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Abstract
Avoiding obstacles is challenging for autonomous robotic

systems. In this work, we examine obstacle avoidance for legged
hexapods, as it relates to climbing over randomly placed wooden
joists. Our main motivation is to enable robots to navigate inside
tight attic spaces of single-family residential homes in the U.S.,
which typically contain rows of 4, 6, or 8 inch tall joists placed 16
inches apart from each other. We formulate the task as a 3D joist
detection problem, and propose a detect-plan-act pipeline using a
simultaneous localization and mapping (SLAM) algorithm to gen-
erate a pointcloud and a grid map to expose high obstacles such
as joists. A line detector is applied on the grid map to extract
parameters of the joist, such as height, orientation, and distance;
based on this information the hexapod plans a sequence of leg
movements to either climb over the joist or move sideways if the
joist is too high. We show that our perception and path planning
modules work well on the real-world joists with different heights
and orientations.

Introduction
Attics are one of the largest sources of energy loss in res-

idential homes. As such attic air sealing and insulation can re-
sult in a substantial reduction in home energy costs and its carbon
footprint. One way to do this is through spray foaming which
simultaneously helps to prevent insect infection, reduces energy
costs, and keeps the main component of a home at a comfortable
temperature. Despite its effectiveness, spray foaming the attic is
challenging: the insulation material contains toxic substances so a
protective suit must be worn. Figure 1 shows a typical attic during
construction. As seen, attics are typically tight spaces with rows
of joists and as such are uncomfortable and difficult for a human
operator to work in. For example, if a human operator by mistake
steps in the space between two joists, she or he could fall through
the attic floor into the main compartment of the house, resulting
in serious injuries. As such, legged robots are ideal candidates
for navigating inside attics and carrying out various tasks such as
vacuuming or air-sealing. While there has been a great deal of re-
cent work on two and four legged robot locomotion, in this work,
we will focus on using six legged robots for two reasons: first,
hexapods are inherently more stable than bi-pedal or quadruped
robots; second, their lower heights compared to bi-pedals and
quadruped robots makes them more suitable for roaming around
tight spaces for example at the corners of an attic. Since most
single family residential home attics in the U.S. contain 4, 6, or 8
inch joists that are 16 inches apart, it is important for a hexapod to
be able to detect, and climb such joists inside an attic. In this pa-
per, we will focus on developing methods for a hexapod equipped

with a depth camera to autonomously detect and climb joists of
various heights and orientations.

Figure 1: Unfurnished attic with joists.

Hexapod and quadruped robots have been studied for many
years. Back in 1990, Mcghee et al. [8] proposed a set of rules to
navigate a hexapod in a simulated terrain. Putz et al. [10] pro-
posed a 3D navigation path for mobile robots in uneven terrain,
but their work is mainly for wheeled robots and does not con-
sider the constraints of hexapod robots. More recently, Nguyen
et al. [9] experimented with what they called a ”library of gaits”,
a sequence of different leg gaits, on bipedal robots. Carlo et al.
[6] used a more sophisticated convex Model Predictive Control
(MPC) to control and plan locomotion on the quadruped robot
dynamic system. Frankhauser et al. [5] developed a univer-
sal elevation map library in ROS for hexapod and quadruped.
Frankhauser et al. [4] also applied the previous elevation map
on their quadruped robots and reported solid results on quadruped
robot navigation. Their trajectory planning algorithm spends a
great deal of time balancing the quadruped robots, which is not an
issue in our case since hexapods are more stable than quadruped.

For a hexapod to climb joists inside an attic, it must be able
to use its perception system to both detect and parameterize the
height and orientation of joists, so as to plan its path and climbing
leg movement sequence. There have been attempts to use deep
learning-based approaches on 3D pointcloud data to detect ob-
jects, but as Wang et al. [13] states, 3D object detection tasks re-
quire significantly more data to train than 2D. It is also expensive
to acquire open-sourced 3D labels [14]. Most of the open-sourced
3D labeled data are released by self-driving companies and only
focus on vehicles. Therefore, it would be time-consuming to la-
bel data and train a new 3D object detection model for joists from
scratch.

