
poor quality disparity maps as the supervision is sparse and

vague. To overcome this issue, we propose a novel loss based
on the cross-consistency between the disparities calculated
across different views using different modality images. We
also constrain our training according to the fact that the
disparity of the same view should be zero. The proposed loss
functions lead to improved stereomatching performance and
robustness.

The calculated disparity maps can be used in many
computational photography tasks, with depth estimation
first. Projecting events to intensity camera view also allows
many applications that could not be realized in the past due
to hardware limitations. We can now obtain high-resolution
events and intensity images simultaneously. At last, we
experimentally demonstrate the potential of the proposed
framework using the warped event to facilitate event-based
video frame interpolation task.

2. RELATEDWORK
2.1 Event Cameras
Event camera is a kind of sensor that records signals when
the scene exhibits illumination changes [6, 7]. An event
camera reports signals (events) asynchronously when the
log intensity change exceeds a preset threshold τ . We have
witnessed the rise of event cameras due to their distinctive
advantages over conventional active pixel cameras, e.g.,
higher frame rate, higher dynamic range and lower power
consumption. These properties attracted the use of event
cameras in many computer vision tasks, e.g., tracking
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[1, 10], deblurring [2, 11], optical flow estimation [3, 12],
SLAM [4, 13, 14], video frame interpolation [5, 11]. However,
the unique data structure of event cameras renders the
existing computer vision tools and algorithms unusable,
which places amajor obstacle against the application of event
cameras. Many works have been focusing on bridging events
and conventional cameras by reconstructing intensity frames
from events [15–20], thus allowing modern vision algorithm
to take place. Rebecq et al. [8] proposed E2VID, a recurrent
network to reconstruct videos from a stream of events
and trained it on a large amount of simulated event data.
Scheerlinck et al. [9] proposed FireNet, which simplified
the neural architecture in Ref. [8] with a smaller number
of parameters while maintaining similar quantitative results.
Although many studies have attempted to reconstruct the
intensity image from the event, none of these methods can
recover the intensity and color information well. Therefore,
the absence of color information in the reconstructed image
degrades the performance for downstream tasks. In our
application, the color mismatch makes the existing self-
supervised stereo matching algorithm based on photometric
consistency invalid.

2.2 Stereo Matching
Stereo matching is the process of linking the pixels in
different views that correspond to the same point of the
scene. It follows a long line of research works. Early works
involve searching and matching corresponding pixels on the
epipolar line [21, 22]. Recently, deep learning basedmethods
have dominated the field of stereo matching due to their
superior performance and usability. Zbontar and LeCun
[23] are among the first to use a convolutional network for
computing stereo matching cost in image pairs. Following
this, a number of studies were proposed to improve the
performance, e.g., inner product layer [24], encoder-decoder
architecture [25], 3D convolution cost-volume module [26],
spatial pyramid pooling and 3D hourglass convolution [27],
guided attention cost-column [28], PatchMatch module for
sparse cost volume representation [29], intra-scaling cost
aggregation [30]. With the development of various sensors,
multi-model and cross-spectral stereo matching has become
an emerging topic [31–36]. But none of them is suitable
for calculating the correspondence between intensity images
and events or event reconstruction images. Concurrent with
our work, Mostafavi et al. [37] investigated stereo matching
with event-intensity cameras on both views and proposed
an event-intensity network that refines image details using
events. Our work is essentially different in purpose and
method; we use only one intensity and one event camera and
train our model self-supervised.

2.3 Self-Supervised Learning
Learning-based stereo methods are data-hungry. They often
require a lot of ground truth data for training. Over the
past few years, self-supervised models have been developed
to learn stereo matching without ground truth annotations.
They are usually built on the principles of disparity

smoothness prior and re-projection photometric consistency
constraints. Garg et al. [38] tackled monocular depth
estimation by minimizing the loss between the source image
and backwards-warping from the subsidiary stereo image.
Similarly, Godard et al. [39] included a left-right consistency
to enforce disparity prediction. They further proposed a
new minimum re-projection loss and auto-masking loss to
improve the performance [40]. Zhou et al. [41] adopted
left-right check to guide the training and pick suitable
matching as training data. Zhi et al. [32] proposed a
self-supervised learning framework for cross-spectral stereo
matching. They introduced a material-aware loss function
to handle regions with unreliable matching. However, their
method involves the translation between intensity and
near-infrared images and is thus unsuitable for our setting.

