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Abstract
Both robust and cryptographic hash methods have advan-

tages and disadvantages. It would be ideal if robustness and cryp-
tographic confidentiality could be combined. The problem here is
that the concept of similarity of robust hashes cannot be applied
to cryptographic hashes. Therefore, methods must be developed
to reliably intercept the degrees of freedom of robust hashes be-
fore they are included in a cryptographic hash, but without losing
their robustness. To achieve this, we need to predict the bits of a
hash that are most likely to be modified, for example after a JPEG
compression. We show that machine learning can be used to make
a much more reliable prediction than the approaches previously
discussed in the literature.

Motivation
Robust image hashing can be used for copyright protection

and detection of known illegal digital images. Especially in the
latter case, when private images are part of a forensic investi-
gation, privacy is an important concern. Phones, computers and
other devices are used to store many personal images whose pri-
vacy must be protected. A suspect might also not possess any il-
legal images at all, hence their privacy must not be compromised.
While robust image hashes are highly effective in detecting known
illegal images, they leak information of the original image and can
thus not be seen as privacy preserving. To prevent such informa-
tion leakage, Steinebach et al. propose to combine robust hashes
with cryptographic hash functions into a hybrid approach [1].

A property of cryptographic hash functions is the avalanche
effect, which states that a small change in the input of a crypto-
graphic hash function results in a hash value that is drastically dif-
ferent from and uncorrelated with the original hash value. There-
fore, distance metrics like the Hamming Distance (HD), used to
match robust hashes, cannot be applied to cryptographic hashes.
Consequently, an image must always produce the exact same ro-
bust hash, even when attacks like JPEG compression or rescal-
ing are applied, or the cryptographic hashes will not match. To
achieve this, Steinebach et al. propose to identify weak bits of
robust hashes which can be neutralized before a cryptographic
hash is applied. In this work, we improve existing approaches to
predict weak bits, propose new predictions approaches based on
machine learning and evaluate them.

The prediction of flipping positions is essential to combine
robust and cryptographic hashes. We have discussed this topic in
previous works [2] [1] . There the flipping positions are predicted
by their distance to the block median value. In [3] we show that
this assumption is not reliable enough for effective prediction. In
our new work we use machine learning to improve the chances
of correct prediction significantly. At the end, a predication will
allow to combine robust and cryptographic hashing and enable
superior privacy when identifying e.g. blacklisted images.

Background
Hash-based algorithms are used in various application areas,

such as image search, duplicate or near duplicate detection, or
image authentication. [4] [5] [6] [7] Hash functions can be di-
vided into the two categories of cryptographic hashes and robust
hashes. Cryptographic hashes are very sensitive with respect to
the input data. If only 1-bit changes in the source file, when the
hash is regenerated, it results in a completely new and not sim-
ilar hash to the original. With a lossy compression, the original
and the compressed variant would give completely different hash
results. It does not matter that both images do not differ much
visually. Hash-based approaches in the image context are called
robust hashes or perceptual hashes. These are to be distinguished
from the conventional cryptographic hash algorithms such as the
MD5 hashes. Robust hashes are not very sensitive to slight mod-
ifications such as lossy compression. Even with compression, the
resulting hashes would be very similar. Thus, when identifying
images, the use of robust hashes is more appropriate than crypto-
graphic hashes.

Robust Image Hashes
Robust hash functions are functions that produce a unique

bit string for perceptually similar images. They operate based on
the perceptual features of an image rather than the binary repre-
sentation of the image file. Hence, they are robust to changes in
single bits as long as they are not perceptually noticeable. This
robustness applies to intentional and unintentional changes to an
original image. These can result from malicious attempts to pre-
vent the re-identification of an image or operations like compres-
sion and scaling, which are often applied to reduce the size of an
image file during transmission. Some properties of robust hashes
are:

• Robustness: Perceptually similar images should produce an
identical or similar hash value. This includes images that
have been altered to a reasonable degree, intentionally or
unintentionally.

• One-Way: It should be impossible to reconstruct an image
from a robust hash.

• Distinction: Perceptually distinct images should result in
distinct hash values.

• Deterministic: The robust hashing algorithm should always
produce the same hash value for a particular image.

Many different robust hash functions make use of perceptual fea-
tures of images [8, 9, 10, 11]. In this work, we base our imple-
mentation on the block mean value based perceptual image hash
function [12] proposed by Yang et al. in its simplest form:

• Normalize the original image into a preset size and convert
it into greyscale.
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• Partition the resulting image I into non-overlapping blocks
I1, I2, ..., IN where N is the targeted length of the hash bit
string.