This work aims to develop elementary building blocks for
joist climbing of the legged hexapod. We test our proposed solu-
tion in a small row of joists assembled in our laboratory. The out-
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line of this paper is as follows: we first discuss the hardware and
software setup for our hexapod, then present the hexapod percep-
tion and actuation methods, followed by our experiments and re-
sults, and conclude the paper with final remarks and future works.

Setup

The hexapod used in our experiments is a Widow X from
Trossen Robots shown in Figure 2. It features eighteen ultra fast
DYNAMIXEL AX-18A series robot servos, six three-degree-of-
freedom legs, a Raspberry Pi, and Trossen open-sourced SDK.
Figure 2 also illustrates the complete hardware setup.

The onboard Raspberry Pi is primarily for hexapod control
and does not have sufficient computing power for the perception
module. To overcome this, we add an Intel NUC as an additional
computing unit. Although NVIDIA’s Jetson AGX Xavier features
a better CUDA framework and a more powerful GPU for deep
learning computing than Intel NUC, the latter computing power
outperforms the former in sequential tasks, as illustrated in [3].
Since our algorithm does not run any deep learning models and
we are performing ”online” sequential path planning, Intel NUC
is our choice for computing. To share the ROS network between
NUC and Raspberry Pi, an Ethernet cable connects the two de-
vices, and the IP addresses have been configured in such a way
that the Raspberry Pi is the ROS master. Our planned communi-
cation schema between two devices is summarized in Figure 3.

Figure 3: Communication diagram between devices.

The Widow X is not pre-loaded with any perception sensors.
In order to perceive low light conditions and not to consume sub-
stantial precious computing power, the Intel L515 camera is cho-
sen for the onboard perception sensor. L515 is a LiDAR cam-
era with 3D depth, RGB, and IR output streams. We considered
other stereo and IR cameras but L515 meets our needs best since
it works well under low-light conditions. Once we capture the
depth map of the surroundings, we plan trajectories accordingly
to avoid obstacles or climb over joists.

Figure 2: Hexapod, NUC, and L515 depth camera.

Since we are mostly interested in ground obstacle such as
joists near the hexapod, it is useful to tilt the depth camera down-
ward rather than having its optical axis parallel to the ground. To
achieve that, we designed a simple nob to adjust the tilted angle of
the mount. The nob holds the mount and can be easily set to 7 dif-
ferent pitch configurations: 0, 15, 30, 45, 60, 75, and 90 degrees,
where at 0 and 90 degrees L515 is completely looking downward
and looking straight ahead respectively.

Our overall approach can be summarized as follows: we use
the perception system to detect the orientation and height of joists
in the vicinity of the hexapod. If the estimated height of the near-
est joist is too large for the robot to climb, it moves sideways. Oth-
erwise, it approaches the joist and executes a set of pre-specified
leg movements to climb over it.

Hexapod Vision System
Our vision system is a three-stage pipeline shown in Figure

4. Simultaneous Localization And Mapping (SLAM) and Grid-
Map are the two core components in the hexapod vision system.

SSL-SLAM and Grid-Map
SSL-SLAM [12] is a visual SLAM algorithm which uses

successive frames to reconstruct a scene using structure from
motion, estimates motion via visual odometry, and localizes the
robot in a global world map. The output of the SSL-SLAM
algorithm is a dense colored pointcloud, in the format of ROS
msg/pointcloud2. Grid-Map [5] is a two-dimensional grid map,
namely a smooth surface quantized into grid cells, with multi-
ple data layers. It is typically used as a central map information
system for foothold search and trajectory planning and can be cus-
tomized with useful data layers such as surface normal vectors and
traversability. Grid map is stored as a 2D Eigen-matrix and can
be converted from and to pointcloud, octomap, costmap 2d, and
2D images. In addition, the Grid-Map-OpenCV package provides
a convenient interface to process Grid-Map images with OpenCV
functions.

In the first stage of our pipeline, the SSL-SLAM algorithm
takes in successive frames captured by L515 and outputs a dense
colored pointcloud, estimated odometry data, and hexapod’s po-
sition. In the second stage, due to the bandwidth of the com-
puting unit NUC, the dense colored pointcloud is cropped into a
1m× 1.2m× 0.4m chunk around the hexapod. Next, this dense
colored pointcloud chunk is processed by the Grid-Map library
and converted to a grid map with one single layer of the cell’s
height. The grid map has a resolution of 0.01m, meaning each cell
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Figure 4: Three-Stage vision pipeline.