3. METHOD
In this section, we describe our self-supervised intensity-
event stereo matching framework. We first introduce the
problem formulation and overall framework design in
Section 3.1. We then describe the modified stereo network
for multi-modal problem in Section 3.2. The loss functions
are introduced in Section 3.3, featuring a gradient structure
consistency loss and general losses for multi-modal stereo
matching.

3.1 Overall Framework
The multi-modal intensity-event stereo matching problem is
first formulated as follows. As shown in Fig. 1, an intensity
camera and an auxiliary horizontally displaced event camera
are used in our setting. In this work, we assume that the
camera on the left is the image camera, and the one on the
right is the event camera. Let I l be the left view intensity
image and {Er

m}m∈N be the event stream obtained by the
right event camera within a short amount of time before
the intensity image is captured. The underlying problem can
be considered a data association problem, that is, to find
correspondences between the points in the left image and
right events. The correspondences are formed as the final
disparitymap, which is also the output of the stereomatching
problem.

However, the right signal (event) is not in the same
modality as the left signal (intensity images), failing the
existing methods with the given problem setting. A recon-
struction network is employed at first to convert the event
stream {Er

m}m∈N to a roughly reconstructed image I r . In
our work, we use two popular event reconstruction models,
E2VID [8, 42] and FireNet [9]. Note that these models
are replaceable. Given these two images, we can adapt the
existing image stereo models to predict disparity between
images, which is also the disparity between the left image and
the right events. However, the event camera does not record
the value of the pixels and only records the pixels changing.
Thus the rough reconstruction I r only contains usable edge
information but are unreliable in color and detail and still in
different modalities with I l (see the reconstruction result in
Figure 3).
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Figure 3. The visualization of different loss functions. On the left of the figure is the event, the reconstructed image using E2VID [8], the intensity image
and their gradient visualization. The heat maps show the loss values with different displaced pixel numbers. In the centre of the heat maps, there is no
displacement between the two images being compared, and the loss value should be the smallest.

Figure 4. Using projection method and the multi-modal stereo model, we can obtain all four combinations of two views and two modalities. The proposed
general multi-modal stereo losses are derived from the geometry constraints between these images, including disparity cross-consistency loss and internal
disparity loss.

3.2 Multi-Modal Stereo Network
As stated above, we need a multi-modal stereo network
to handle inputs with different modalities (either the right
view is event voxel or reconstructed images). Although
we can apply the previous convolutional stereo matching
networks theoretically, the difference in modalities still
poses challenges. Most stereo networks are composed of
feature extraction, correlation and aggregation sub-models,
and the feature extraction model usually share weights for
both two views. This weight sharing strategy is effective
originally but poses limitations for images with different
modalities. We make the minor changes to these networks
to make images with different modalities using modality-
specific feature extraction sub-modules. This design has two
advantages. First, the feature extraction models dedicated
to different modalities avoid confusion between different
images. Second, the new design allows us to swap the
modalities of the left and right views and predict disparity
of the other view, as long as we swap them together with the
feature extraction branches. The second property is essential
for the cross-consistency loss, which we will describe in
Section 3.3. Note that this structure also allows the event
voxel to be used directly as input.

3.3 Loss Function
To achieve the goal of self-supervised learning, we define the
loss function as the combination of the following four parts:

L= λgdLgd + λsmLsm+ λccLcc + λitnLitn, (1)

where the λs denote the hyper-parameters that control the
loss weights. Next, we describe each component of the loss
function.

