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Abstract
In this article, we study a recently proposed method for im-
proving empirical security of steganography in JPEG im-
ages in which the sender starts with an additive embedding
scheme with symmetrical costs of ±1 changes and then de-
creases the cost of one of these changes based on an im-
age obtained by applying a deblocking (JPEG dequantiza-
tion) algorithm to the cover JPEG. This approach provides
rather significant gains in security at negligible embedding
complexity overhead for a wide range of quality factors and
across various embedding schemes. Challenging the origi-
nal explanation of the inventors of this idea, which is based
on interpreting the dequantized image as an estimate of the
precover (uncompressed) image, we provide alternative ar-
guments. The key observation and the main reason why
this approach works is how the polarizations of individual
DCT coefficients work together. By using a MiPOD model
of content complexity of the uncompressed cover image,
we show that the cost polarization technique decreases the
chances of “bad” combinations of embedding changes that
would likely be introduced by the original scheme with sym-
metric costs. This statement is quantified by computing the
likelihood of the stego image w.r.t. the multivariate Gaus-
sian precover distribution in DCT domain. Furthermore,
it is shown that the cost polarization decreases spatial dis-
continuities between blocks (blockiness) in the stego image
and enforces desirable correlations of embedding changes
across blocks. To further prove the point, it is shown that
in a source that adheres to the precover model, a simple
Wiener filter can serve equally well as a deep-learning based
deblocker.

Introduction
Steganography by minimizing an additive distortion or

detectability function is a well established and successful
approach to building data hiding schemes with a high level
of empirical security in practice [21, 20, 26, 34, 18, 17, 35].
Fundamentally, this direction was enabled by the invention
of syndrome-trellis codes [13] that operate near the rate–
distortion bound. An additive distortion function, though,
cannot account for the effect of interaction of individual
embedding changes, which requires the use of non-additive
distortion functions. A general framework for embedding
with non-additive distortion is the so-called Gibbs con-
struction [12], which is applicable whenever the distortion
can be written as a sum of locally supported potentials.
The first embedding schemes with non-additive distortion
were HUGO [32] (which used a heuristic iterative cost ad-

justment) and HUGO-BD [12] based on the bounding dis-
tortion of HUGO. Unfortunately, it is apparently very dif-
ficult to design non-additive distortion that properly cap-
tures the interaction of embedding changes and their im-
pact on detectability. In [33], the authors introduced a
greedy minimization technique that they applied to em-
bedding with the non-additive UNIWARD distortion [21].
Disappointingly, a smaller total embedding distortion did
not correlate with empirical detectability.1

It has only gradually been recognized by the commu-
nity that taking into account mutual interaction of em-
bedding changes can have a significant impact on empiri-
cal security. The first work in this direction was heuristic
and restricted to the spatial (pixel) domain. The Cluster-
ing Modification Directions (CMD) [27] employed additive
embedding on four interleaved sub-lattices with a step that
included slashing the costs of embedding modifications on
sub-lattices that have not yet been embedded to encour-
age neighboring embedding changes to be correlated. A
different method for turning an additive scheme into non-
additive [9] leveraged the Gibbs construction for practical
embedding. A model-based approach was described in [23]
by minimizing the variational approximation of the KL di-
vergence for an asymmetric Gaussian mixture by postu-
lating that the neighboring modifications change the lo-
cal pixel mean. A heuristic method that combined side-
information with clustering modification direction was de-
scribed in [6].

Interaction of embedding changes is far stronger in
the JPEG domain because modification patterns of DCT
coefficients from the same JPEG 8× 8 block overlap and
because the modifications are stronger in terms of their en-
ergy due to quantization. The impact on detectability is
further increased at the block boundaries where the em-
bedding increases spatial discontinuity also called block-
iness [14]. It is consequently completely unclear how to
properly contain all this complexity heuristically via a non-
additive distortion function. Assessing the cost of simulta-
neous modifications of a large number of DCT coefficients
is understandably significantly more difficult than finding
heuristic costs of individual embedding changes that cor-
relate with detectability in practice. In [29], the authors
show that non-additive distortion in JPEG domain needs
to properly capture correlations (and anticorrelations) of
embedding changes of DCT coefficients from neighboring
blocks. A more feasible and theoretically well founded ap-

1This observation was already made in [19].
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proach to this problem, however, is to start with a cover
source model.

