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Abstract
In the field of automated working machines, not only

is the general trend towards automation in industry, trans-
port and logistics reflected, but new areas of application
and markets are also constantly emerging. In this paper
we present a pipeline for terrain classification in off-road
environments and in the field of "automated maintenance
of slopes", which offers potential for solving numerous so-
cioeconomic needs. Working tasks can be made more effi-
cient, more ergonomic and, in particular, much safer, be-
cause mature, automated vehicles are used. At present,
however, such tasks can only be carried out remotely or
semi-automatically, under the supervision of a trained spe-
cialist. This only partially facilitates the work. The real
benefit only comes when the supervising person is released
from this task and is able to pursue other work. In addition
to the development of a safe integrated system and sensor
concept for use in public spaces as a basic prerequisite for
vehicles licensed in the future, increased situational aware-
ness of mobile systems through machine learning in order
to increase their efficiency and flexibility, is also of great
importance.

Introduction
Real-time semantic segmentation is a major building

block in scene understanding for autonomous robot sys-
tems in off-road applications, see Figure 1. The embed-
ded computing platforms employed on autonomous robot
systems impose, compute constraints upon the methods
used to solve the task. From those constraints, a need
for real-time focused semantic segmentation methods did
arise. Fortunately, in recent years many new Deep Learn-
ing based methods, which can inference in real-time on
workstation environments, were proposed. However, those
methods were not yet evaluated being applied to an off-
road track environment while computing inference on an
embedded platform.

The complexity of working tasks in unstructured en-
vironments and under changing environmental conditions
often poses a challenge even for well-trained human drivers.
Nevertheless, automated work equipment has so far had a
sufficient level of situational awareness to be able to per-
form work tasks efficiently and without violating safety re-
quirements.

The aim of this paper is to make environment recogni-
tion and localization in dynamic environments more intel-
ligent with the help of adapted machine learning methods.
In a concrete application, for example, it should be pos-

Figure 1. Metron P48RC is a radio-controlled tool carrier with a true hybrid
drive.

sible to distinguish between vegetation, people and other
obstacles. The creation of a complete dataset with anno-
tation, which includes all possibilities, is time-consuming
and costly and not possible within the scope of this project.
Therefore, research is being conducted in the areas of
"transfer learning" and "domain adaptation". Available
datasets from urban and off-road areas, as well as from in-
ternal datasets from previous projects, will be aggregated.
The aim of "Transfer Learning" is to derive a general visual
understanding from these large datasets in order to reduce
the data collection effort in the target application.

Related Work
Modern CV methods are usually bench-marked on

public challenges such as the ImageNet Large Scale Visual
Recognition Challenge [24], which was the most relevant
one for object recognition. Its dataset contains millions of
examples of 1000 mutually exclusive classes. The last year
in which the challenge was executed in its original form was
in 2017. Since then, it is considered solved however, new
methods are still evaluated and compared on its dataset.
An extensive overview of state-of-the-art technologies of se-
mantic segmentation based on Deep learning can be found
in [18].

Semantic Segmentation
Semantic segmentation is a classification problem in

which the goal is to label every pixel of an image to one
of a set of predefined classes. With its nature of dense
pixel labeling it extracts a vast amount of information from
its given images and serves therefore as a major building
block in all kinds of applications ranging from scene under-
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Table 1: State-of-the-art real-time semantic segmentation methods. All metrics listed were obtained by evaluating on the Cityscapes
dataset. Only entries marked with superscript ’*’ were obtained with the Cityscapes validation-set. All GPUs listed are from the brand
NVIDIA.

Method mIoU [%] FPS [ 1
s ] Input size [h × w] GPU

AutoRTNet-A [26] 73.9 110 768 × 1536 Titan XP
BiSeNet (ResNet-18) [31] 74.7 65.5 1024 × 2048 Titan XP

BiSeNetV2 [30] 72.6 156 1024 × 2048 GTX 1080Ti
CAS [34] 72.3 108 768 × 1536 Titan XP

DABNet [9] 70.1 27.7 1024 × 2048 GTX 1080Ti
DF1-Seg [11] 74.1 106.4 1024 × 2048 GTX 1080Ti

DFANet A [10] 71.3 100 1024 × 1024 Titan X
ESNet [29] 70.7 62 512 × 1024 GTX 1080Ti

FarSee-Net [35] 70.2 68.5 512 × 1024 Titan X
FasterSeg [4] 71.5 163.9 1024 × 2048 GTX 1080Ti