3.3.1 Gradient Structure Consistency Loss
One core guarantee for the success of self-supervised stereo
matching is that the output disparities indicate the epipolar
geometry relationship between the left and right views.
Usually, we can achieve this goal by comparing the projected
left image and right images with image similarity metrics,
e.g., pixel-wise loss and perceptual loss [43, 44]. However,
the quality of the reconstruction result is usually poor, which
fails the previous loss functions. Fig. 3 shows an example
of reconstruction. As one can observe, the reconstruction
network fails to recover any color information. However, its
gradient reserves the structure information of the scene. We
propose to use image structure loss [45] calculated on image
gradient to constrain the stereo training. Let Gl

= ∇xy I l be
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Figure 5. Results of different methods on synthetic dataset. Monocular model does not work well as it cannot be fine-tuned under this setting. Stereo
matching between intensity and reconstruction fails because the color discrepancy prevents the network to relate corresponding pixels. After self-supervised
training, our predictions are on par with the ground truth. The reconstruction network is FireNet and the stereo network is the modified AANet.

the gradient of I l and Gr
= ρ∇xy I r be the adjusted gradient

of I r with scaling factor ρ. The used gradient structure
consistency loss is formulated as

Lgd = 1−
2µGlµGr + c1

µ2
Gl +µ

2
Gr + c1

×
2σGlGr + c2

σ 2
Gl + σ

2
Gr + c2

, (2)

where c1, c2 are constants and µGl , µGr , σGl , σGr , σGlGr

represent means, standard deviations and cross-covariance
of the gradient pair. In practice, Eq. (2) is calculated on the
local patch pairs and then summed up as the final loss.

We compare different losses in Fig. 3. We set the
reconstructed image unmoved and shift the intensity images
so that they are unaligned to simulate the situation after
projection during self-supervised training. We then visualize
the distribution of the loss values. We examine commonly
used pixel-wise l1-norm loss [39], pixel-wise l1-norm loss
on the image gradient, structure loss [39] on the image, and
the proposed structure loss on the image gradient. As one
can observe, the pixel-wise losses cannot indicate the optimal
point. The structure loss calculated on images can indicate

the optimal point but has an unsmooth loss landscape. Only
the proposed loss has a relatively smooth loss landscapewhile
successfully indicating the optimal point.

Directly calculating photometric consistency between
warped images may introduce blurring to the predicted
disparity map because there are occlusion areas between
left and right view scenes, where warping cannot fill. We
introduce the occlusion maskM to mask out these occlusion
pixels. We first perform left-right consistency check by
projecting the right disparity using the left disparity map and
calculate their coherence. The inconsistent region, which is
likely to be the occlusion region, is marked as the occlusion
maskM , which can be formulated as

M =

{
0, ‖Dl

− P(Dr
;Dl)‖1 < t

1, ‖Dl
− P(Dr

;Dl)‖1 ≥ t,
(3)

where P(Dr
;Dl) represents projecting the right disparity

using the left disparity and t is the threshold parameter.
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Figure 6. Comparison of different methods on the MVSEC dataset [49]. Notice that the direct event reconstruction quality on real data is far inferior to
that of synthetics data, yet our framework can still achieve decent results, which shows its robustness. The reconstruction network is E2VID, and the stereo
network is the modified AANet.

Figure 7. The convergence curves of using different losses. The left figure shows that the proposed gradient structure loss can provide meaningful
self-supervision. The right figure indicates that the proposed general stereo loss could produce robust training effects. Some methods failed in the middle
of training.

3.3.2 Disparity Smoothness Loss
After obtaining the disparity maps for both viewsDl andDr ,
we follow the previous methods for estimating dense flow
or disparity [39] and employ an edge-ware smoothness loss.
This loss is symmetrical for both left and right views. Thuswe
omit the superscript. We encourage disparities to be locally
smooth with a penalty on the disparity gradients ∇xD and
∇yD. As depth discontinuities often occur at image edges,
we weight this cost with an edge-aware term using the image
gradients ∇x I and ∇y I , which is formulated as

Lsm =
1
N
∑
i,j
|∇xDij|e−|∇x Iij|+ |∇yDij|e−|∇y Iij|, (4)

whereD denoted the disparity map corresponded with I , the
subscripts i and j indicates pixel coordinates, N is the total
number of pixels.