Natural Steganography (NS) [1] starts by considering
the heteroscedastic model of sensor photonic noise (also
called ISO noise). For a sufficiently simple development
pipeline, it is possible to derive the statistical distribution
of pixels (and DCT coefficients for the JPEG domain [38]),
so that the embedding impact can be masked as taking the
same cover image with a higher ISO setting. While NS can
embed very large payloads with negligible detectability by
modern steganalysis tools, it comes with rather significant
limitations and overhead complexity. In particular, the
sender needs access to the RAW undeveloped image, then
estimate the parameters of the heteroscedastic noise (which
depend on the ISO settings), and finally needs to adopt a
rather simplistic development, essentially creating a spe-
cial source where steganography is easier. To remove the
need for unrealistically simple development pipeline and
access to the RAW image, in a series of papers [16, 15] the
authors showed that a significant security boost can be ob-
tained for side-informed UNIWARD (SI-UNIWARD) [21]
by estimating the photonic sensor noise model and by us-
ing a linearized model of the development pipeline. This
approach cannot be adapted when the sender only has a
JPEG file of unknown pedigree. Moreover, considering
only ISO noise prevents embedding in lower quality JPEGs
(e.g., lower than 95) due to the fact that this noise compo-
nent is largely decimated due to harsh quantization. For
lower quality JPEGs, the embedding needs to “hide be-
hind content complexity,” which can be thought of as the
inability to estimate content [16]. Content complexity is
notoriously difficult to model using statistical approaches
at least to a degree that is required for building secure
steganographic schemes. Without a model or any form
of side-information, only rather incremental improvement
has been reported over classical JPEG steganography with
additive distortion, such as the popular J-UNIWARD al-
gorithm [37, 22, 36].

A simple way to force an additive ternary embed-
ding scheme to consider interactions among embedding
changes is via cost polarization, which we define here as
purposely breaking the symmetry of costs of opposite mod-
ification directions. This way, certain combinations of em-
bedding changes will be occurring with higher probability
than some other combinations. In other words, we proba-
bilistically enforce certain relationships among embedding
changes while keeping the simplicity of embedding with an
additive distortion function. The authors of [10] showed
that a quite significant improvement in empirical secu-
rity of J-UNIWARD can be obtained by utilizing a second
JPEG image of the same scene by decreasing the costs of
changing the DCT coefficient in the direction of the value
from the second JPEG while keeping the costs unchanged
for all coefficients that were the same for both exposures.
The second exposure is a form of side-information, which
makes this method also limited in its applicability.

Recently, a cost-polarization method was pro-
posed [39, 28] based on creating side-information from the

cover JPEG by applying to it a JPEG deblocker.2 The de-
blocked image is used as side-information for embedding in
a manner similar to how side-informed steganography with
precover has been used in the past – by decreasing the costs
of modifications towards the deblocked image. With the
right deblocker, the improvement in security of this simple
method over the original embedding scheme can be quite
remarkable. The authors of this idea view the deblocked
image as an estimate of the unquantized cover image (pre-
cover), explaining thus the technique as embedding with
side-information. In this paper, we critique this explana-
tion, pointing out that even the best deblockers are only
slightly better than a random guesser in determining the
signs of quantization errors. Instead, we hypothesize that
the deblocked image exerts pressure on the embedding to
generate a stego image that is more compatible with the
distribution of the precover. To this end, we adopt Mi-
POD’s content complexity model in the spatial domain,
port it to the DCT domain, and inspect the likelihood un-
der the precover distribution. This likelihood correlates
with empirical detectability in practice. To further prove
the point, we show that in a cover source that follows the
adopted model perfectly, a simple Wiener filter can serve
as a deblocker as efficiently in terms of empirical security
as more complex deep learning deblockers.

