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Abstract

In the past several years, generative adversarial networks
have emerged that are capable of creating realistic synthetic im-
ages of human faces. Because these images can be used for mali-
cious purposes, researchers have begun to develop techniques to
synthetic images. Currently, the majority of existing techniques
operate by searching for statistical traces introduced when an im-
age is synthesized by a GAN. An alternative approach that has
received comparatively less research involves using semantic in-
consistencies detect synthetic images. While GAN-generated syn-
thetic images appear visually realistic at first glance, they often
contain subtle semantic inconsistencies such as inconsistent eye
highlights, misaligned teeth, unrealistic hair textures, etc. In this
paper, we propose a new approach to detect GAN-generated im-
ages of human faces by searching for semantic inconsistencies
in multiple different facial features such as the eyes, mouth, and
hair. Synthetic image detection decisions are made by fusing the
outputs of these facial-feature-level detectors. Through a series of
experiments, we demonstrate that this approach can yield strong
synthetic image detection performance. Furthermore, we exper-
imentally demonstrate that our approach is less susceptible to
performance degradation caused by post-processing than CNN-
based detectors utilize statistical traces.

Introduction

In recent years, generative adversarial networks (GANs)
have emerged as a technique to produce visually realistic synthetic
images of people. These synthetic images can be used for a va-
riety of malicious purposes, including as part of misinformation
campaigns, creating fake social network profiles for information
harvesting or phishing, etc.

To combat this problem, researchers have begun creating
techniques to detect synthetic images [24, 26, 22]. The majority
of existing techniques operate by searching for statistical traces
introduced when an image is synthesized by a GAN. This is a
common approach in multimedia forensics, which has been used
to detect editing [2, 5, 8, 1], identify an image’s source cam-
era [4, 3, 13], and detect content forgery [16, 11, 21, 25]. While
these approaches work well, their performance often degrades
when an image is subject to post-processing such as JPEG com-
pression or resizing.

An alternative approach that has received comparatively less
research involves using semantic inconsistencies to detect syn-
thetic images. While GAN-generated images appear visually re-
alistic at first glance, they often contain subtle semantic inconsis-
tencies. For example, Hu, et al. recently showed that synthetic
images can be detected by identifying inconsistent corneal reflec-
tions in the eyes [14]. This work demonstrates that even though
synthetic images look visually realistic, some GANs have trouble
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generating some semantically meaningful details. Other incon-
sistencies often occur including implausibly misaligned or off-
centered teeth, unrealistic hair textures, mismatched earrings or
inconsistent ear sizes, etc.

However, despite the existence of semantic inconsistencies,
few techniques have been taking advantage of this for detection
and the methods that do focus on singular semantic inconsis-
tencies that may not occur in every facial feature. Developing
synthetic image detectors that operate by searching for seman-
tic inconsistencies is an important tool for the forensics commu-
nity. This can yield several benefits, including: Utilizing multi-
ple means of detecting synthetic images increases the likelihood
that they are identified. Semantic inconsistencies should not be
significantly affected by post-processing such as recompression
or resizing, while statistical traces will likely be degraded or de-
stroyed. Synthetic image detectors are vulnerable to anti-forensic
attacks [7, 27]. Because semantic inconsistencies lie in a domain
that is distinct from statistical traces, attacks on detectors that ex-
ploit statistical traces are unlikely to affect semantic detectors.

In this paper, we propose a new approach to detect GAN-
generated images of human faces by searching for semantic in-
consistencies in synthetic faces. GAN-generated images often
contain several potential semantic inconsistencies, such as incon-
sistent eye highlights, misaligned teeth, unrealistic hair textures,
etc. Despite this, we cannot be sure that any one type of inconsis-
tency will occur in an image. As a result, relying on only a single
form of semantic inconsistency is likely to yield suboptimal de-
tection performance.