3.3.3 General Multi-Modal Stereo Losses
Although gradient structure consistency loss can guide stereo
training, the provided supervision is sparse and not that
specific as pixel-level losses. We cannot obtain accurate
disparity only with the above losses. Exploiting the internal
stereo relationship between different views and different

modalities, we propose general multi-modal stereo losses.
An simple illustration of the proposed losses is shown in
Figure 4. With the I l and I r at one hand, we calculate
the disparities Dl and Dr that correspond to I l and I r ,
respectively. By projecting I l and I r according to Dl and Dr ,
we obtain I rw and I lw , which represent different views and are
in different modalities: I lw is with the same modality with
I r but with the same view with I l ; and I rw is with the same
modality with I l but with the same view with I r . Using the
same multi-modal stereo network, we can obtain Dl

w and
Dr
w – the disparities calculated on two projected images.

The proposed loss functions are built based on two facts.
According to the fact that the disparity between I lw and I rw
should be the same disparity between I l and I r , we build
the disparity cross-consistency loss to make them as close as
possible:

Lcc =
1
N
∑
i,j

∣∣∣|Dl
| − |Dr

w |
∣∣∣+ ∣∣∣|Dr

| − |Dl
w |
∣∣∣, (5)

where we take the absolute value for disparities as the
projection directions may be opposite, and we only need
their shapes. According to another fact that there should be
no disparities within the same view, we build the internal
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disparity loss:

Litn =
1
N
∑
i,j
|Dr

itn| + |D
l
itn|, (6)

whereDr
itn is the calculated between I

r and I rw andDl
itn is the

calculated between I l and I lw .

4. EXPERIMENTS
4.1 Implementation Details
In this section, we experimentally evaluate the stereo
matching performance of the proposed method. We use
both synthetic and real data in our experiments. For the
experiments based on synthetic data, we employ the Stereo
Blur Dataset proposed by Zhou et al. [46], which contains
20,637 blurry-sharp stereo image pairs from 126 diverse
sequences and their corresponding bidirectional disparities.
To reliably synthesize events, we first increase the sequence
frame rate from 60 fps to 2,400 fps via a high-quality
frame interpolation algorithm [47] and then applying the
V2E event simulator [48] to the high frame rate sequences.
We use the officially split method, where 89 sequences are
used for self-supervised training, and 37 sequences are used
for testing. For real sensor data, we use the MVSEC [49]
dataset, which contains the stereo intensity images and events
captured by DAVIS 240C. MVSEC also provides ground
truth depth captured by LiDAR. We use the official split
method for theMVSEC dataset. Ourmethod is implemented
using Pytorch [50] framework and trained using NVIDIA
V100 GPUs. For the stereo network design, we build our
multi-modal networks by modifying DeepPruner [29] and
AANet [30] according to Sec. 3.2. Note that our framework
is compatible with the most alternative architectures of the
reconstruction and the stereo networks. For optimization,
we use Adam [51] with β1 = 0.9, β2 = 0.999 and learning
rate 1 × 10−4. We set the weighting of the different
loss components to λgd = 1, λsm = 0.1, λcc = 0.025 and
λitn = 0.005. The settings of ρ and t are experimental. The
final value of ρ is 1 on the synthetic dataset and 1.5 on the
real world data. The value of t is 2 for all datasets. The overall
self-supervised training costs about 2 days.

4.2 Stereo Matching Results
We first quantitatively demonstrate the effectiveness of the
proposedmethod in Tables I and II. Themetrics are averaged
end-point error (EPE) and >1-pixel, >3-pixel and >5-pixel
error. Under the proposed setting, only limited methods can
be used to obtain disparity maps as there is no multi-modal
stereo matching model for event-intensity setting. We
included the monocular depth model [40] for comparison,
which was not fine-tuned on the target data, as we cannot
obtain intensity images from both left and right views at
the same time in this setting theoretically. We also consider
the monocular event depth model [52], but the advantage
of the event model is to combat high-speed motion and
low-light situations that the intensity camera cannot handle,
and its effect cannot be compared with the results predicted

Table I. Quantitative comparison of different approaches on stereo matching using our
synthetic stereo event dataset [46]. ↑ means the higher the better while ↓ means the
lower the better. ‘‘*’’ indicates using the modified stereo network.