• Permute the block sequence {I1, ..., IN} based on a secret
key.

• Calculate the mean pixel value of Mi of each block Ii and
determine the mean value of this sequence

Md = median(Mi), ∀i ∈ {1,2, ...,N} (1)

• Obtain binary hash value by concatenating the individual
hash bits:

h(i) =

{
0, Mi < Md , ∀i ∈ {1,2, ...,N}
1, Mi ≥ Md , ∀i ∈ {1,2, ...,N}

(2)

An example of an image and its 16x16 robust hash is shown in 1.
The robust hash applied in this work is the ForBild block

hash presented by us in [13]. It is the result of an evaluation of
image hashing methods [14]. Based on this hash, we have added
segmentation countermeasures based on face detection [15] and
watershed image segmentation [7]. Beyond the recognition of
images, we also addressed the possibility of combining privacy
and robust hashing in [2]. As an alternative to robust hashing,
we also evaluated feature-based montage detection utilizing SIFT
and SURF in [16]

Hybrid Hash
Robust hashes can be matched not only if they are identical,

they can also be similar. This similarity is measured through the
hamming distance. Therefore, minor changes in the image, e.g.
caused by JPEG compression or scaling, result in a robust hash
that is still similar to the original robust hash. However, individual
hash bits of these “attacked images” change their value depend-
ing on how much the image is attacked. This bit flipping behavior,
analyzed by Steinebach et al., renders cryptographic hashes of ro-
bust hashes ineffectual because of the avalanche effect[3].
Weak bits must be predicted and neutralized before a crypto-
graphic hash function can be applied. Steinebach et al. use the
normalized distance between the pixel value of a block and the
normalized median value of an image to predict such bits. The
combination of robust hash, neutralization of weak bits, and a
cryptographic hash function is called Hybrid Hash. In this work,
we further analyze bit flipping during robust image hashing to im-
prove existing heuristic predictions and propose machine learning
approaches to predict weak bits.

Bit Flip Prediction by Machine Learning
One common type of problem in machine learning is classi-

fication. During classification, the model assigns the given input
sample to one or more labels representing one of two or more
classes. When two classes exist we speak of binary classifica-
tion, or multi-class-classification when more than two classes ex-
ist. Equivalently, we speak of single-label classification when
each sample is mapped to exactly one label, and of multi-label-
classification when a sample can be mapped to more than one la-
bel. Predicting weak bits during robust image hashing represents
a classification task. We can classify each hash block individu-
ally as either weak or stable (binary, single-label classification) or

Figure 1: An image and its 16x16 robust hash

classify every hash block of a given image as weak or table (bi-
nary, multi-label-classification). In the first case of single-label-
classification, the classifier receives a single block as input and
returns a single label. For a block hash of size N, N classifications
are required to predict weak bits of an entire image. For multi-
label classification, the classifier receives an image and returns N
labels, where N is the hash size of the block hash.

We present and discuss prediction approaches based on ma-
chine learning. These include a K-Nearest-Neighbor classifier,
and a Deep Neural Network for multi-label classification. Addi-
tionally, we utilize a Convoluted Neural Network to predict the
amount of flipped bits in an image and finally use an Convoluted
Neural Network to predict the optimal tolerance for a given Qual-
ity Factor for distance-based predictions.
Images for the training and evaluation of the classifiers discussed
in this section are taken from different cameras with various res-
olutions and show distinct motives. The same training and test
set is used for every classifier. As a hash method, we use our im-
proved block hash as introduced in [13] . The double prediction
strategy discussed in this paper utilizes predictions for both the
original and the suspect image.

Problem Definition
Predicting weak bits during robust image hashing represents

a classification task. We can classify each hash block individu-
ally as either weak or stable (binary, single-label classification) or
feed an entire image into a classifier to produce predictions for
every hash bit (binary, multi-label classification). In the first case
of single-label classification, the classifier receives a single block
B as input and returns a single label P . For a block hash of size
N, N classifications are required to predict weak bits of an entire
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Figure 2: Recall (top) and OP (bottom) by QF for optimized kNN
predictions

image. For multi-label classification, the classifier receives an im-
age, or all blocks of an image, and returns N labels, where N is the
hash size of the block hash. The classifier is called exactly once.
As supervised learning is best suited for classification tasks [17],
and we can generate labeled training data on demand, we use su-
pervised learning to train our classifiers. Predicting the number of
weak bits in an image or the optimal tolerance used for distance-
based predictions is a regression task.