To overcome this challenge, we propose building multiple
detectors to identify semantic inconsistencies in different facial
features, including the eyes, mouth, and hair. Synthetic image
detection decisions are made by fusing the outputs of these facial-
feature-level detectors. While an individual facial-feature- level
detector may have weak performance due to the infrequent occur-
rence of semantic inconsistencies in that feature, it is unlikely that
a synthetic image will fool all facial-feature-level detectors.

We experimentally demonstrate that this approach can
achieve strong synthetic image detection performance on im-
ages created using multiple GANs. Furthermore, we demonstrate
that this approach is less susceptible to performance degradations
caused by post-processing than other approaches which use con-
volutional neural networks (CNNs) to directly identify statistical
traces of synthetic images.

Proposed Approach
Overview

In this paper, we propose a new approach to detect GAN-
generated images of human faces. Our approach does this by
identifying the presence of semantic inconsistencies in the facial
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Figure 1: Overview of our single-feature semantic analysis CNN’s architecture.

features of images created by GANs. To detect these semantic
inconsistencies, we first need to extract the facial features that we
wish to analyze. We do this by first using a facial landmark de-
tector to identify the extrema points of each facial feature, then
create a bounding box or shape that fully encloses it. After this,
we extract the facial feature and scale it to a common size. This
provides us with a series of facial feature sub-images from each
face with normalized sizes.

To analyze these facial feature sub-images, we initially cat-
egorize the facial features into two classes: single facial features
such as the mouth and hair, and dual facial features such as the
eyes. For single facial features, we utilize a convolutional neu-
ral network (CNN) trained trained to produce a semantic consis-
tency score for that feature. These CNNs are trained to identify
semanitic inconsistencies within a single facial feature (i.e. differ-
ent CNNs are trained for each facial feature under analysis). For
dual facial features, we search for semantic inconsistencies be-
tween the pair of features (e.g. between two eyes) using a pseudo-
Siamese network. Here, a single semantic consistency score is
obtained for the pair of features.

After obtaining all semantic consistency scores for each fa-
cial feature, we must make an image-level authenticity decision.
To do this, we fuse all semantic consistency scores by concatenat-
ing them into a single vector. This vector is then provide this to
a support vector machine trained differentiate real from synthetic
images.

Details of each of these algorithmic components are pro-
vided below.

Facial Feature Identification and Extraction

In order to analyze facial features for semantic inconsisten-
cies, we must first locate them on the face, then isolate them so
that they can be analyzed by a targeted neural network. In this
work, we examine three types of facial features: the eyes, mouth,
and hair.

We locate these facial features using keypoints identified
by facial landmark detectors. For the eyes and mouth, we use
keypoints provided Open-CV’s facial landmark detector [6]. We
identify each facial feature’s extrema landmarks and use them to
create a bounding box around the eye or mouth. Specifically, the
sides of the rectangle that form the bounding box are determined
by the farthest facial landmark that encompasses the respective
feature. We then extract the pixels within each bounding box to
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create a new sub image containing only one facial feature.

We use a slightly different approach to isolate hair because-
vit does not take a regular shape. For hair, we use Google’s Me-
diaPipe library to produce a 468 keypoint mesh on the face [20].
Keypoints corresponding to the contour of the hair are then iden-
tified and used to produce an outline of the hair region. All parts
of the image outside of the hair region are then set to white.

Due to variation in pose, head size, and anatomy, some ex-
tracted facial features may be larger than others. To control for
this and to standardize the inputs to our semantic analysis neural
networks, we resize all sub-images of a particular facial feature to
a common size.

Facial Feature Semantic Analysis

Once each facial feature has been extracted, it is analyzed
using a feature-specific deep neural network that returns a seman-
tic consistency score. The architecture of the network we use to
analyze a facial feature depends on if it has a single occurrence
(e.g. mouth and hair) or two occurrences (e.g. eyes).