Model EPE ↓ Bad Pixels ↓
δ > 1 δ > 3 δ > 5

Monodepth2 8.849 0.953 0.781 0.648

DeepPruner (upper bound) 0.712 0.123 0.027 0.015

FireNet+AANet (baseline) 4.811 0.649 0.419 0.336
E2VID+AANet (baseline) 5.154 0.673 0.440 0.379
FireNet+DeepPruner (baseline) 10.29 0.417 0.226 0.181
E2VID+DeepPruner (baseline) 6.386 0.381 0.184 0.140

FireNet+AANet* (Lgd andLsm ) 1.591 0.366 0.139 0.088
E2VID+AANet* (Lgd andLsm ) 1.496 0.351 0.123 0.075
FireNet+DeepPruner* (Lgd andLsm ) 1.336 0.355 0.123 0.068
E2VID+DeepPruner* (Lgd andLsm ) 1.321 0.355 0.116 0.068

FireNet+AANet (all losses) 1.988 0.409 0.189 0.134
E2VID+AANet (all losses) 1.775 0.378 0.166 0.117
FireNet+DeepPruner (all losses) 1.626 0.377 0.147 0.097
E2VID+DeepPruner (all losses) 1.57 0.368 0.143 0.094

FireNet+AANet* (all losses) 1.201 0.306 0.110 0.065
E2VID+AANet* (all losses) 1.101 0.287 0.094 0.057
FireNet+DeepPruner* (all losses) 0.971 0.317 0.087 0.049
E2VID+DeepPruner* (all losses) 0.913 0.289 0.074 0.042

Table II. Quantitative comparison of different approaches on stereo matching using
real-world dataset MVSEC [49].↑ means the higher the better while↓ means the lower
the better. - means the method completely fails.

Model EPE ↓ Bad Pixels ↓
δ > 1 δ > 3 δ > 5

Monodepth2 10.235 0.914 0.844 0.768
E2VID+AANet (baseline) 11.332 0.954 0.864 0.776
E2VID+AANet (all losses) 5.830 0.736 0.660 0.434
E2VID+DeepPruner (all losses) 4.979 0.673 0.581 0.384
E2VID+AANet* (all losses) 2.734 0.653 0.330 0.197
E2VID+DeepPruner* (all losses) 2.397 0.601 0.268 0.164

using the intensity images. We can have the following
observations. Firstly, the proposedmethod can achievemuch
better results compared withmonocular disparity estimation
results using monodepthv2 [40] that is only based on the
left image. It indicates that the information of another view
plays an essential role in stereo matching. The unsatisfactory
effect prevents us from using this disparity map to align
events with the intensity image. We then show the results of
directly performing stereo matching using the reconstructed
right image and left image (marked as the ‘‘baseline
experiments’’). As can be seen, since the reconstructed
images have a huge color difference against the left view
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Figure 8. Comparison between our method with and without the cross-consistency loss. Our consistency term helps outline the precise edge in the disparity
map.

Figure 9. Connecting events and intensity. a, the calculated disparity map using the proposed method. b, before warping, events and intensity image
are not aligned spatially. c, after warping using disparity map, the events and intensity image are well aligned. d, we employ the warped events and
intensity image to perform temporal frame interpolation using [11].

image, it isn’t easy to obtain a good result by employing
the existing stereo vision models. The visualization results
in Figure 5 also speak to similar conclusion. However,
introducing themodified stereo network and self-supervised
learning using only gradient structure loss can improve
the stereo estimation results. Even if all the loss functions
are used, the network architecture is still a significant
obstacle to improving performance. Third, the proposed
self-supervised learningmethod unleashes the full potential
of the overall framework’s effect, which proves the advantage
of our self-supervised learning strategy, that is, learning from
unlabeled data. We visualize the results of the proposed
method in Fig. 5 and Figure 6. As one can observe, we
can only get poor matching results in these scenarios
based on the pre-trained stereo network. Our full model
produces accurate object boundaries and better preserves the
overall scene structures. We also provide the upper bound
performance obtained by a fine-tuned DeepPruner network
using both sides’ intensity images as a reference. It can be seen
that the information lost by the event is detrimental to the

finalmatching result. But the purpose of ourmethod is not to
rely on events to obtain better matching results but tomake it
possible to calculate reasonable disparity under the proposed
intensity-event setting.