FDDWNet [13] 71.5 60 512 × 1024 RTX 2080Ti
FPENet [14] 70.1 55 768 × 1536 Titan V

GAS [12] 73.5 108.4 769 × 1537 Titan XP
GUNet [17] 70.1 33 512 × 1024 Titan XP
ICNet [36] 70.6 30.3 1024 × 2048 Titan X

LBN-AA+DASPP+SPN [6] 73.6 51 448 × 896 Titan X
LEDNet [28] 70.6 71 512 × 1024 GTX 1080Ti
MSFNet [25] 77.1 41 1024 × 2048 RTX 2080Ti

RGPNet (ResNet-18) [1] 74.1* 37.4 1024 × 2048 RTX 2080Ti
ShelfNet18-lw [38] 74.8 59.2 768 × 1536 GTX 1080Ti

SwiftNetRN-18 [20] 75.5 39.9 1024 × 2048 GTX 1080Ti

standing in autonomous driving [20] to biomedical image
analysis [22]. The arguably most influential Convolutional
Neural Network (CNN) architecture in semantic segmen-
tation is the Fully Convolutional Network (FCN) proposed
in [15]. Its main idea was to modify existing image recogni-
tion CNNs such as GoogleNet or VGG to output a segmen-
tation map. Since FCN started the application of CNNs
in semantic segmentation, many new architectures, each
proposing different design choices, have been proposed.

An architecture which represents the encoder-
decoder design paradigm is U-net [22] which was used
for biomedical image processing. U-net’s left part is do-
ing the down-sampling/feature-extraction while the right
part is doing the up-sampling. U-net employs learned up-
sampling in the form of up-convolutions while many other
architectures use bi-linear or nearest-neighbor interpola-
tion for up-sampling. The skip-connections, depicted as
gray horizontal arrows, are used to refine the accuracy of
the segmentation by fusing low-level features with high-
level ones. An example which represents another design
paradigm is the Pyramid Scene Parsing Network (PSP-
Net) [37]. It represents multi-path architectures which
extract and fuse features from different sizes. The extrac-
tion of differently sized features is done in its pyramid pool-
ing module. After the module, the extracted features are
concatenated with features from earlier layers, which were
propagated forward by skip connections.

The methods shown above are no longer state of the
art. However, they are well suited for representing some

architecture developments of CNNs for semantic segmen-
tation. Current state-of-the-art CNN-based methods are,
for example, DeepLabv3+ [3] and OCR [33]. Their high
accuracy come however, with big computational burdens
which make them impractical for deployment on real-time
platforms where computational resources are scarce. Due
to this fact, a need for real-time focused methods arose.
Fortunately, this need has been addressed by the research
community in recent years.

Datasets
Training datasets consist of examples comprised of in-

put features and a target or a label. The mathematical
notation of a training dataset for m examples is:

{(x(i),y(i)); i = 1, ...,m} (1)

Producing densely labeled datasets for semantic segmenta-
tion is a very laborious task. Even though there is software
to help, the collected images usually have to be labeled
largely by hand. Due to this fact, synthetically generated
datasets such as SYNTHIA [23] and generator based meth-
ods proposed on the game of Grand Theft Auto are start-
ing to gain momentum. However, synthetically generated
datasets still have a gap to reality. Real-world datasets
which are publicly available are here divided into general
purpose and driving environments.

Several driving datasets in urban environments are
Cityscapes [5], ApolloScape [8], Mapilary [19], CamVid [2]
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and BDD100K [32]. Off-road driving datasets are avail-
able with the Freiburg Forest [27] and the RoboNav Data
Collection [16].

Real-Time Semantic Segmentation
In recent years, many CNN-based architectures for

real-time semantic segmentation have been proposed.
Their main concern is to find an optimal accuracy-
efficiency trade-off. In Table 1, at the time of writing,
several of the most relevant methods are listed. All in-
formation used in the table was taken from the method’s
original publications. To reduce the number of methods in
Table 1 to the most relevant ones, the methods were chosen
when they fulfilled the following two conditions:

• Evaluation metrics on Cityscapes provided.
• Achieving a mIoU on the Cityscapes for test or vali-

dation dataset with over 70% while being computed
on a workstation platform with above 25 FPS.

