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Abstract
In the past decades, developments in the field of com-

puter vision have made both the software and hardware
more capable and more easily accessible. This has enabled
otherwise complex vision systems to be used in other fields,
such as autonomous robotics. Although image processing
systems in the visible light spectrum are commonplace in
robotics today, the IR spectrum is still rarely used, although
it offers certain advantages. A thermal camera can sense
the temperature of objects, is independent of illumination
and can actually see through heavy smoke and fog. This
makes it a useful tool in particular in the field of rescue
robotics, where poor vision conditions are to be expected.
In this paper, the feasibility of using two thermal cameras
in a stereo vision setup to map indoor scenes is to be exam-
ined. It is meant to allow an autonomous robot to perceive
its indoor surroundings as a 3D space, even in poor vision
conditions. The biggest challenges are the calibration of
thermal cameras and the proper filtering of the raw image
and the resulting disparity map. Simple and easily imple-
mented solutions are proposed for each of these issues.

Introduction
In the past two to three decades, a lot of progress has

been made in the field of computer vision. Driven by the
increased availability and affordability of hardware, in com-
bination with an increase in computational power, a lot of
developments have been made in the field. One of these
developments, which is relevant to this paper, is the abil-
ity of autonomous vehicles to analyse their environment
using such computer vision systems and to then draw con-
clusions and to act accordingly. While a lot of research has
been conducted with vision systems that sense visible light,
precious little has been done to explore the possibilities of
using exclusively infrared vision systems for this task.

The aim of this work is to investigate the application of
stereo camera systems operating in the long wave spectral
range (LWIR, long wave infrared, 8 µm - 12 µm). In this
way, such systems use the thermal radiation emitted by ob-
jects instead of reflected light. The main advantage is that
autonomous robotic vehicles could now be used in heavily
smoky environments. Conventional systems operating in
the visible range (VIS, 0.4 µm - 1µm) no longer provide re-
liable image data in such situations due to absorption and
scattering effects of light. The desire for a system such as
the one proposed in this paper arose from concrete prob-

Figure 1: DRZ challenge scenario at the RoboCup German
Open 2022: An accident in a chemical laboratory with
explosive substances has been reported and limitations of
visual and LiDAR sensor in dense smoke [5]

lems in the application area of robotic "Search and Rescue"
missions. The question was raised how a robot can find its
way through an environment with poor visibility, due to
either heavy smoke or complete lack of illumination, and
still perform certain tasks, such as localizing humans or
mapping the area. This paper presents first experiments
with a stereo vision system that enables a mobile robot to
analyze indoor environments in situations with poor visi-
bility due to e.g., heavy smoke, thick gas or a lack of a light
sources in the visible light spectrum.

Related Work
This chapter briefly summarizes the major work and

advances in the field of stereo image processing showing
that there is only very little literature on infrared based
stereo systems. In addition, the main differences in the
operation of such systems will be discussed. Finally, the
important process of camera calibration in this context is
discussed.
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Visible spectrum stereo vision systems (VIS)
The central problem in stereo applications is find-

ing corresponding pixels in the two respective camera im-
ages. This issue was solved by Hirschmüller in [9], whose
semiglobal matching algorithm has become the de facto
standard in stereo vision. Most research thereafter has
been focused on applying this algorithm in different situ-
ations, like in [3], [7], [22], or developing novel algorithms
for very specific applications, like in the work [6].

The technology for VIS-stereo-systems has now
reached a level of maturity that allows such systems to
be purchased commercially. Well known companies, like
"FLIR" [26] and "Intel" [11], and lesser known companies
that specialise in stereo vision, like "Stereolabs" [23] and
"nerian Vision Technologies" [16], offer such stereo vision
systems.