KNN
A initial analysis of the behavior of robust hash bit flip did

show a dependence of the dynamic range and relative distances
found in images with the likelihood of bit flipping. We, there-
fore, implemented a single-label classifier that classifies robust
hash blocks individually based on these features. Each block can
either flip (encoded as 1) or not flip (encoded as 0). The classifier
predicts a class label PN for every block BN , for N = 1, ...,256
. We also compared the results to a classifier that considers the
quality factor(qf) as a third feature. The qf is approximated using
the dc coefficient of each image.
Because most blocks of a robust hash do not flip, most samples be-
long to class 0, which causes the dataset to be imbalanced. We fix
this imbalance by re-sampling the training data s.t. both classes
are represented equally.

To increase the recall of our knn classifier, we implement the
following improvements:

• Combination of quality-dependent and quality-independent
classifiers (“Combination”)

• Training the classifier only with low-quality images (“One
Percent”)

• Replacing the continuous qf with a discrete quality value
Low/Medium/High (“Partition”)

Results of this optimizations are shown in figure 2. Overall, the
combined classifier showed the best mix of recall and overpro-
duction. It is thus used as knn predictor for this work evaluated
on an image level. The relative distances results in the highest
recall. This shows that the differentiating between blocks with
a brightness lower than the median and blocks with a brightness
higher than the median improves the prediction results. On the
other hand, normalized distance yields the worst results because
it results in the lowest recall and a considerable over-prediction.
The knn classifier shows variable recall scores likely to result in
unstable hybrid hashes because of the avalanche effect. Addi-
tionally, the over-prediction is considerably high. In combination
with the inconsistent recall score, the results indicate that a knn
classifier is no appropriate predictor for weak bits.

Artificial Neural Network
This section introduces two Artificial Neural Network (ann)

classifiers. A single-label classifier that predicts weak bits and
an ann that predicts an optimal tolerance value for distance-based
predictors.

Single-Label Classification
Similar to our knn prediction, we now use an ann to predict

individual weak bits based on dynamic range and relative distance
of each hash block. Similarly to knn predictions, a predicted
class PN is determined for every block BN , for N = 1, ...,256. We
use a Deep Neural Network (dnn) with three hidden layers, the
“adam” optimizer and the binary cross-entropy loss. The results
are superior to all previous predictions in both recall (higher) and
over-prediction (lower).

Again, we seek to improve recall and op by using the qf as an
additional feature. The predictions using the qf achieve a nearly
perfect recall score and - for qf > 10 - a significantly lower op.
The higher op for low qf is acceptable because we consider such
low qf to be rarely used,the nearly perfect recall at a low qf is
more desirable than low op and the op is still reasonably low.

Notably, the test results show significantly lower recall
scores when the amount of training epochs increases. This is
likely due to overfitting on the training data. This, in turn, is
likely a result of the downsampling of the training data. While
more training data could be generated to allow for more training
epochs, the results of our model trained with 13 epochs are al-
ready superior to all previous approaches and show little room for
improvement.
One downside of this approach is that the model itself does not ex-
tract the features; thus, they must be extracted during preprocess-
ing. Additionally, our model can only classify individual image
blocks and does not consider whole images.

Tolerance Prediction
One learning from previous works [3] that the distance to the

median brightness can be used to predict flipped bits with high re-
call. As the tolerance is used for every image and every quality
factor, the op can be high, which can cause collisions when a vast
dataset is used. Thus, op can be decreased when the quality factor
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Figure 3: Recall (top) and OP (bottom) for optimized ANN pre-
dictions

of an image is known. One can determine the qf based only on the
first entry of the quantization table (qt). This is useful because ev-
ery JPEG image requires a qt in order for it to be decodable. We
use this interpolated function and train a simple neural network
with only one hidden layer that takes a quantization factor as in-
put and returns the optimal tolerance for this quantization factor.
The network is trained to predict positive and negative tolerances,
respectively. This approach shows a high but inconsistent recall
score and the desired low op. Especially for higher qf, which are
most likely to occur in a real-world scenario, the op is superior to
other approaches.