(a) (b)

Figure 5: 2D grid map (a) before and (b) after inpainting to fill
missing points.

is a square of 1×1 cm. Next, this grid map goes through 12 lay-
ers of filters to calculate additional information such as elevation,
variance, color, friction coefficient, foothold quality, surface nor-
mal, traversability, etc. After filtering, new information is stored
as different data layers in the grid map.

There are missing points in the pointcloud due to occlusions,
reflections, and other depth sensor imperfections, as shown in
black in Figure 5a. To interpolate these missing points, we ap-
plied Fast Marching Inpaint method introduced by Telea et al.
[11], which uses a binary mask of spots to fill in missing values in
an image. In our case, the mask is a zero matrix with the same size
as the grid map. The region of interest is marked as 1 in the mask
matrix, which along with a 2D grid map is fed into the inpainting
algorithm. Figure 6a shows the 2D grid map after inpainting.

Line Detection
The third stage of our pipeline involves detecting joists

within the grid map. The joists are well-presented in the 3D
pointcloud and grid map, but lack of semantic information is a
challenge for our path planning and climbing sequence. Previous
work on the grid map library Frankhauser et al. [4] only tests the
quadruped walking algorithm on a semi-flat terrain with a grid
map but not in a world with random joist-like obstacles.

Our approach to detect joists relies on traditional 2D line de-
tection. A Grid map can be easily converted to a 2D image, rep-
resenting a top-down view of the world with each cell filled with
a height value. If we detect a joist from a top-down 2D view, we
could compute its 3D world coordinates and deliver its paramet-
ric data such as height, orientation, and distance to the hexapod.
More specifically, our joist detection algorithm follows these three

steps:

1. Grid map is converted to a top-down 2D image. Edge Draw-
ing line detector (ED-line) [1] is applied on a 2D grid-map
image and all possible joist contour lines are returned.

2. Detected lines are overlaid on the original grid map and the
average height of each line is estimated. Since we are in-
terested in lines on actual joists, detected lines with average
height of less than 5cm are assumed not to correspond to
joists and are filtered out.

3. Joist distance is measured by the vertical pixel distance from
the bottom of the grid map image to the center of the line as
shown in Figure 7a. We calculate the joist distance for each
line and the line with the smallest distance corresponding to
the closest joist is chosen and returned.

Step 1, not all detected lines are on joists, as illustrated in
Figure 6b. Some are formed between the floor and the inpainted
region due to reflections. These lines are filtered out based on
average height, in Step 2.

Step 2, the average height of a line ĥ is estimated as follows:
Given a grid map g with each cell’s height of hcell = g(i, j), and
given a line starting at (x1,y1) and ending at (x2,y2), the estimated
average height is given by

ĥ =
1

(x2 − x1 +4)(y2 − y1 +4)
×

x2+2

∑
i=x1−2

y2+2

∑
j=y1−2

g(i, j) (1)

where x1 ≤ x2, y1 ≤ y2, and all (i, j) are within grid map g’s
boundary. Intuitively, in Equation (1), we traverse over a line and
compute its average height over a stripe of 4 pixels width with 2
pixels on each side of the line. We use Edge Drawing line detector
(ED-line) [1] to detect lines in the 2D grid map image as shown
in Figure 6c.

Step 3, the method of computing joist distance is illustrated
in Figure 7a. The joist orientation angle ψ is defined as the angle
between the line defining the joist and the line perpendicular to the
direction of the motion of the robot. Joist orientation as shown in
Figure 7b is estimated by Equation (2) below, where (xstart ,ystart)
and (xend ,yend) are two vertex coordinates defining the detected
line for the joist:

ψ = arctan(
abs(ystart − yend)

abs(xstart − xend)
) (2)
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(a) (b) (c)

Figure 6: The result of ED-Line detection on a 1m× 1.2m grid
map. The L515 depth camera is at the bottom. Joist, floor, and
joist reflection are in bright white, grey, and black colors respec-
tively. (a) the grid map image after inpainting; (b) the ED-Line
detector incorrectly detects two line segments on top; (c) these
two line segments are filtered out based on underlying grid map
height value.

