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Abstract
Human-in-control is a principle that has long been estab-

lished in forensics as a strict requirement and is nowadays also
receiving more and more attention in many other fields of applica-
tion where artificial intelligence (AI) is used. This renewed inter-
est is due to the fact that many regulations (among others the the
EU Artificial Intelligence Act (AIA)) emphasize it as a necessity
for any critical AI application scenario. In this paper, human-in-
control and quality assurance aspects for a benchmarking frame-
work to be used in media forensics are discussed and their usage
is illustrated in the context of the media forensics sub-discipline
of DeepFake detection.

Introduction and Motivation
Intended courtroom usage of forensic methods requires stan-

dardized investigation and analysis procedures that underwent
quality assurance as well as standardization prior to application to
case work. Internationally accepted best practices governing this
field are e.g. the United States Federal Rules of Evidence (FRE;
esp. FRE 702, see [18]) and the Daubert standard in the US.
Authors like Champod et al. point out that, even if the Daubert
standard is only directly legally binding for court proceedings on
US federal level, they are also in many other countries worldwide
considered as a best practice for evaluation of the degree of matu-
rity of forensic methods as basis for expert testimonies intended
to be used in court (see e.g. [3], where the influence of the Daubert
standard on the evaluation and admissibility of scientific evidence
in Europe is discussed).
Within this paper focusing on the benchmarking of media foren-
sic methods, especially the following three (out of five) Daubert
criteria are relevant ([3]):

• “whether the expert’s technique or theory can be or has been
tested – that is, whether the expert’s theory can be chal-
lenged in some objective sense, or whether it is instead sim-
ply a subjective, conclusory approach that cannot reason-
ably be assessed for reliability”

• “the known or potential rate of error of the technique or
theory when applied”

• “the existence and maintenance of standards and controls”

Especially the second and the last of the criteria quoted
above are of importance within this context, because they imply
on one hand a strong need for process modeling as foundation
of work in standardization and on the other hand require
benchmarking work to allow to suitably measure or estimate the
potential rate of error of the method when applied in practice.

Many process models for forensic processes exist for ‘tra-
ditional’ forensic sub-disciplines (e.g. dactyloskopy), with the
intended purpose of making corresponding investigations fit for
courtroom usage. What they usually have in common is that they
define standards for application of methods and requirements for
the certification of practitioners, strictly putting an expert operator
in control of the investigation, leading to an expert testimony in
court. Most media forensic approaches today still lack maturity
in this regard because the focus here currently lies mostly only
on proposing AI detectors for specific forensic tasks, like image
manipulation detection or DeepFake detection, neglecting most of
the necessary modeling, benchmarking and standardization work
required to make such approached mature enough for court room
appearance.
This gap (i.e., the lack of required domain specific process mod-
eling and benchmarking work) is addressed in this paper in part
by the following contributions in this paper:

• An extension of existing modeling work on domain spe-
cific process models for media forensic investigations (here
illustrated on the example of DeepFake detection), to in-
clude human-in-the-loop and human-in-control aspects as
requested by changing requirements/legislation worldwide,
esp. the upcoming EU Artificial Inteligence Act (AIA).

• An empirical estimation of the generalization power (or lack
there-off) of pre-existing DeepFake detectors in intra and
inter data set benchmarking, using different data selection
strategies and classifiers.

• Initial tests on 2- vs. multi-class modeling of the decision
problem, showing interesting results for the potential at-
tribution / identification of the used DeepFake synthesis
method.

The rest of the paper is structured as follows: First, a very
brief overview over the current state of the art on domain specific
process modeling for media forensics in Europe and Germany is
given. The following section presents the modeling work in this
paper, extending an existing Data-Centric Examination Approach
for Incident Response- and Forensics Process Modeling (DCEA)
by including quality assurance aspects for a benchmarking frame-
work for DeepFake detection models. Based on this modeling
work, the core part of this paper presents empirical benchmarking
activities on the example case of DeepFake detection, describing
the setup and results for performance benchmarking for various
DeepFake detection models compared in the same framework.
The paper closes with conclusions and a summary of perspectives
for potential future work.
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Domain specific process modeling for media
forensics in Europe and Germany