After introducing basic notational conventions and
symbols, in Section “Cost Polarization” we describe the
cost polarization method as introduced in [39, 28]. Then,
we give details of the datasets used for experiments and
the detectors used to evaluate empirical detectability. To
motivate the research, in Section “Base Experiments” we
report the performance of cost polarization with a vari-
ety of JPEG deblockers applied to J-UNIWARD and con-
trast them with SI-UNIWARD and BACKPACK [4]. The
following section contains a critique of the explanation of
why cost polarization works as presented by its inventors.
In Section “Insight from modeling content complexity,” we
lay out arguments that the internal mechanism is rooted
in the way the polarities work together. A numerical mea-
sure based on a precover model is proposed and shown to
correlate with empirical detectability. Additional insight
is obtained with a deblocker implemented as a Wiener fil-
ter. The Section “Interblock Relationships” inspects the
impact of embedding on relationships among DCTs across
blocks. Section “Deblockers” contains implementation de-
tails of all deblockers and their mutual comparison in terms
of PSNR w.r.t. the uncompressed image. Section “BACK-
PACK” provides the reader with the details of how it used
in this paper. The paper is concluded in the last Section
“Conclusions.”

Notation
In this section, we introduce basic notational conven-

tions. Vectors and matrices will be typed in boldface while
reserving uppercase symbols for matrices. Transpose of

2A JPEG deblocker attempts to “dequantize” a decom-
pressed JPEG (bring it closer to the uncompressed image within
certain metric) in order to improve the visual quality and par-
tially undo the compression loss.
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matrix A will be denoted AT . Gaussian distribution with
mean µ and covariance Σ is N (µ,Σ); uniform distribution
on interval [a,b] is denoted U [a,b]. If S is a set, |S| is the
cardinality of S.

In this paper, we work solely with grayscale images.
Quantized DCT coefficients in a JPEG file will be rep-
resented in a block-by-block fashion by a integer-valued
matrix d of the same dimensions as the image. When ad-
dressing a specific 8× 8 DCT block, we will use the same
symbol as the meaning should be clear from context. A
steganographic scheme for JPEG images typically modi-
fies the values of d by ±1. The dequantized cofficients are
captured with matrix c = q ·d whose elements are mul-
tiples of the quantization steps (q is the 8× 8 luminance
quantization matrix and the operation ′·′ is the element-
wise multiplication).

When the spatial positions of DCT coefficients within
the image are not relevant, we will assume that d or c are
vectors obtained by unwrapping the corresponding matri-
ces according to some fixed order.

Cost polarization
In this section, we describe the cost polarization algo-

rithm that is studied in this paper. We adopt the same
acronym for this approach as in the original work [28],
where it was called SIEp (Side Information Estimation Po-
larity), and also use the same language.

This method starts with an existing additive ternary
steganographic scheme, which changes cover DCT coeffi-
cients di by ±1 to embed the secret message. Let d̂i be the
corresponding non-rounded DCT coefficients of the same
cover JPEG image after processing it by a JPEG deblock-
ing algorithm. To remove any source of ambiguity, d̂i are
obtained by applying the DCT blockwise to the deblocked
image in spatial domain and dividing by the quantization
matrix without rounding to integers. Denoting the costs
of the ternary steganographic scheme with ρi, the SIEp
method costs are modulated (slashed) by a factor 0<η < 1
(η = 0.65 everywhere in this paper)

ρSIEp
i (si) = ηρi

ρSIEp
i (−si) = ρi. (1)

Here, si = sign(êi) is the sign of the “estimated rounding
error”,êi, given by

êi = d̂i−di. (2)

Based on the interpretation in [28], êi is an estimate of
the rounding error during the original JPEG compression
that produced the cover di. Note that the resulting embed-
ding scheme will work with asymmetric costs ρSIEp

i (±si)
of changing ci by ±si. Also note that the cost modula-
tion is different from typical side-informed schemes, which
modulate costs by 1− 2|ei|, where ei ∈ (−1/2,1/2] is the
true rounding error during JPEG compression. As the au-
thors of [28] point out, the modulation (1) does not “trust”
the estimated rounding errors as much as a typical side-
informed scheme because the estimated rounding error is

only an approximation and also because it may not be in
the range (−1/2,1/2].