(a)

(b)

Figure 7: Joist (a) distance and (b) orientation angle ψ estimation.

These three stages summarize our vision system. Once the
robot detects a joist, it has to climb over or avoid it depending on
its height [7].

Hexapod Joist Climbing
During the climbing sequence, the hexapod leaves enough

space between its legs and the joist so that the legs do not hit the
joist. The hexapod follows a simple “move straight” command
and keeps moving forward in the world with a tripod gait, until the
joist distance is less than our chosen threshold, 0.55 meters. The
joist height is estimated from the vision system while the hexapod
is moving. Joist height estimation helps to identify joists that are
too high to climb over. In our attic setup, we have two types of
joists with different heights, 10 cm and 18 cm. Our experiments
have shown that the 10 cm joist is climbable while the 18 cm one

is not due to the relative dimensions of the robot limb with respect
to the joist height. Therefore, to plan hexapod motion, we need to
take joist height into account. Once we estimate the joist height
from the grid map, the rest of the logic is as follows: if the joist
height is over 14 cm, the hexapod stops any climbing attempt and
moves sideways; if the joist height is less than 14 cm, the hexapod
continues climbing with caution.

(a) Pose 1: stop near
joist, compute path.

(b) Pose 2: move front
legs up in the air.

(c) Pose 3: reset body
position

(d) Pose 4: move mid-
dle legs up in the air.

(e) Pose 5: lean body
forward.

(f) Pose 6: reset body
position.

(g) Pose 7: walk 1 gait
cycle, lean forward.

(h) Pose 8: move back
legs up in the air.

(i) Pose 9: reset body
and all legs position.

Figure 8: Illustration of hexapod climbing sequence.

Figure 8 illustrates the hexapod climbing sequence over a
joist. Once the hexapod is close to the joist, the onboard inverse
kinematic (IK) solver computes trajectories for the front legs to
cross over the joist through pre-computed waypoints. Next, the
leg actuator executes the selected leg trajectories while the hexa-
pod leans forward to compensate for the change of gravity center.
Once this process is completed, the front two legs climb over the
joist and now support the body from the other side of the joist.
At this point, the hexapod moves forward with one cycle of tri-
pod gait to bring two middle legs close to the joist. This process
repeats again for the middle and back legs.

Experiments and Results
To verify our vision and climbing algorithm, two experi-

ments are performed. Experiment descriptions are summarized
in the table below.

Experiment Description

1 Measure accuracy of the line detector
against ground truth

2 Test integrated vision and climbing algo-
rithms in seven settings

Experiment 1: Line Detection Accuracy
In this experiment, we investigate the accuracy of the line

detector. Joists with different heights and orientation are tested
in this experiment. The hexapod starts at 1m away from the joist
and moves forward until its legs hit the joist. Figure 9a shows the
experimental setup.

The result of this experiment is summarized in Table 1 and
an example image is shown as Figure 9b. We can see that de-
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(a) (b)

Figure 9: Experiment 1 for line detection accuracy; (a) joists are
oriented at 1m in front of the hexapod; (b) line detection result on
an oriented joist.

tected line segments estimates joist orientation relatively accu-
rately, with a tolerance of ± 3◦. Moreover, the estimated height
is close to the actual height with about 0.01m difference after in-
painting.

ψ (◦) ψ
′ (◦) ψe (◦) H (m) h

′
(m) He (m)

60 57 3 0.1 0.083 0.017
45 44.5 0.5 0.1 0.085 0.015
30 32 -2 0.1 0.081 0.019
60 55 5 0.18 0.187 -0.007
45 44 1 0.18 0.19 -0.01
30 32.5 -2.5 0.18 0.195 -0.015

Table 1: Estimated joist heights and orientation angle.