The most recent best practice document for media forensics
in Europe is, at the time of writing this paper, the European
Network of Forensic Science Institutes (ENFSI) Best Practice
Manual (BPM) for Digital Image Authentication [8]. In its own
words it “aims to provide a framework for procedures, quality
principles, training processes and approaches to the forensic
examination” and is intended “to establish and maintain working
practices in the field of forensic Image Authentication (IA)
that will: deliver reliable results, maximize the quality of the
information obtained and produce robust evidence. The use of
consistent methodology and the production of more comparable
results will facilitate interchange of data between laboratories.”
It generalizes a workflow for an image authentications exam-
ination and provides a classification scheme for methods for
digital image authentication but insists that it “is not a standard
operating procedure (SOP) and addresses the requirements of the
judicial systems in general terms only” [8].
The reason why the ENFSI BPM does not intend to be a standard
operating procedure or a forensic process model as basis for
standardization purposes is, that such processes are governed by
national law and ENFSI has no directive authority in Europe.
Here, national regulation would be required to define the precise
legal context for any media forensic investigation and the usage
of the corresponding results in court.

Regarding the German situation, which is relevant for the
authors of this paper, the most relevant best practice document
regarding IT forensics in general (incl. media forensics) is the
BSI (German Federal Office for Information Security) guide on
IT forensics [2] (German: “Leitfaden IT-Forensik”). It provides
various means for modeling forensic processes, including the
definition of a generic phase-driven investigation & reporting
model, a basic data model and a classification of methods and
tools. Like many other best practice documents in this field it
covers basic investigation principles, process models, forensic
data types, etc. but does not provide domain specific process
models and guidelines for specific media forensic investigations
such as DeepFake detection. Here, existing research, such as
the latest extension to the BSI guidelines [2] described as the
Data-Centric Examination Approach for Incident Response-
and Forensics Process Modeling (DCEA) summarized in [14]
and [25], is used as basis for extending the scope of these
guidelines to achieve a higher degree of maturity for the state of
the art in taylor-made models for media forensics (incl. DeepFake
detection).

The core of DCEA has three main components: a model
of the phases of a forensic process, a classification scheme for
forensic method classes and forensically relevant data types.
The six DCEA phases are briefly summarized as: Strategic
preparation (SP), Operational preparation (OP), Data gathering
(DG), Data investigation (DI), Data analysis (DA) and Documen-
tation (DO). While the first two (SP and OP) contain generic (SP)
and case-specific (OP) preparation steps, the three phases DG, DI
and DA represent the core of any forensic investigation. At this
point the importance of the SP has to be pointed out, since it is
the phase that also includes all standardization, benchmarking,

certification and training activities considered in this paper. For
details on the phase model the reader is referred, e.g. to [14]
or [1].

The second core aspect of DCEA is the definition of
forensic method classes as presented in [14]. The third aspect
is the specification of forensically relevant data types. They
can be summarized as: MFDT1 “digital input data” (the initial
media data considered for the investigation), MFDT2 “processed
media data” (results of transformations to media data), MFDT3
“contextual data” (case specific information (e.g. for fairness
evaluation)), MFDT4 “parameter data” (contain settings and
other parameter used for acquisition, investigation and analysis),
MFDT5 “examination data” (including the traces, patterns,
anomalies, etc that lead to an examination result), MFDT6
“model data” (describe trained model data (e.g. face detection
and model classification data)), MFDT7 “log data” (data, which
is relevant for the administration of the system (e.g. system
logs)), and MFDT8 “chain of custody & report data” (describe
data used to ensure integrity and authenticity (e.g. hashes and
time stamps) as well as the accompanying documentation for the
final report).

In general, each processing operation (or operator) in an
DCEA process pipeline is considered here as an atomar process-
ing black box component with an identifier and (usually) a de-
scription of the processing performed in this operation. Each
component has four well defined connectors: input, output, pa-
rameters and log data (see figure 1). To pay respects to the par-
ticularities of this field and make the following modeling task ea-
sier, a fifth connector is defined within this paper for a specific
type of operator which requires a knowledge representation or a
model for its processing operation. In that case, this fifth connec-
tor is labeled model. A detailed description of the modeling of
these operators is given in [25].