Combined approaches (VIS + IR)
In contrast to VIS-stereo-vision with disparity map al-

gorithms [8], vision systems using multiple spectral ranges
at the same time are not commonly used and are currently
a popular research topic [2], [4]. The aim of such systems is
basically to use or compensate the advantages and disad-
vantages of the respective spectral ranges. Different cam-
era combinations (with different wavelength ranges) are
also possible, e.g.:

• 2 cameras with different spectral ranges each
• 2 cameras with the same spectral ranges
• 2 complete stereo systems each with different spectral

ranges (i.e. 2+2 cameras)

The general goal of these works is to map thermal
LWIR data on to VIS images. Hung et al. have used two
stereo setups, one utilising the visible light spectrum, the
other utilising the thermal spectrum, to extract a spatial
region of interest from the thermal stereo data, in order to
filter visible light stereo data [10]. Stojcsics et al. have pro-
posed a novel method to improve the resolution of cheap
thermal cameras using a single visible light camera, to im-
prove the mapping of thermal data to spatial data obtained
using photogrammetry for outdoor scenes [24]. Jung et al.
have also used a single thermal and a single visible light
camera to map thermal data to the data of the visible light
camera, although in this case only in 2D [12]. Schramm et
al. have proposed a setup utilising 3 spectra: visible light,
short wave infrared (SWIR) and LWIR. It consists of a
visible light stereo setup, a SWIR structured light depth
sensor and a single thermal camera. This approach was
chosen to create a robust thermography system, capable of
mapping thermal data to 3D objects and spaces [21].

Another application was presented recently by Mouats
et al. They propose a stereo setup using a single visible
light and a single thermal camera, to allow for egomotion
estimation of ground vehicles [15]. The results of this work
seem promising (especially with respect to mobile robotics
applications), but clear drawbacks are also apparent - in
particular, the thermal camera generally extracts far fewer
points for stereo matching than its visible light counterpart

(due to less textured image structures). Conversely, the
VIS camera appears to be more susceptible to glare.

Infrared spectrum stereo vision system (IR)
In contrast to visible spectrum vision systems and

combined approaches, not much work seems to have been
done in stereo vision using solely thermal cameras. An at-
tempt to put this into practice was made by Kim et al. in
[13], and while they managed to implement a simple cali-
bration method and the detection of fire and humans, they
did not manage to extract any depth information using a
thermal stereo setup. Mouats et al. in [14] have, however,
managed to implement such a system for Unmanned Aerial
Vehicles (UAVs). They have proven that visual odometry,
3D reconstruction and egomotion estimation using only
thermal cameras is possible, with an accuracy compara-
ble to a setup using only the visible light spectrum. The
scenarios they tested their methods were limited to urban
outdoor areas, in which their setup worked well even under
adverse weather conditions and at night.

Calibration
One thing all stereo vision systems have in common,

regardless of their used spectra, is that the cameras have to
be calibrated. This calibration process corrects lens errors
and is used to geometrically determine the relative camera
poses to enable correct depth measurements. Practically,
a calibration plate with an imprinted pattern consisting of
regularly arranged structures (such as a checkerboard pat-
tern or circles) is used for this purpose. While this process
is relatively simple in the visible range, visualizing such
patterns in infrared light is somewhat more difficult. A
few works simply tried printing out a paper calibration pat-
tern and heating this up with a heat lamp. In theory, the
black parts of the pattern should radiate more heat than
the white spaces in between, allowing a standard calibra-
tion procedure. They have concluded, however, that this
method is too inaccurate or too unreliable to be used [27],
[14]. The work of Saponaro et al. has proven, however,
that this approach is possible with the proper processing
of the images [20]. In summary, it takes considerable effort
to implement such a method, and it seems easier to cre-
ate calibration plates specifically adapted for this use case,
which can subsequently be used in a more practical way.