We included in our study two more versions of the
SIEp algorithm: SITp (side information true polarity) and
SIRp (side information random polarity) . The first one
uses the uncompressed image instead of a deblocked image,
and thus knows the signs of the true quantization errors ei.
This version was added to see what would happen if the
deblocker gave a perfect output. SIRp selects the directions
for modulation randomly with equal probability 1/2. This
algorithm was added to see the impact of cost slashing
with a deblocker that randomly guesses the directions for
slashing.

Datasets and detectors
All experiments in this paper are conducted on four

datasets, one containing natural images and three artificial
sources to gain insight.

The dataset of natural images is the union of the
BOSSbase 1.01 [2] and BOWS2 [3], each with 10,000
grayscale images resized to 256×256 pixels with imresize
in Matlab using default parameters and stored them as un-
compressed images. To generate JPEG images, each im-
age is processed with in a blockwise manner with the DCT
transform with dct2 in MATLAB. The DCT coefficients
are then quantized with a quantization matrix, which de-
pends on a quality factor (QF), and rounded to the closest
integer. We use the same pipeline for obtaining JPEGs to
avoid the cover-source mismatch (CSM) [25, 30]. We refer
to the union for brevity as BB. This dataset is a popular
choice for designing detectors with deep learning because
small images are more suitable for training deep architec-
tures [41, 5, 42, 43, 40, 44]. The training set (TRN) con-
tains all 10,000 BOWS2 images along with 4,000 randomly
selected images from BOSSbase. The remaining images
from BOSSbase were randomly partitioned to create the
validation set (VAL) and the testing set (TST) with 1,000
and 5,000 images, respectively.

An artificial version of this dataset [7] was prepared
to allow statistical analysis to provide insight. Since we
intend to study a wide range of quality factors, instead
of using photonic sensor noise as a source of random-
ness for modeling as in [15, 16], we decided to model
content complexity as in the embedding algorithm Mi-
POD [34]. Thus, we model precover (p) pixels in a sin-
gle 8× 8 block as a multi-variate Gaussian distribution
N (µ(p),Σ(p)) with µ(p) ∈ {0, . . . ,255}N and a diagonal co-
variance Σ(p) = diag(σ2

1 , . . . ,σ
2
N ), with pixel variances σ2

i
estimated from the uncompressed image using MiPOD’s
variance estimator. The superscript p is to remind the
reader that the objects are in the pixel domain. Since the
MiPOD model is really a model of pixel noise residuals,
each image from BB was first denoised using the wavelet
denoising filter [31] with σDen = 10, then its dynamic range
was narrowed (and the values rounded to the closest inte-
gers µ(p)) to make sure the pixel values after noisification
fit within the [0,255] range with high probability. Subse-
quently, a precover in the pixel domain was obtained by
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sampling from the MVG, which was achieved by adding
to µ

(p)
i independent samples from N (0,σ2

i ). The sampled
precovers are rounded to the closest integer. We abbreviate
this artificial version of BB as BB1 (and BB1/2), depend-
ing on whether we use the exact value of σi from MiPOD or
σi/2. More details describing the creation of this dataset
appear in [7].3

The third artificial dataset we generated contains mul-
tiple samples of the same scene; we call it BB-MS (BB
with multiple samples). Note, that the dataset uses only
the exact value of σi from MiPOD. It contains 80 scenes
randomly selected from TRN, VAL, and TST set and each
scene is sampled 50 times, which amounts to 80×3×50 =
12,000 images. The main purpose for adding this dataset is
to mitigate the impact of acquisition noise on experiments
carried out in Section “Insight from modeling content com-
plexity”.