The focus of the proposed extensions of the DCEA lies in
this paper on the integration of the human operator into the proce-
dures. Human-in-control is an principle that has long been estab-
lished in forensics as a strict requirement and is nowadays also re-
ceiving more and more attention in any field of application where
artificial intelligence (AI) is used. Among other regulations, the
EU Artificial Intelligence Act (AIA, [7]) emphasizes it as a neces-
sity for any critical application scenario. This extension is shown
in figure 1 where two human operators are added to the compo-
nent: One (labeled ‘HO’) as operator in control of the functional-
ities of the component and another one (labeled ‘Sys admin’) in
the loop on the infrastructure, analyzing the system logs (MFDT7)
and reacting to potential technical events such as an hard disc fail-
ure, etc.

Example case: Quality assurance aspects for
a benchmarking framework for DeepFake de-
tection models

Depending on the actual position of the component in a
forensic investigation pipeline, the human operator (HO) in con-
trol could be a someone defining in-house quality assurance
strategies (e.g. human operator ‘HO1 ’ in figure 2), a media foren-
sics expert performing explainable AI (xAI) tasks in the used fea-
ture space (‘HO 2’ in figure 2) or a data scientist at a standardiza-
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Figure 1. Template structure integrating the human operator(s) (HO) high-

lighted in red.

tion body like NIST running a benchmark and performing certi-
fication of the model trained (‘HO 3’ in figure 2). Obviously, all
these different example HO would need different expertise and
might have conflicting intentions.

The empirical evaluations performed in this paper focus on
the interplay between ‘HO 1’, ‘HO 2’ and ‘HO 3’ in figure 2.
Their interaction represents the cycle of decision model devel-
opment (or training), its benchmarking and reasoning on the ob-
tained results. For the performed evaluations in DeepFake detec-
tion, the following evaluation goals are defined:

• Estimation of generalization power (or lack there-off) in in-
tra and inter data set evaluations, using different data selec-
tion strategies and classifiers

• Initial discussion on 2- vs. n-class classification (where n is
the number of DeepFake synthesis methods plus one class
for original, non-modified videos)

• Impact of data augmentation in training (model robustness)
• First considerations on video post-processing operations as

potential counter-forensics

Evaluation setup
The evaluation setup is build according to the process model

and the evaluation goals discussed in the previous section. Its
general purpose is to provide an evaluation framework for Deep-
Fake detection models, based on suitable DeepFake data sets. The
video selection is done for each data set, where the selected num-
ber of videos corresponds to the minimal size of all data sets
given. The extracted source data is augmented using different
augmentation methods. All videos are processed in feature ex-
tractors introduced in [24] to classify DeepFakes based on eye

(DFeye), mouth (DFmouth) and image foreground (DFf oreground)
regions respectively. In addition, meta data is gathered to enable
a human operator (here ‘HO 1’) to further curate the data. The ex-
tracted feature lists are then split into distinct training and test data
for all model generation and benchmark strategies. This separa-
tion is further used to enable different evaluation scenarios, such
as intra and inter data set evaluations.

Benchmarking data set selection
Previous experiments given in [16] have shown that early

DeepFake video data sets, such as TIMIT-DF [23, 15], show vis-
ible flaws in the videos, making them unsuitable for a fair bench-
marking of detectors. Therefore, a manual curation and evaluation
of data sets to be used is performed. FaceForensics++ [21, 22]
is another early data set, that includes various DeepFake synthe-
sis methods, but also got a recent extension in HiFiFace [27].
Initially, DeeperForensics [11] was included into the data pool
to be used in this paper as an augmented data set based on
FaceForensics++, but was then replaced by in-house augmenta-
tion for comparability reasons. The DeepFake Detection data
set (DFD) by Google and JigSaw [6] is available as a part of
FaceForensics++, providing both additional real videos as well
as the output of a DeepFake synthesis method. Celeb-DF [19] is
large data set, using an Autoencoder for synthesis. Furthermore,
FakeAVCeleb [13] was originally considered for usage in this pa-
per, due to the fact that it also includes audio data and a labeling
of ethical background and gender, but it was dropped due to a low
resolution of 224x224. In table 1 a summary of selected data sets
can be found.