Most works have utilised one of two approaches to de-
sign a special calibration target for thermal cameras. The
first one involves putting a pattern on top of a reflective
metal surface. This approach has the advantage that it
can be used for all visible light and infrared spectra, but
it is rather difficult to create an object like this with the
necessary accuracy [14], [15]. The second approach gen-
erally involves recreating a common pattern with active
heating elements. This can be done either by inserting ac-
tive heating elements in an existing target [13], which does
not promise great accuracy, or cutting out a plate with the
calibration pattern and mounting a large, active heating or
cooling element on the back [14], [10], [12]. In our opinion,
this seems to be the most promising approach, as it is the
easiest to put into practice while providing very accurate
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results.
Basically, the solutions presented are based on proven

concepts of camera calibration, especially since available
calibration software (e.g. OpenCV or Matlab) was used.
However, there are exceptions, especially for specific ap-
plications. Yu et al. have proposed a novel calibration
target in their work [27]. It consists of a large cross-shaped
structure with active heating elements mounted in defined
positions. This approach is well suited for outdoor appli-
cations at large distances, e.g. for UAVs or autonomous
ground vehicles, as it is easier to build such large calibra-
tion object than a traditional target of the same size [27].

Overview of the processing steps applied
Generally, a stereo algorithm takes two raw images

and calculates a 3D map of the scene. In order to extract
real world measurements from the images, the stereo cam-
era setup must be calibrated first. This determines the
intrinsic and extrinsic camera parameters, which in turn
are needed for the rectification of the images and the stereo
matching algorithm. The output of this system is expected
to be a type of 3D map with a minimum accuracy of 5 cm
at an operating distance of 1.5 m that can then be used
by other algorithms, e.g. SLAM or navigation algorithms.
A practical restriction in terms of hardware is the limited
space available on the robot which limits the size of the
camera to 20 x 10 x 10 cm. Another aspect is a necessary
video real-time capability with a minimum frequency of 0.5
Hz and an easy integration into existing ROS environments
(Robot Operating System).

Figure 2: Image Pipeline.

Rectification
The images are rectified and undistorted using the pa-

rameters found during the calibration procedure. The cam-
era matrix is one of the results of the camera calibration

Figure 3: Comparison of the raw and processed image:
(left) the raw, 8bit image and (right) the rectified and pro-
cessed image:

and it is defined in (1), where (fx,fy) is the focal length
and (cx, cy) is the optical centre.

camera matrix =

[
fx 0 cx

0 fy cy

0 0 1

]
(1)

The values (k1,k2,p1,p2,k3,k4,k5,k6,s1,s2,s3,s4, τx, τy)
describe the distortion coefficients, which are also derived
from the camera calibration. The matrix R describes a
rectification transformation in the object space and the
vector (u,v) describes the pixel position in the corrected
and rectified image.

x← (u−c′
x)

f ′
x

y← (v−c′
y)

f ′
y

[X Y W ]T ←R−1 ∗ [xy 1]T
x′←X/W
y′← Y/W

r2← x′2 + y′2

x′′← x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + 2p1x′y′ + p2(r2 + 2x′2) + s1r2 + s2r4

y′′← y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + p1(r2 + 2y′2) + 2p2x′y′ + s3r2 + s4r4

s

[
x′′′

y′′′

1

]
=

[
R33(τx, τy) 0 −R13((τx, τy)

0 R33(τx, τy) −R23(τx, τy)
0 0 1

]
R(τx, τy)

[
x′′

y′′

1

]

mapx(u,v)← x′′′fx + cx

mapy(u,v)← y′′′fy + cy

(2)

Equations (2) describe the rectification process. The
resulting mapx(u,v) and mapy(u,v) are then used as trans-
formation maps to correct and rectify the image using an
image transformation with linear interpolation [19].

Pre-processing
The rectified images are then filtered using a median

filter to remove impulse noise, and enhanced by using the
non-local-means denoising algorithm proposed in [1] and
finally filtered again using a bilateral filter to further im-
prove the image quality. The result of these processing
steps is shown as an example in Figure 3.
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Stereo Matching
The left/right image pair is then used to calculate a so

called disparity map using the global matching algorithm
proposed in [9].

Disparity Filtering
The disparity map is then filtered using a weighted

least squared filter, in the form of a global fast smoother
to further improve performance, as described in [18].