Evaluation
For the evaluation of our double prediction re-identification

approach we use 2000 randomly selected images of a cheer-
leading team from the galaxy data set[18]. The images in this
data set show various amounts of humans in various poses, ap-
pearances and environments. We split these into 1000 known im-
ages and 1000 suspect images.

Results
Our evaluations show in figures 7 and 5 that our approach

reaches a near perfect precision for qf independent and qf depen-
dent re-identification against JPEG attacks. Thus, when we re-
identify two images, they are very likely to be semantically the
same. The recall of up to 80% shows that we do not yet detect
every semantically identical image. This is especially true for low
qf images. The same observations can be analogously made for
the scaling attack in figures 8 and 6. The reduced recall, espe-
cially with low qf images, is caused by the fact that features of

Figure 4: Recall (top) and OP (bottom) by QF for tolerance re-
gression predictions

an attacked image yield different predictions from features of the
original image. This shows that the features could be more robust.
To further investigate this low recall we analyze the predicted bits
for false negatives. Figure 9 shows the hamming distance per qf
for predictions based on original images and predictions based on
the respective attacked images. We considered only false nega-
tives predicted by our dnn classifier. Attacked and original images
result in similar predictions that only differ by individual bits. Be-
cause of the avalanche effect, this results in uncorrelated hybrid
hashes and, ultimately, false negatives.

Summary and Conclusion
We showed that most flipped bits have low brightness dis-

tance to the median brightness and low DR. Not all image blocks
with these properties result in flipped bits. Accordingly, JPEG
quantization causes most flipped bits because of the quantization
of the DC coefficient in the luminance channel. Correlation be-
tween JPEG QF and FR, as well as QF and the quantization factor
for the DC coefficient, exist. Thus, the QT can approximate the
QF, which can, in turn, approximate the FR. Our prediction algo-
rithms use these image properties to predict weak bits in robust
hashes with high recall. Our approaches can predict weak bits of
an image and ultimately be used to produce privacy-preserving
hybrid hashes. An open issue is that block properties like RD and
DR may change during attacks. Thus, predictions for the original
and attacked image do not match, resulting in a false negative. Im-
plementing CNNs to predict weak bits from an input image could
be a viable solution for this issue. In this work we considered
JPEG compression and scaling as attacks. In the future additional
attacks will be investigated.
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Figure 5: Recall (top) and Precision (bottom) for qf independent
double prediction approach with JPEG attack.

Figure 6: Recall (top) and Precision (bottom) for qf independent
double prediction approach with scaling attack.

Figure 7: Recall (top) and Precision (bottom) for qf dependent
double prediction approach with JPEG attack.

Figure 8: Recall (top) and Precision (bottom) for qf dependent
double prediction approach with scaling attack.
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Figure 9: Hamming Distance of the predictions of our double pre-
diction approach.

Acknowledgment
This research work has been funded by BMBF and the Hes-

sen State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center for Ap-
plied Cybersecurity ATHENE.

References
[1] Martin Steinebach, Sebastian Lutz, and Huajian Liu. Privacy and

robust hashes. In Proceedings of the 14th International Conference
on Availability, Reliability and Security, pages 1–8, 2019.

[2] Uwe Breidenbach, Martin Steinebach, and Huajian Liu. Privacy-
enhanced robust image hashing with bloom filters. In Melanie
Volkamer and Christian Wressnegger, editors, ARES 2020: The
15th International Conference on Availability, Reliability and Secu-
rity, Virtual Event, Ireland, August 25-28, 2020, pages 56:1–56:10.
ACM, 2020.

[3] Martin Steinebach. A close look at robust hash flip positions. Elec-
tronic Imaging, 2021(4):345–1, 2021.

[4] Andrea Drmic, Marin Silic, Goran Delac, Klemo Vladimir, and
Adrian S. Kurdija. Evaluating robustness of perceptual image hash-
ing algorithms. In 2017 40th International Convention on Infor-
mation and Communication Technology, Electronics and Microelec-
tronics (MIPRO), pages 995–1000. IEEE, 2017.

[5] Dat Tien Nguyen, Firoj Alam, Ferda Ofli, and Muhammad Imran.
Automatic image filtering on social networks using deep learning
and perceptual hashing during crises.

[6] Ling Du, Anthony T.S. Ho, and Runmin Cong. Perceptual hash-
ing for image authentication: A survey. Signal Processing: Image
Communication, 81:115713, 2020.