Data augmentation
Based on the selected data sets an equal amount of 3631

videos per subset of each data set are taken for evaluation. The
selection occurs pseudo-random based on a seed (here, the ran-
domly chosen value 7 is taken as seed). To further augment the
data sets and simulate a less optimal training scenario, the se-
lected videos undergo two different post-processing operations:
One additional data set is generated by re-sampling the videos
to 15 frames per second, a second data set is created by resizing
them to a width of 480 pixels while keeping the aspect ratio to
prevent distortion. This augmentation is done using the FFmpeg
library [9]. In total, 7986 videos (363 + 7*3*363) are used in this
benchmark.

For classification, a total of five different classifiers from
WEKA [10] are selected to represent a variety of different algo-
rithms. These are NaiveBayes [12], LibSVM [4], Simple Logis-
tics [17, 26], JRIP [5] and J48 [20].

To ensure the distinct split of training and test data two differ-
ent approaches are taken. The first one utilizes methods built into
WEKA, which includes a 66% training 34% testing percentage
split, as well as 3-, 5- and 10-fold stratified cross-validation. The
second approach involves manual pre-processing and dividing of
the samples in fixed splits. This allows for more precise group-
ing of the data and thus enables addressing of specific evaluation
questions. For reproducibility, the splits occur pseudo-randomly
by using a deterministic script with a seed (again the value 7 is

1The number of files in the smallest set used (here ‘DFD-actors’) de-
fines the size of the subsets drawn from all other data sets used, to ensure
equally sized representations in training and testing.
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Figure 2. Illustration of the DeepFake detection pipeline created as a template in the forensic process model phase of Strategic Preparation (SP), with the

inclusion of human operators (HO) implementing human-in-control as well as human-in-the-loop (for ‘Sys Admin’). Contribution is highlighted in red.

data set # individuals # real video # DeepFake video subset # selected videos
FaceForensics++ [21, 22] ?2 1 000 4 000 youtube-real 363

Face2Face 363
FaceShifter 363

NeuralTexture 363
DFD [6] 28 363 3 068 DFD-actors (real) 363

HiFiFace [27]1 ?2 0 1 000 FaceSwap 363
Celeb-DF [19] 59 890 5 639 Celeb-real 363

Celeb-synthesis 363
Overview of the data sets used in this paper for benchmarking of DeepFake detection models.
1: Based on the youtube-real subset of FaceForensics++.
2: Numbers correspond, but unfortunately the exact number have not been disclosed by the original authors.

taken). Using this script, disjointed training and testing splits of
66%/34%, 80%/20% and 90%/10% are generated automatically.

Evaluation results
As discussed previously, the evaluation is done in multiple

individual experiments. In the first experiment the evaluation aims
at different model generation and benchmark strategies, using the
non-augmented data for evaluation. With the consideration of all
three detectors DFeye, DFmouth and DFf oreground the same tenden-
cies of classification can be found, with some small exceptions.

Figure 3 displays the results on the example of DFeye. In general,
it can be said, that there are almost no differences between 3-, 5-
and 10-fold cross validation in this benchmark. In terms of pre-
defined splits, an increase in detection performances can be found
with increasing training data set size. This comes with an excep-
tion for the J48 classifier on the detectors DFeye, where smaller
training splits yield higher detection performance on the test set,
indicating generalization problems (here in the handling of out-
liers in the test data) for this setup. Besides this mall glitch in
the performance of J48, none of the tested classifiers is signifi-
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cantly better than the others. Each of the detection approaches
had a different classifier scoring best, in all cases achieved on the
90/10 fixed split. LibSVM for DFeye (Kappa=0.4991), J48 for
DFmouth (0.4113) and Simple Logistic for DFf oreground (0.3620).
The Kappa statistics of DFmouth are in the range of 0.2544-0.4113,
showing a significant drop in performance compared to previous
results in [24]. This might suggest that anomalies in the mouth
region are data set specific and do not occur to the same extent
as in the previous experiment. Same can be said for DFf oreground
ranging Kappa values from 0.1810 to 0.3620, showing lower but
less fluctuating performances.