Implemented Method
This section is devoted to explaining the implemented

real-time semantic segmentation method and the employed
data processing including the used datasets. The imple-
mented method is DABNet proposed in 2019 in [9]. It was
chosen over other methods of related work due to the fact
that its training can be done end-to-end, which means no
complicated pre-training actions are required, and its orig-
inal implementation was published alongside its paper in
[9]. The implementation of this study is based on the orig-
inal implementation. The explanations in this section are
based on the original publication [9], where further infor-
mation and a more detailed explanation can be found. The
contribution of DABNet, that has to be explained first, is
the novel depth-wise asymmetric bottleneck module, short
the DAB module. It is used to reduce the number of
parameters while extracting and combining local and con-
textual features. The DAB module’s main building blocks
are standard 3×3 and 1×1 convolutions, dilated convolu-
tions for efficiently broadening the receptive field [7], and
depth-wise separable convolutions which are used in many
CNNs aimed at compute efficiency. To enable the paral-
lel extraction of local and contextual features, the DAB
module employs a two-branch approach.

Experimental Results
To evaluate the performance of dense pixel labeling

methods, numerous evaluation metrics have been proposed.
The metric nowadays commonly used in semantic segmen-
tation is the Jaccard Index also known as Intersection
over Union (IoU) shown in eqn. 2 [21]:

IoU(A,B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (2)

It calculates a ratio of how much two sets, which are in se-
mantic segmentation the ground-truth and predicted seg-
mentation maps, overlap. It reaches its maximum value of
one when the sets overlap entirely and its minimum value

of zero when the sets do not overlap at all. When seman-
tic segmentation with multiple classes is done, usually the
mean Intersection over Union (mIoU) is used. Other
metrics or loss functions used in semantic segmentation
such as the Dice Coefficient are examined and are more
explained in [21].

For training and part of the inference speed evaluation
a workstation with two NVIDIA RTX 2080Ti GPUs, 128
GB DDR4 RAM, and an AMD Ryzen 9 3950X CPU was
used. It should be noted that, for training, both GPUs were
used in parallel to enable larger batch sizes. However, for
inference speed evaluation only one GPU was used.

All experiments were conducted with the same soft-
ware stack on both environments. Python 3.6, CUDA
10.2, CUDNN 8, and PyTorch 1.6 were used. No specific
optimization frameworks, such as TensorRT, were used.
All experiments were executed with pure Python and Py-
Torch. During experimentation, the implemented method
was trained on four different datasets and then evalu-
ated on a workstation and an embedded-platform to be
most relevant to the field of autonomous robot systems.
For validating the implemented method, two of the three
datasets were the well-studied ones, namely the CamVid
and Cityscapes datasets. The third dataset, which explic-
itly targeted the research objectives, was the less studied
Freiburg Forest off-road track dataset. The fourth dataset
(Smarter) was done by manual annotation and combined
with the other datasets.

To meet the research objectives, a state-of-the-art ar-
chitecture was implemented. This architecture was then
trained and evaluated on four different datasets (three ex-
isting online datasets and one self-made dataset). Two
of which represented urban-road environments, and one
represented off-road track environments. The evaluation
was executed on a workstation-platform (NVIDIA RTX
2080Ti), and an embedded-platform (NVIDIA Jetson AGX
XAVIER). During evaluation on the off-road track dataset,
the implemented method achieved a mean Intersection over
Union of 81.5% while computing inference in real-time with
181.5 and 25.3 Frames per Second on the workstation and
embedded platform respectively, see Table 2. Based on
those results, the research concludes that the current Deep
Learning based state-of-the-art real-time semantic segmen-
tation methods are capable of achieving high accuracy on
off-road environments while computing inference in real-
time on an embedded platform. The Figures 2 - 9 show
the validation and training metrics of mIoU and loss of
each dataset. The Figures 10 - 15 shows the qualitative
evaluation of each on-road and off-road dataset.

The predictions show decent performance in under-
standing the scene as well as reliable segmentation that
can be used for navigation. The field experiments that
were carried out with the DABNet implementation are
shown in the following Figures 10, 11 and 12. The
Freiburg Forest dataset was also tested at the 1st Austrian
Alpin Robotic Trial for terrain segmentation of the gravel
road with accurate environmental feedback, see Figure 13.
For the SMARTER (Slope Maintenance Automation us-
ing Real-time Telecommunication and advanced Environ-
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Figure 2. CamVid training: Validation- and
training-mIoU plotted over epochs.
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Figure 3. Cityscapes training: Validation- and
training-mIoU plotted over epochs.
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Figure 4. Freiburg Forest training: Validation-
and training-mIoU plotted over epochs.
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Figure 5. CamVid training: Validation- and
training-loss plotted over epochs.
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Figure 6. Cityscapes training: Validation- and
training-loss plotted over epochs.
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Figure 7. Freiburg Forest training: Validation-
and training-loss plotted over epochs.
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Figure 8. Smarter training: Validation- and
training-mIoU plotted over epochs.
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Figure 9. Smarter training: Validation- and
training-loss plotted over epochs.