Single Feature Analysis

‘We analyze facial features that occur in only a single location
on the face, such as the mouth and hair, using feature-specific
CNNs. Both CNNs share a common architecture shown in Fig. 1,
but are trained using labeled examples of their specific feature.
Further details of this training process are described in the next
section

Our semantic consistency CNN, shown in Fig. 1, is inspired
by Xception [10]. It takes as input 256 x 256 pixel sub-images
of a facial feature. The network begins with two consecutive con-
volutional layers with Relu activation and a max pooling layer.
This is followed by another convolutional layer with a stride of
two, and an additional set of convolutional layers with Relu ac-
tivation, along with a max pooling layer. Finally, we repeatedly
run the results through this block of layers ten times, before feed-
ing the resulting vectors to a convolutional layer with a stride of
2 x 2, and a 728-layer convolutional layer with Relu activation.
Following this, we pass the output through three separate convo-
lutional layers of 1024, 1536, and 2048 dimensions, each paired
with Relu activation. After applying average pooling and fully
connected layers, we end up with a 2048-dimensional vector that
we feed into a logistic regression model to classify the specific
facial feature as either synthesized or real.
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Figure 2: Overview of our proposed pseudo-Siamese network architecture for measuring the semantic consistency between dual facial
features such as eyes.

The output of the network is a single semantic consistency
score s taking a value between 0 and 1. Low values of s corre-
spond to a semantically inconsistent feature - i.e. the facial feature
is likely from a synthetic image.

Two-Feature Comparative Analysis

Since eyes occur in pairs, we obtain a comparative score that
measures how semantically consistent two eyes are. This is done
by using a pseudo-Siamese neural network. Our Siamese network
is created by first using two CNNs whose architecture is shown in
Fig. 1 to produce neural embeddings. One CNN is dedicated to
the left eye and the other is dedicated to the right eye, which are
pre-trained using the single-feature analysis training protocol.

Instead of extracting a semantic score for each facial feature,
here we retain the final 16 x 16 x 728 feature map for each facial
feature (i.e. each eye). The two sets of feature maps are concate-
nated and analyzed by the convolutional similarity network shown
in Fig. 2 This neural network consists of three 2-dimensional con-
volution layers each followed by a max pooling layer followed by
flatten and dense layers that gives us a semantic score for the pair
of the eyes.

As with single facial feature analysis, the output of this net-
work is a single semantic consistency score s between 0 and 1.
This score has the same interpretation as before, with low values
indicating low semantic consistency, i.e. the facial features are
likely from a GAN-generated image.

Fusion

Once all the feature-level semantic consistency scores are
measured, we fuse them to produce a single image-level authen-
ticity decision. We do this by concatenating all of the feature-level
scores into a single vector, then training a support vector machine
(SVM) with a radial basis function kernel to classify an image as
real or synthetic. Confidence scores for decisions can be obtained
by using Platt scaling. An overview of this is shown in Fig. 3.
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‘We use this method because it is highly unlikely for semantic
inconsistencies to always be present within a particular facial fea-
ture. However, more often than not, a semantic inconsistency is
present in at least one of the facial features. By fusing the outputs
of each feature-level semantic consistency network, this allows us
to determine if at least one semantic inconsistency is present in
the image, thus increasing our likelihood of catching a synthetic
image.

Training Protocol

Each of our networks must be trained to identify semantic in-
consistencies using labeled data. Below, we describe data labeling
strategies and our two-stage training protocol designed to exploit
both large volumes of quickly (though possibly inaccurately) la-
beled data along with small volumes of highly accurately labeled
data.

Data Labeling Protocols

In order to train our network, we require a labeled dataset.
However, when labeling images as real or synthesized, based on
their origin (i.e. real from a camera or synthetic from a GAN), we
may encounter mislabeling issues. Labeling all synthetic images
as semantically inconsistent is not an effective solution, as incon-
sistencies may not be present in every facial feature. By doing
this, one would effectively label all facial features in a synthetic
image as semantically inconsistent. Because some facial features
in a synthetic image will be semantically consistent, this approach
will result in a significant amount of mislabeled data, that will
in turn decrease the accuracy of detection. Therefore, we have
developed two different labeling approaches and corresponding
training phases to address this issue.