Everywhere in this paper, we evaluate the security
of embedding algorithms empirically with PE – the min-
imum average total detection error under equal priors on
the testing set. All deep learning detectors were initial-
ized with JIN-SRNet [8], which is the SRNet [5] pretrained
on ImageNet [11] and its stego version embedded with
J-UNIWARD [21] with payloads uniformly randomly se-
lected from the interval [0.4, 0.6] bpnzac. The networks
were then refined for a given steganalysis task via trans-
fer learning as described in [8]. For artificial datasets BB1
and BB1/2, SRNet is seeded with JIN-SRNet only for de-
tecting J-UNIWARD. Detectors for the other algorithms
are seeded with SRNet pretrained on the corresponding
artificial dataset and its stego version embedded with J-
UNIWARD.

Base experiments
To ease the reader into the subject and to motivate

this study, in this section we report the empirical secu-
rity of various versions of SIEp applied to J-UNIWARD
and contrast with other methods for increasing security,
such as SI-UNIWARD [21] and BACKPACK [4]. Table 1
shows the detection error PE of SRNet for J-UNIWARD
and various versions of SIEp for payloads 0.2 and 0.4 bpn-
zac on BB with costs modulated with η = 0.65. Five de-
blockers are studied: Wiener filter with a 3×3 window im-
plemented as wiener2 in Matlab with default parameters
(image local means and variances are estimated from 3×3
neighborhood, noise variance is an average of local image
variances), jpeg2png,4 SSRQC [46], and two deep learning
deblockers DnCNN [45], and FBCNN [24]. The implemen-
tation details of all deblockers used in this paper and their
performance are reported in Section “Deblockers.”

The results clearly show a substantial gain in empir-
ical security across all quality factors and both payloads.
The deblockers are listed from top to bottom according
to their ability to deblock in terms of PSNR between the
uncompressed image and the deblocked image (see Section

3In contrast to [7], we skipped the step that clips the pixel
values to [1,254] since we evaluate the cover likelihood in the
DCT domain.

4https://github.com/victorvde/jpeg2png

“Deblockers”). It is generally true that better deblockers
lead to more secure steganographic schemes. The two deep
learning deblockers perform practically the same with the
exception of QF98 when FBCNN achieves a better perfor-
mance. Also note that even the simplest deblocker, the
3× 3 Wiener filter, does provide a non-negligible security
boost.

In Figure 1 (and Table 1), we compare empirical secu-
rity of J-UNIWARD in terms of PE with SIEp(DnCNN )
as the deblocker w.r.t. SI-UNIWARD [21], SITp, SIRp,
and BACKPACK [4] with two global iterations against
XuNet [40]. The implementation details of BACKPACK
for the BB dataset are given in Section “BACKPACK”. As
expected, SI-UNIWARD offers the best security because
it has access to the uncompressed cover image. Having
said this, the difference between SIEp with the FBCNN de-
blocker and SI-UNIWARD is less than 5%. Moreover, SIEp
outperforms BACKPACK with two iterations, which is
quite remarkable considering the immense computational
requirements this advanced algorithm needs.

We also observed that SIEp(DnCNN ) experiences a
performance drop for the largest quality factor, while
SIEp(FBCNN ) does not suffer from this problem. We
hypothesize that this is due to the fact that FBCNN is
seeded with weights trained for multiple quality factors.
This technique only makes sense for FBCNN, since it con-
tains attention layer parametrized by the quality factor
predictor embedded into the network, while DnCNN is a
simple encoder-decoder convolutional network.

Table 2 shows two more interesting results. When
SIEp is given the true directions of rounding errors (SITp),
its security is markedly lower than when the directions are
estimated. Apparently, the way the costs are modulated
and the accuracy of estimating the quantization error signs
need to be optimized jointly. The “harsh” modulation by
η slashes the costs irrespectively of the magnitude of the
quantization error, unlike SI-UNIWARD, which explains
why it performs worse than SI-UNIWARD. The second
curious result is the fact that when the directions to be
modulated are selected randomly (SIRp), the empirical se-
curity of the embedding algorithm is unaffected w.r.t. the
original scheme, J-UNIWARD. This is an indirect indica-
tion of a space for improvement should these directions be
selected in a more judicious manner.