Point Cloud Computing
The resulting disparity map is then transformed into

a point cloud, which is the standard data representation in
robotics (e.g., for visualization, localization, pose estima-
tion, mapping, etc.). OpenCVs implementation is used for
this purpose, based on the formula given in (3). The vec-
tor [X,Y,Z,W ] describes the point cloud, while the vector
[x,y,disparity(x,y),z] describes the disparity image, and
Q is a 4x4 matrix describing the disparity-to-depth map-
ping matrix, which is found during the calibration process
[17]. X

Y
Z
W

 = Q

 x
y

disparity(x,y)
z

 (3)

Experimental Results
Flat Field Calibration

Uncooled infrared cameras typically require correc-
tions due to heating of the camera itself to maintain con-
stant image quality over time. In this "Flat Field Calibra-
tion" (FFC), a shutter of uniform temperature is applied
to the detector, but this results in a regular interruption
of the image acquisition. [14]. This was shown to be an
issue for real-time algorithms for localisation and pose es-
timation [14]. For the application described here, however,
this effect can be compensated for because each image can
be time-stamped (as long as the system is not moving too
fast) and the shutter speed was fast enough to be neglected.

Monocular and Stereo Calibration
When using a camera in the visible light spectrum, a

black calibration pattern printed on a white sheet of paper
is usually sufficient as a calibration target. In the LWIR
spectrum, this is not sufficient, as several authors have
shown [14], [27], at least without extensive processing as
e.g., in [20]. For the application of open source calibration
algorithms, a standard calibration pattern must also be
used. Therefore, the method proposed in [14] was chosen
instead of the very specific setup described in [27]. Here,
the calibration pattern is cut into a plate and this plate
is placed over an active heat source, e.g., a heating mat.
In this way, the LWIR radiation passes through the holes
of the calibration pattern and can be clearly seen by the
cameras.

Figure 4 shows the comparison between the heated
calibration pattern as viewed through a thermal camera
(left) and the result of the calibration process visualised as

Figure 4: Comparison of the calibration pattern and the
result of the calibration process: (left) Image of the heated
calibration pattern and (right) image depicting the result
of the calibration process.

overlay on the input image (right). The pattern, in this
case an asymmetrical circle grid, can easily be extracted
from images like this using simple, existing algorithms, for
both monocular and stereo camera setups. The detected
pattern and the real pattern align almost perfectly, indi-
cating that the calculated intrinsic and extrinsic camera
parameters are accurate. The average RMS re-projection
error lies between 0.15 and 0.20 for monocular calibration
and between 0.40 and 0.50 for the stereo calibration. Thus,
both results are within a satisfactory range of values.

Hardware Solution
Somewhat similar systems already exist and are in use

e.g., by firefighters in buildings that are filled with thick
smoke. These handheld devices are called "Thermal Imag-
ing Cameras" (TICs), that show an image often composed
of a number of different spectral ranges (sometimes referred
to as multi-spectral devices). A LWIR sensor seems to al-
ways be present, since this spectral range penetrates smoke
well [25]. LWIR sensors have become reasonably cheap in
recent years, with a considerable amount of systems be-
ing developed for smartphones and personal use. There-
fore, the proposed hardware setup consists of two commer-
cially available "CompactPRO" LWIR cameras by "Seek
thermal", set up as a stereo camera pair with a baseline of
about 10 cm, see Figure 5. This results in a measurable
depth difference between 0.34cm and 3.02cm, at operating
distances between 0.5m and 1.5m, respectively (according
to (4)). In the following equation ∆H describes the mea-
surable depth difference, H describes the operating dis-

Figure 5: CAD model of the stereo thermal camera with
an additional RGB camera in the center.
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tance, Px describes the pixel side length, f describes the
focal length and b describes the baseline.

∆H = Px ∗H2

f ∗ b
(4)

The sensors are connected via USB to a "Jetson Nano"
by "NVIDIA" on which the image processing algorithms are
executed, and which in turn is connected to the robot via
Ethernet.

Data Gathering and Visualization
For test purposes, a program periodically took frames

out of a pre-recorded video and fed them to the algorithm.
At first, experiments were conducted on a desktop com-
puter (to show the general effectiveness of the approach).
The results were then saved to the hard disk. Finally. the
raw images, the processed images, the raw disparity, the
filtered disparity and the point cloud derived from the fil-
tered disparity images could be visualized.