Image Level Labeling (ILL) — To begin, we initially label our
data on an image-level basis, categorizing each image as real or
synthetic based on its source. Images retrieved from an authen-
tic dataset such as Celeb-A HQ are labeled as real, while those
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Figure 3: Overview of our overall system, including individual facial feature semantic consistency score fusion.

Facial Feature Network
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85.96%
64.15%
67.09%
91.36%
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Two-Phase Training Protocol
To overcome the shortcomings of both data labeling strate-
gies, we train our neural networks with a two phase training pro-
tocol described below.
Training Phase 1 — First, each of our semantic consistency
networks are trained using a large volume of training data with
image level labels that have been automatically generated. While
training only using this data is suboptimal, this initial phase en-
ables our networks to learn a reasonable model of the facial fea-
ture to be analyzed. This cannot be done using only FLL datasets
because they are likely too small.

Training Phase 2 — Next, the network is fine-tuned using a

Table 1: Baseline detection performance of each facial feature
network as well as our overall proposed approach.

from the rest of the dataset are labeled as synthetic. This labeling
method enables us to efficiently generate high volumes of data.
However, as previously discussed, labeling entire images as syn-
thetic presents a challenge. Since not every facial feature in a
synthetic image may exhibit semantic inconsistencies, labeling an
entire image as synthetic will result in all facial features being la-
beled as semantically inconsistent. Training using only this data
is likely to degrade the performance of a feature level classifier.

Feature Level Labeling (FLL) — In this strategy, training data
consists of semantically consistent facial features taken from real
images and semantically inconsistent facial features taken from
synthetic images. This involves using a human to manually in-
spect a specific facial feature in a synthetic image and determine
if it is semantically inconsistent. While this data is well suited for
training a neural network to identify semantic inconsistencies, it
is difficult and time consuming to produce. As a result, it is often
impractical to create large volumes of training data with feature
level labels for training from scratch.

Training Protocol
Network ILL only | ILL + FLL
Proposed 83.10% 91.36 %
Xception 68.29% 73.60%
Inception 60.84% 68.27%

Table 2: Influence of the training protocol and CNN architecture.

smaller volume of training data with feature level labels that has
been manually labeled generated. Specifically, we take the pre-
viously frozen weights and use our feature-level labeled data to
fine-tune the model for every layer except the output layer. This
enables our networks to gain improve their performance based on
very accurately labeled FLL data, but does not require large vol-
umes of FLL data needed to train from scratch.

Experiments

We conducted a series of experiments to validate the perfor-
mance of our proposed approach. To run these experiments, we
created a dataset consisting of 60,000 images where 30,000 im-
ages were real photos taken from celeb-A HQ[17] and 30,000 im-
ages were GAN synthesized using 10,000 from StyleGAN2[19],
10,000 from StyleGAN3[18], and 10,000 from StarGANI[9]. In
these experiments, 80 percent of our dataset was used for training
and 20 percent was used for testing our algorithm. During train-
ing, all images were given image level labels. Additionally, 1,040
images were given feature level labels for use in our two-phase

training protocol.

Baseline Performance

In our first experiment, we evaluated the baseline perfor-
mance of our overall system as well as the performance of each
facial-feature-level semantic consistency network.

Table 1 shows our system’s performance. From this table,
we cau see that our proposed approach achieved an overall GAN-
generated image detection rate of 91.63%. This indicates that our
proposed system is able to accurately detect GAN-generated syn-

thetic images.
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Test Accuracy
Network | Baseline | JPEG Q=90 | JPEG Q=80 | JPEG Q=70 | Resize R=1.5 | Resize R =2.0
Proposed 91.36% 90.05% 88.29% 84.57% 86.11% 89.47 %
Dense-Net | 95.25% 89.83% 84.52% 80.98% 79.15% 85.05%
ResNet-50 | 84.16% 74.62% 71.35% 69.81% 63.55% 67.18%
Inception 93.87% 88.29% 85.42% 81.78% 78.05% 82.30%

Table 3: Experimental results showing the robustness to post-processing of our proposed approach as well as several CNNs directly
trained to detect GAN traces.