Figure 3. Detection performances (Kappa values) for different model gen-

eration and benchmark strategies, on the example of DFeye

The second experiment addresses the usage of augmentation
strategies in both training and testing. For this purpose, the data
set is divided into native and augmented videos. Independently
of the detector, augmentation usage solely for training or testing,
results in a drop of detection performance. But it also has to be
noted, that the integration of augmentation strategies in both train-
ing and testing did not impact the detectors negatively, and even
increased the performance of DFmouth and DFf oreground (see the
corresponding table).

The third experiment focuses on the impact of different
DeepFake synthesis methods and considers every method as an
individual class. Based on the considered data sets this results
in a 6-class classification problem, which is then back projected
to 2-class (‘original’ vs. ‘DeepFake’) for direct comparison. In
terms of individual synthesis methods, it turned out that HiFiFace
is clearly different from the others, especially for DFeye. Here,
none of the other types is classified as HiFiFace and also the Hi-
FiFace subset is solely classified as ‘real‘ or ‘HiFiFace‘. This
suggests that more recent DeepFakes show less flaws in creation,
here on the case of eye region and blinking specifically. This dis-
tinction is not found for DFmouth and DFf oreground . However, con-
sidering the results, the separation does not show an improvement
in detection performance in any detector compared to a 2-class
classification. Nevertheless, it allows for an attribution / identi-

fication of the used synthesis method and therefore for a better
justification of the decision made by using this model.

detector 2-class 6-class
DFeye 73.55% (0.4312) 72.73% (0.4348)

DFmouth 69.90% (0.3347) 67.60% (0.3186)
DFf oreground 71.83% (0.3199) 62.19% (0.2228)

Comparison of 2- and 6-class DeepFake detection.

Summary, Conclusions and Future Work
Summarizing the empirical results presented in this paper,

it is shown that the promising results previously shown in [24]
are not reliable (i.e., not generalizing well) when properly bench-
marked: The extension of the data considered (in different eval-
uation scenarios) shows challenges in generalization power, an
important lesson learned regarding human-in-control and QA as-
pects, highlighting the relevance of benchmarking for data selec-
tion as well as feature and decision model quality assurance.
First tests on 2- vs. multi-class modeling of the decision problem
show interesting initial results for the potential attribution / iden-
tification of the used DeepFake synthesis method.
Important future work would be to extend the introduced bench-
marking framework to include additional datasets to cover an even
wider range of DeepFake synthesis methods and also more differ-
ent sets of ‘genuine’ (non-DeepFake) samples with different pre-
processing histories. In this regard, the first data augmentation
tests discussed here could be a suitable starting point for creat-
ing more robust detector models. Extensions along this line could
e.g. use the DeeperForensics data set (with its augmentations) as
an extension of FaceForensics++.
Besides the generalization issue, also the closely related question
of training bias and fairness has to be considered in future work,
potentially with evaluations using the FakeAVCeleb data set with
its metadata annotations (incl. among other characteristics an in-
dication on the ethical background of the person in the video).
From the perspective of potential courtroom fitness, an important
future step would be to find a independent and trustworthy third
party like NIST in the US or the BSI in Germany that could be
motivated to perform independent benchmarking (and potentially
also certification) of methods and trained models.
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training data set → no augmentation (no aug) with augmentation (w aug) combination of both
↓ detector test data set → no aug w aug no aug w aug for train and test
DFeye 73.55% (0.4312) 57.72% (0.1155) 65.25% (0.1931) 70.42% (0.1919) 72.38% (0.3643)
DFmouth 69.90% (0.3347) 69.86% (0.1089) 71.25% (0.3239) 70.09% (0.1558) 70.94% (0.2489)
DFf oreground 71.83% (0.3199) 70.58% (0.1109) 71.11% (0.2814) 70.11% (0.0611) 71.50% (0.2080)

Evaluation results for augmentation strategies. All values are determined using J48 under default parameters.
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