4.3 Ablation Study
To study the effects of each component in the proposed
method, we conduct several ablation studies. All the
experiments are conducted using FireNet reconstruction
and a modified AANet stereo model. We first examine
the use of gradient structure loss function. We train our
model using the four alternative loss functions described in
Section 3.3 and their convergence curves are shown in the
left figure of Figure 7. As can be seen, all pixel-wise loss
functions fail to converge. They can only provide very limited
information, and continuous optimization of these losses will
bring adverse effects and make training fail. The structure
loss directly calculated on images performs well initially,
but it could no longer provide adequate supervision as the
training progressed. The proposed gradient structural loss
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Figure 10. Failure cases visualization. The proposed method faces challenges when the reconstruction only contains very limited information.

can produce a relatively reliable convergence curve, although
it is still tricky to improve performance with training steadily.
We next involve the proposed cross-consistency loss and
internal disparity loss in training. The results are shown in
right figure of Fig. 7. It is surprising that although it cannot
be compared with competitors initially, the proposed losses
make the training processmore stable. The proposedmethod
can steadily and continuously improve performance without
any ground truth data.We visually explain why the proposed
cross-consistency loss is so effective. Figure 8 shows some
comparisons between models trained with and without the
cross-consistency loss. The results speak to the fact that the
inclusion of this loss improves the quality of the result. This
loss term helps outline the precise edge and generate sharp,
accurate shapes in the disparity map.

4.4 Connecting Events and Intensity
We next demonstrate the use of a disparity map to establish
a connection between the intensity camera and the event
camera. Due to the displacement between these two cameras,
even if we can obtain the left view intensity image and
the right view events, the disparity between them makes
it difficult to make full use of the advantages of the
two sensors, as shown in Figure 9(b). In this case, many
algorithms and applications that require alignment of events
and images cannot be implemented, e.g., [11, 53]. We first
obtain the disparity map using the proposed multi-modal
stereo method. Each value in the disparity map indicates
the number of pixels that need to be shifted horizontally.
We warp events by changing the x coordinate in each
event tuple (xm, ym, tm, pm), where xm, ym, tm denote the
spatial-temporal coordinates, and pm ∈ {−1,+1} denotes
the polarity of the event. The warped event are visualized
in Fig. 9(c). It can be seen that the warped right view
events and the left view image are well aligned both spatially
and temporally. Obtaining such a connection between two
sensors allows many downstream tasks. Here we show the
application potential by the event-based video interpolation
task. Motivated by the physical model of event that the

residuals between a blurry image and sharp frames are the
integrals of events, Lin et al. [11] propose to estimate the
residuals for the sharp frame restoration based on events.
Our reconstruction result shows good fidelity performance,
which further proves the application value of the proposed
problem setting.

4.5 Limitations
Finally, we show some failure cases and analyze the potential
limitations. We show two failure cases in Figure 10 and both
of them are from MVSEC. The direct reconstruction using
E2VID contains only very limited information, resulting in
the failure of stereo matching. This shows a possible flaw
of the proposed method, that is, it still faces significant
challenges when reconstruction results are very vague. A
possible solution is to design a stereo network to perform
stereo matching between event streams and intensity images
directly. In that case, the loss functions described in this
paper can still provide good self-supervised learning results.

5. CONCLUSION
This paper presents a novel camera setting with an intensity
camera and an event camera and establishes a connection be-
tween them with a multi-modal stereo matching task. Based
on the proposed self-supervised method, we can obtain
fine disparity maps under this novel setting and not collect
any ground truth disparities. Experiments demonstrate the
effectiveness and the application value of the proposed
method.