Critique
In the original paper describing SIEp [28], the authors

explain their method by referring to the principle of side-
informed embedding. The deblocked image is considered
as an estimate of the unquantized image and the differ-
ences between the DCT coefficients between this image and
the cover image are taken as estimates of the quantization
errors. However, when we inspect how accurately the de-
blockers estimate the rounding error, we discover that their
ability to guess even the sign of the rounding error is only
slightly better than random guessing. Figure 2 shows the
accuracy of estimating the rounding error sign as a func-
tion of the cost percentile from JPEG images stored at
quality 95 and 75. To be more precise, for example the
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Figure 1. Detection error PE of SRNet for J-UNIWARD for four quality factors, two payloads, and five different deblockers on BB.

0.2 bpnzac 0.4 bpnzac
QF 75 85 95 98 75 85 95 98

J-UNIWARD 0.1761 0.2052 0.3367 0.3046 0.0557 0.0783 0.1693 0.1468
SIEp(Wiener 3×3) 0.2016 0.2239 0.3469 0.3276 0.0804 0.1008 0.1898 0.1687

SIEp(jpeg2png) 0.2094 0.2373 0.4173 0.344 0.0925 0.103 0.2067 0.1825
SIEp(SSRQC) 0.2474 0.2794 0.4635 0.4141 0.1063 0.1348 0.2477 0.2265
SIEp(DnCNN) 0.2925 0.3172 0.4996 0.3717 0.1469 0.17 0.2772 0.2237
SIEp(FBCNN) 0.2913 0.3247 0.4993 0.4557 0.1439 0.1719 0.2886 0.2569

Table 1. Detection error PE of SRNet for J-UNIWARD for four quality factors, two payloads, and five different deblockers on BB.

QF J-UNI SIRp SITp SIEp(DnCNN) SI-UNI BP#2
95 0.1672 0.1608 0.2022 0.2772 0.3234 0.2461
75 0.0557 0.0562 0.0783 0.1469 0.2481 0.1215

Table 2. Empirical security measured as PE with SRNet for J-UNIWARD, SIRp with randomly selected directions for modulation,
SITp with the precover as the “deblocked” image, SIEp(DnCNN) with DnCNN deblocker, SI-UNIWARD, and BACKPACK with two
iterations w.r.t. XuNet. Payload 0.4 bpnzac, BB.
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point on the curve for percentile 25 is the sign prediction
accuracy for the 25% of the smallest costs, which corre-
spond to pixels where the majority of embedding changes
occur. Figure 3 shows that on average 95% of the embed-
ding changes are made to pixels with 20% of the smallest
costs for J-UNIWARD 0.4 bpnzac at JPEG quality 95.

With such low sign estimation accuracy, the cost mod-
ulation is essentially random for the DCT coefficients that
are primarily used for embedding in terms of the actual
embedding changes, which points to a different mechanism
responsible for the security boost. We note that a simi-
lar level of sign accuracy can be observed for other quality
factors and deblockers.

Insight from modeling content complexity
To obtain insight into the internal mechanism of SIEp,

we generate from BB an artificial cover source where the
content complexity in pixel domain is modeled as a multi-
variate Gaussian (MVG) distribution N (µ(p),Σ(p)) with
Σ(p) = diag(σ2

1 , . . . ,σ
2
N ). The variances are estimated from

the uncompressed BB image using MiPOD’s variance es-
timator and the mean is the BB image processed with a
denoising filter, scaled to a narrower dynamic range, and
rounded to integers as described in Section Datasets and
Detectors and detailed in [7].

Since the spatial model is a collection of indepen-
dent Gaussian random variables, we can transfer the spa-
tial model to the DCT domain by blocks. Restricting
µ(p),Σ(p) to one 8× 8 block but keeping the notation for
simplicity, µ(p) ∈ {0, . . . ,255}64,Σ(p) ∈ R64×64, by trans-
forming the quantities to the DCT domain, we obtain the
mean and covariance matrix for the DCT coefficients (not
divided by quantization steps or rounded)

µ = Dµ(p)

Σ = DΣ(p)DT , (3)

where D is an orthonormal 64× 64 DCT matrix, and
µ ∈ R64,Σ ∈ R64×64. The precover DCT coefficients thus
follow x∼N (µ,Σ).