Test Scenarios
To further test the effectiveness of the algorithm, this

chapter considers in detail three common scenarios that an
autonomous rescue robot is likely to encounter. The first
scenario shows an environment with no active heat sources,
where only the floor, walls, and objects to be avoided are
visible. The second scenario additionally shows active heat
sources and the third scenario furthermore shows a working
person.

Scenario #1 - Scenes with no heat sources
The scene shows a robot lying on the floor with four

fins and an outstretched arm with a hot module at its base.
Above the robot, the lower part of a door and a sink can
be seen. Figure 6 Fig. (x) shows the raw images from the
left and right cameras, which are still noisy, and the two
processed images, which now look much better. However,
it seems that this scene is even less suitable for the stereo
algorithm, since the processed disparity map shows nothing
but the hot spot of the active module.

Figure 6: Comparison of the raw, processed data and the
disparity map of the first scenario.

Scenario #2 - Scenes with active heat sources
In this scenario only one scene is examined. It shows

a desktop PC running and a monitor on a desk with a
chair in front of it and stairs to the right. The results of
the second scenario as shown in Figure 7 which seem to
be more promising than the results of the first scenario.
Now, the disparity map shows more information than in
the previous example in Figure 6. The shape of the PC,
the monitor, the chair and even parts of the stairs can
be seen. However, the distances are completely wrong.
For example, the monitor shows a clear distance gradient
across its screen, although it should be virtually flat. Also,
while the dark lines at the bottom and right edges of the
monitor reasonably accurately reflect the distance of the
background from the monitor, they should extend all the
way to the PC and also appear above and to the left of the
monitor, since the background around the monitor is the
same distance. The PC itself is divided into parts of very
different distances, with the top part of the PC being the
furthest object according to the disparity map, although
it should be the same distance as the rest of the PC and
the monitor. The closest object according to the disparity
map is the monitor’s screen at a distance of, again, about
0.35m. In reality, the monitor is about 2 m away, and the
closest object is the chair at the very bottom of the images,
which is about 1 m away.

Figure 7: Comparison of the raw, processed data and the
disparity map of the second scenario.

Scenario #3 - Scenes with a working person
This scenario, a person is shown working at a table. To

the right of this person is the monitor of the scenario shown
in Figure 8. In front of the person, a set of screwdrivers is
placed on the table and a chair covers part of the person’s
body. The results are similar to Figure 6 and Figure 7. The
structures of the objects and the person in the scene can be
seen in the disparity map, even relatively accurately, but
individual objects are divided into different distances, all
of which are incorrect. For example, the person’s head is
shown detached from the body and at the same distance
as the monitor at about 0.35 m, even though the person is
about 1 m away and the monitor is 2 m away.
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Figure 8: Comparison of the raw and processed data of the
third scenario.

Point Cloud Visualization
The resulting disparity map is then transformed into

a point cloud which is the final output of the algorithm.
Figure 9 shows the person working from Figure 8 but from
a different camera position and the according final point
cloud visualized with the visualization tool rviz in ROS.

Figure 9: Visualization of 3D point cloud.

Conclusion and Future Work
The results of the processing pipeline and the first pro-

totype have not yet provided the expected results. The
main reason for this is that interior scenes in particular
generally do not provide a distinct thermal "texture" for
the stereo algorithm to work with. The results show that
the system currently has problems with small temperature
differences, which as a result do not provide an accurate
disparity map and ultimately a 3D point cloud of the en-
vironment. Without textures, the block matching of the
stereo algorithm cannot work properly. This could be im-
proved by using higher quality thermal cameras, since the
low image quality of infrared cameras, currently 320x240

pixels, and subsequent processing further reduce the visible
textures and gradients in the image. Although the method
proposed in this work does not currently meet the require-
ments, it still offers the prospect of further developing this
initial design and using it in other scenarios.
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