APPENDIX A. MORE STEREOMATCHING RESULTS
We first provide more stereo matching results using different
methods. In Figure C4, we provide the comparison of
synthetic events data. The synthesis method is described in
Sec 4.1. In Figure C5, we provide the comparison results on
theMVSEC [49] dataset. In these experiments, we use E2VID
as the reconstruction network and AANet [30] as the stereo
matching network. It can be seen that our method provides
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the best results and performs well in these cases. In Fig. C5,
we also compare our method with another commonly
used method when encountering multi-modal problems,
e.g., Zhi et al. [32] proposed to use a spectral translation
network to facilitate cross-spectral stereo matching. We
develop a similar adaptation network to translate the rough
reconstructed right view image to add color information.
The network structure is ResNet image translation structure,
similar to SRResNet [54] but without an upsampling layer.
We use a supervised training method to train this network,
and the ground truth of the intensity image is provided in
MVSEC.As can be seen, simply using themodality alignment
method cannot bring better results. There are two main
reasons for this. First, the color information has been lost in
the events and reconstruction results and cannot be simply
recovered by an adaptation network. Second, the pre-trained
stereo model cannot generalize well in the MVSEC dataset.
This also provides the necessities of learning using target data
in a self-supervised manner.

APPENDIX B. EVENTWARPING ANDVIDEO FRAME
INTERPOLATION
In this section, we show more results of warping events
to intensity image. We first obtain the disparity between
these two sensors using the proposed method. The warping
provides us with events and intensity images that are aligned
both spatially and temporally. We can use the obtained
events and images to support downstream applications. In
this supplementary material, we show more video frame
interpolation [11] results in Figure C6.

The proposed method has additional value in this
respect. Due to the hardware limitations of the event camera,
high-resolution events and high-resolution intensity images
are not available simultaneously. But with the proposed
method, we can obtain high-resolution events and images
simultaneously through two sensors. This makes a series of
applications, such as video frame interpolation possible.

APPENDIX C. EFFECT OF THE LOSS FUNCTIONS
We provide more results for the proposed general
multi-modal stereo loss functions. We first show the
convergence curves with different loss functions and metrics
in Figure C1. It can be seen that the proposed loss functions
enable the model to improve its performance through
self-supervised learning continuously. The model without
the proposed losses only provides a good guide initially, but
when optimizing continuously, it does notmatch the purpose
we want to achieve. Since the gradient structure loss will be
numerically unstable when the difference between the two
images is large, some methods will fail halfway. Although
the internal disparity loss only provides simple, naive
supervision, it has successfully improved the performance.
We will further understand these two loss functions through
visualization results. Figure C2 and Figure C3 show some
error map visualization results. One can first observe from
Fig. C3 that the proposed cross-consistency loss helps

Figure C1. The convergence curves of using different losses. The
proposed general stereo loss could produce robust training effects. The
method of ‘‘no general stereo losses’’ failed in the middle of training.
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Figure C2. Visualization results of the proposed loss functions. This is a failure case. The disparity of the front object exceeds the upper limit of the network
(in this case, the upper limit is 41 pixels). One can see that the proposed internal disparity loss points out where the error occurred.

Figure C3. Visualization results of the proposed loss functions.
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Figure C5. Stereo matching comparison of different methods on the MVSEC [49] real-world dataset.
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Figure C6. Connecting events and intensity. The event warping results and the temporal frame interpolation results using the warped events and intensity
images using [11].

outline the edge and shape of the disparity. The proposed
cross-consistency loss promotes the consistency of shapes
between different views and provides additional information
for training.We can also see from the cross-consistency error
maps and internal disparity error maps that the introduction
of these losses reduces the degree of these inconsistencies,
especially for the internal disparity loss. Fig. C2 shows a
failure case and also show how the internal disparity loss
works. In this case, the disparity of the front object exceeds
the upper limit of the network (we set the max disparity to

be 41 pixels). The internal disparity loss reveals the failure
area.

APPENDIX D. ALTERNATIVE FRAMEWORK
We also present an alternative framework where the stereo
network takes the right event voxel and the left intensity
image as input directly. The framework is shown in
Figure D1. In this framework, the network can also be the
convolutional multi-modal stereo network. However, using
convolution to process event voxel directly tends to bring
poor results. We did not use this alternative since existing

Figure D1. An alternative framework to the proposed self-supervised learning method. The stereo network takes the right event voxel and the left intensity
image as input directly.
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convolutional networks would be significantly better at
processing images. But this alternative shows that our general
multi-modal stereo consistency loss can be generalized to a
wider range of application scenarios.
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