ψ: ground truth joist orientation yaw angle
ψ

′ : estimated yaw angle of the joist
ψe: joist yaw angle estimation error
H: ground truth joist height
h
′
: estimated joist height

He: joist height estimation error

Experiment 2: Climbing over Joists
For the next experiment, we combine the path planning and

vision modules to determine whether the hexapod could correctly
detect joists’ parametric information and climb over joists. Seven
tests are conducted, as shown in Table 2. The setup pictures of
tests 1-6 are in Figure 10. In tests 1, 2, and 4-6, the hexapod
successfully and safely climbed over joists placed in various con-
figurations. In tests 3 and 7, the hexapod correctly identified the
joist height and took the proper action to move sideways.

Test Joist Distance (m) Joist Orientation Joist Height (cm)

1 1 0◦ 10
2 1.5 0◦ 10
3 1 0◦ 18
4 1 45◦ 10
5 1 60◦ 10
6 1 75◦ 10
7 2.7 0◦ 18

Table 2: Experiment 2 setup. Seven tests are conducted to evalu-
ate integrated vision and climbing algorithms.

(a) Test 1: hexapod starts at 1m
from 10cm joist. Demo video.

(b) Test 2: starts at 1.5m from 10cm
joist. Demo video.

(c) Test 3: starts at 1m from 18cm
joist. Demo video.

(d) Test 4: starts at 1m from 45◦

oriented joist. Demo video.

(e) Test 5: starts at 1m from 60◦ ori-
ented joist. Demo video.

(f) Test 6: starts at 1m from 75◦ ori-
ented joist. Demo video.

Figure 10: Tests 1-6 setup from joist parameter estimation.

Test 7: Hexapod 2.7m away from 18cm joist

Figure 11: Test 7 starts at 2.7m from 18cm joist. Demo video.

In test 7, we measure the accuracy of our joist distance esti-
mation. The input pointcloud size is changed from 1m× 1.2m×
0.4m to 3m× 1.2m× 0.4m to ensure that a joist is always in the
view. The hexapod starts at 2.7m and moves forward for 1.8m.
As soon as a new joist distance estimation shows up, we record
the ground truth distance using a tape measure. After moving
for 1.8m, the hexapod moves to the left, signaling it has detected
a high joist of 18cm. Throughout the experiment, we collect 6
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measurements. The joist distance error is summarized in Table
3, indicating estimated joist distance error is between 2cm and
16cm:

Measurement dE (m) dG (m) E (m)

1 2.46 2.3 0.16
2 2.17 2.02 0.15
3 1.81 1.83 -0.02
4 1.54 1.61 -0.07
5 1.33 1.27 0.06
6 0.97 0.94 0.03

Table 3: Joist distance measurements and ground truth. dE de-
notes estimated distance, dG denotes ground truth distance, and E
denotes error.

For Test 7, one can hypothesize possible causes of the error
as follows:

1. The grid map processing delay: the grid map processing
time highly depends on the density of the input pointcloud.
Although we use synchronized odometry data to compen-
sate for this processing delay so that the distance between
the hexapod and joist is up to date, the delay between syn-
chronizing grid map message and odometry message is non-
negligible.

2. The quality of pointcloud: if the input pointcloud is dense,
we should be able to compute a high-quality grid map and
detect lines accurately. However, when the hexapod is far
away, the pointcloud is sparse, resulting in inaccurate dis-
tance estimation.

3. The delay within ROS logging system between the time joist
distance estimation is sent and the time it is actually logged
on the screen might underestimate the distance.

Conclusions and Future Work
We investigated the problem of joist climbing for a hexapod

robot. We used multiple wooden joists as obstacles and showed
that the hexapod could detect and climb over joists successfully.
We used a L515 camera and an Intel NUC to detect joists on the
floor. The experiments showed that the hexapod is able to detect
obstacles 2 meters ahead, plan trajectories accordingly, and suc-
cessfully climb over joists or move sideways when encountering
unclimbable ones.

From the experiments, we determine the limitations of our
algorithms as follows. The material of obstacles could severely
impact our detection algorithm. Moreover, the delay from pro-
cessing units is non-negligible. Every unit in the pipeline needs
to wait for the previous stage to complete. Recent work has pro-
posed to combine the three stages using a single deep learning net-
work, such that the robot ”knows” where to ”go” when it ”sees”
the obstacle [2]. Such an approach could potentially reduce both
the delay and computation load.
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