In this table we can also see the detection accuracies obtained
by individually examining each facial feature for semantic incon-
sistencies. Here, the highest single-feature accuracy obtained is
85.96%, with the other features obtaining much lower accuracies.
This reinforces our intuition that searching for semantic incon-
sistencies withiin multiple facial feature is more likely to reveal
synthetic images rather than examining only one, high-value fa-
cial feature.

Influence of Training Protocol

Next, we conducted an experiment to examine the impor-
tance of our proposed two-phase training protocol. In this exper-
iment, we evaluated the performance of our approach using only
the image level labeling (ILL) approach as well as our proposed
approach that additionally fine tunes each network using data with
feature level labels (FLL). Additionally, we repeated this exper-
iment while using two alternate CNNs instead of our proposed
CNN to see if the impact of two-phase training is architecture de-
pendent.

Table 2 shows the results of our experiment. From this ta-
ble, we can see that our two-phase training protocol substantially
improves the performance of our system for all CNN architec-
tures. Specifically, for our proposed CNN, fine tuning using only
roughly 1,000 data points of FLL data improves our system’s ac-
curacy by over 8 percentage points.

Influence of CNN Architecture

Additionally, we used the results of the previous experiment
to examine the performance of our proposed semantic consistency
CNN architecture. We compared our CNN’s performance to that
of two other CNNs commonly used in computer vision: Incep-
tion [23] and Xception [10].

As demonstrated in Table 2, our proposed network achieves
a 15— 17% improvement in detection accuracy over these net-
works. We note that this may be because our network is much
smaller, thus less prone to overfitting on our training dataset.

Robustness to Post-Processing

In theory, utilizing semantic inconsistencies instead of sta-
tistical traces has the advantage of being more robust to post-
processing. This is particularly important for resizing and recom-
pression, which are common when images are uploaded to social
media websites. Almost all photos uploaded to social media un-
dergo these processes.

To evaluate our proposed approach’s robustness to post-
processing, we subjected each image in our test set to JPEG com-
pressing using quality factors ranging from Q=90 to Q=10, and to
resizing with scaling factors of 1.5 and 2.0. We then evaluated our
system’s detection performance on this post-processed data. Ad-
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ditionally, we compared our system’s performance to that of three
CNNs directly trained to detect statistical traces left by GAN gen-
erators: Res-Net 50[12], Dense-Net[15], and Inception[23].

Table 3 shows the results of this experiment. From this ta-
ble, we can see that our network exhibits significant robustness
to various post-processing operations. Furthermore, our network
achieves significantly higher performance on post-processed data
than other networks directly trained to detect GAN-generated im-
ages. We also note that our system’s performance also changes the
least when confronted with post-processed images. This makes
sense, because semantic inconsistencies should be much less ef-
fected by post-processing than statistical traces left by GAN gen-
erators, which are heavily degraded by post-processing.

Conclusions

In this paper, we proposed a new system to detect GAN-
generated synthetic images of human facees by searching for se-
mantic inconsistencies. Our approach works by examining mul-
tiple facial features (eyes, mouth, hair) individually for semantic
inconsistencies using facial-feature-specific neural networks, then
fusing the resulting semantic consistency scores. We proposed a
new, two-phase training protocol to leverage both high volumes
of training data wit image-level labels as well as low volumes of
highly accurate training data with feature-level labels. We con-
ducted a series of experiments to evaluate our proposed system,
which show that not only can our system achieve strong synthetic
image detection performance, but also that it is highly robust to
post-processing.
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