[7] Martin Steinebach, Huajian Liu, and York Yannikos. Efficient
cropping-resistant robust image hashing. In 2014 Ninth Interna-
tional Conference on Availability, Reliability and Security, pages
579–585. IEEE, 2014.

[8] Zhenjun Tang, Xianquan Zhang, Xuan Dai, Jianzhong Yang, and
Tianxiu Wu. Robust image hash function using local color features.
AEU - International Journal of Electronics and Communications,
67(8):717–722, 2013.

[9] Zhenjun Tang, Fan Yang, Liyan Huang, and Xianquan Zhang.
Robust image hashing with dominant dct coefficients. Optik,
125(18):5102–5107, 2014.

[10] Zhenjun Tang, Lv Chen, Xianquan Zhang, and Shichao Zhang. Ro-
bust image hashing with tensor decomposition. IEEE Transactions
on Knowledge and Data Engineering, 31(3):549–560, 2019.

[11] Rui Sun and Wenjun Zeng. Secure and robust image hashing via
compressive sensing. Multimedia Tools and Applications, 70, 06
2012.

[12] Bian Yang, Fan Gu, and Xiamu Niu. Block mean value based image
perceptual hashing. In Proceedings of the 2006 International Con-
ference on Intelligent Information Hiding and Multimedia, IIH-MSP
’06, page 167–172, USA, 2006. IEEE Computer Society.

[13] Martin Steinebach. Robust hashing for efficient forensic analysis of
image sets. In Pavel Gladyshev and Marcus K. Rogers, editors, Dig-
ital Forensics and Cyber Crime, volume 88 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommu-
nications Engineering, pages 180–187. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[14] Christoph Zauner, Martin Steinebach, and Eckehard Hermann. Ri-
hamark: perceptual image hash benchmarking. In Nasir D. Memon,
Jana Dittmann, Adnan M. Alattar, and Edward J. Delp III, editors,
Media Watermarking, Security, and Forensics III, SPIE Proceedings,
page 78800X. SPIE, 2011.

[15] Martin Steinebach, Huajian Liu, and York Yannikos. Facehash: Face
detection and robust hashing. In Pavel Gladyshev, Andrew Mar-
rington, and Ibrahim Baggili, editors, Digital Forensics and Cyber
Crime, volume 132 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering,
pages 102–115. Springer International Publishing, Cham, 2014.

[16] Martin Steinebach, Karol Gotkowski, and Hujian Liu. Fake news
detection by image montage recognition. In Proceedings of the 14th
International Conference on Availability, Reliability and Security,
pages 1–9, New York, NY, USA, 2019. ACM.

[17] Junfei Qiu, Qihui Wu, Guoru Ding, Yuhua Xu, and Shuo Feng. A
survey of machine learning for big data processing. 2016.

[18] Martin Steinebach, Huajian Liu, and York Yannikos. Forbild: Effi-
cient robust image hashing. In Media Watermarking, Security, and
Forensics 2012, volume 8303, page 83030O. International Society
for Optics and Photonics, 2012.

Author Biography
Marius Hammann received his M.Sc. in IT Security and M.Sc. in

Computer Science from TU Darmstadt in 2023. In his current position as
IT Security Engineer at Aareon Group, he focuses on threat intelligence
and digital forensics.

Prof. Dr. Martin Steinebach is the manager of the Media Security
and IT Forensics division at Fraunhofer SIT. In 2003 he received his PhD
at the Technical University of Darmstadt for this work on digital audio
watermarking. In 2016 he became honorary professor at the TU Darm-
stadt.

Huajian Liu received his B.S. and M.S. degrees in electronic engi-
neering from Dalian University of Technology, China, in 1999 and 2002,
respectively, and his Ph.D. degree in computer science from Technical
University Darmstadt, Germany, in 2008. He is currently a senior re-
search scientist at Fraunhofer Institute for Secure Information Technology
(SIT). His major research interests include information security, digital
watermarking, robust hashing and digital forensics.

Niklas Bunzel received his B.Sc. and M.Sc. degrees in computer sci-
ence and IT security from Technical University Darmstadt 2015 and 2020,
respectively. He is currently a PhD student at the TU-Darmstadt and a
research scientist at Fraunhofer Institute for Secure Information Technol-
ogy (SIT) and the National Research Centre for Applied Cybersecurity -
ATHENE. His major research interests include artificial intelligence, IT
security and steganography.

375-6
IS&T International Symposium on Electronic Imaging 2023

Media Watermarking, Security, and Forensics 2023