Table 2: Quantitative evaluation results of DABNet on different datasets.

Dataset Input Size[h × w] mIoU [%] FPS [ 1
s ]

RTX 2080Ti XAVIER

CamVid 360 × 480 67.2 180.0 28.0
Cityscapes 1024 × 2048 70.4 39.6 5.0
Cityscapes 512 × 1024 65.4 162.2 18.4
Cityscapes 256 × 512 51.5 180.4 27.5

Freiburg Forrest 420 × 840 81.5 181.5 25.3
Smarter 512 × 1024 85.4 162.2 18.4

ment Recognition) research project, it is important that the
working machine understands not only the learned classes,
such as road, meadow, vegetation, people, but also where
the meadow has already been mowed (red) and where it
still needs to be mowed (blue), see Figure 14 and 15. The
figures show quantitatively very good results, considering

that we used a total of 250 images for annotating the
dataset. This study evaluates the current state-of-the-art
real-time semantic segmentation methods applied to the
less studied environment of off-road tracks while comput-
ing inference on an embedded platform. With the gained
knowledge, decisions on the applicability of those methods

324-4
IS&T International Symposium on Electronic Imaging 2023

Intelligent Robotics and Industrial Applications using Computer Vision 2023



Figure 10. Qualitative evaluation results on CamVid. Columns from left to
right: Input image, colorized ground-truth image, and colorized prediction
image.

Figure 11. Qualitative evaluation results on Cityscapes. Columns from left
to right: Input image, colorized ground-truth image, and colorized prediction
image.

Figure 12. Qualitative evaluation results on Freiburg Forest. Columns
from left to right: Input image, colorized ground-truth image, and colorized
prediction image.

to other currently unstudied environments such as indus-
trial plants can be made. The evaluation results of the
DABNet instances trained on the CamVid and Cityscapes
datasets respectively showed better results as in DABNet’s
original publication [9] documented. This is probably due
to the different training hyper-parameters of larger batch
size for Cityscapes and a higher number of epochs both for
CamVid and Cityscapes. At the evaluation on the CamVid

Figure 13. Freiburg Forest dataset used for AART – 1st Austrian Alpin
Robotic Trial.

Figure 14. Smarter dataset: Segmentation of mown (red) and unmown
(blue) meadows from the view of the tool carrier.

Figure 15. Smarter dataset: Segmentation of mown (red) and unmown
(blue) meadows.

test-set a mIoU of 67.2% while computing inference with
180.0 FPS on the RTX 2080Ti platform was achieved. The
evaluation on the Cityscapes evaluation-set yielded a mIoU
of 70.4% while computing inference with 39.6 FPS on the
RTX 2080Ti platform. Interpreting those results, the first
research objective, of validating the implemented model on
well-known benchmarks, has been met. Further, the evalu-
ation of the instance trained on the Freiburg Forest dataset
showed impressive results in terms of mIoU and inference
speed. It reached almost the same mIoU while executing at
a much faster inference speed as the method documented in
the original Freiburg Forest paper [27]. On Freiburg Forest,
DABNet achieved a mIoU of 81.5% while computing real-
time inference with 25.3 FPS on the XAVIER platform.
For the self annotated dataset (150 images training, 50 im-
ages for validation and 50 images for testing the dataset)
DABnet achieved a mIoU of 85.4% with 18.4 FPS on the
XAVIER embedded platform. Contemplating the results
of the conducted experiments the current state of the art
CNN-based real-time semantic segmentation methods can
be applied to off-road environments while computing real-
time inference on embedded platforms.
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Conclusion and Future Work
In this paper, we propose an overview of state-of-

the-art CNN-based semantic segmentation methods and
field experiments to develop autonomous robot systems
for off-road environments. Current real-time semantic seg-
mentation methods were increasingly developed and ap-
plied mainly for on-road applications, because the hype
for autonomous cars was much stronger on normal roads
and motorways. The experiments and generation of out-
door datasets shows that the DABNet method can achieve
high accuracy when applied on off-road environments while
computing inference in real-time on an embedded platform.

One such hypothesis is that DABNet should be able to
generalize well to other currently unstudied environments
such as industrial plants, construction sites, or farmland.
To confirm this hypothesis, further research needs to be
done and to generate novel datasets of currently unstudied
environments.
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