Figure 4 shows a two-dimensional version of this MVG
in the DCT domain together with a specific realization
(precover) x, its quantization errors eiqi, and the cover
JPEG c shown with a black circle. We note that except
for the largest JPEG qualities, the quantization noise dom-
inates the statistical spread of the MVG. This also means
that one cannot adopt fine-quantization assumption for the
modeling. Instead, we focus on the fact that SI-UNIWARD
modulates the costs of modifications that take the cover
(black) to any of the green points by 1− 2|ei|, while the
costs to the red dots are unmodified. In contrast, any em-
bedding method with symmetric costs moves the cover to
a green or red point with equal probability. Considering
the coarse quantization case we face, this means that the
resulting stego image will on average have a much smaller

likelihood under the precover MVG than a stego image pro-
duced by SI-UNIWARD, which prefers changing the cover
to the green points. For the dimensionality of an 8× 8
JPEG block, the green dots start occupying increasingly
smaller part of the set of all possible stego images (264 out
of a total of 364 images). While the deblockers are not
very accurate in predicting the directions to the green dots
(see Figure 2), they do create the right bias on average,
preventing combinations of embedding changes with small
cover likelihood. This rough reasoning, however, does not
explain why SITp is less secure than SIEp with a deblocker.

To properly assess the impact of embedding, one would
need to consider the distribution of stego images w.r.t. the
cover distribution. Since modeling the directions predicted
by a deblocker is rather complex, we adopt two simplifying
assumptions:

1. We only consider the impact of embedding on cover
likelihood. An embedding scheme that decreases the
cover likelihood more will likely be more detectable
than one that preserves it.

2. The model adopted in this section only considers
interactions of embedding changes within one 8× 8
block (intra-block) but does not consider inter-block
relationships.

Instead of working with the likelihood itself, we work with
the exponent of the MVG N (µ,Σ), which is the squared
Mahalanobis distance

d2
Σ(x,µ) = (x−µ)T Σ−1(x−µ) (4)

with µ,x, and Σ restricted to one on JPEG 8×8 block.
Table 3 shows the detection error of SRNet

on BB1 and BB1/2 for J-UNIWARD, SI-UNIWARD,
SIEp(DnCNN ) and SIEp(SSRQC ), and SITp. The em-
bedding algorithms are ordered in the table in increas-
ing order by their empirical security. We observe the
same order in terms of PE as for BB dataset. Note that
SITp always performs worse than SIEp(DnCNN ). For BB1,
SIEp(DnCNN ) and SIEp(SSRQC ) offer similar security
but SIEp(SSRQC ) performs much worse for the less noisy
dataset BB1/2. For this dataset, SIEp(DnCNN ) also per-
forms very close to SI-JUNI. We note that the DnCNN
deblocker was trained on the artificial dataset to have the
deblocker match the cover source.

To analyze how well various distance measures cap-
ture detectability, we use the BB-MS dataset to reduce the
impact of acquisition noise within a scene. Figure 5 shows
confusion matrices for four different stego algorithms and
four quality factors for images from BB-MS constructed
by the following procedure. For a fixed cover c in BB-
MS, we generate a stego image sS for each stego scheme
S in Table 3 except SIEp(SSRQC ). The four stego im-
ages are ranked based on ordering distance measurements,
e. g., dΣ(sS ,µ)−dΣ(c,µ) in a non-decreasing fashion using
µ that corresponds to the scene from which c was taken.
The rank of sS w.r.t. distance d is denoted Rd(S,c) . Thus,
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Figure 4. Example of a MVG in the DCT domain with quantization bin
centers as colored dots. The symbols µ, x, and c, are the MVG mean, one
realization of the MVG (precover), and the cover DCTs rounded to multiples
of quantization steps. The cover quantization errors are e1q1 and e2q2

(q being quantizations steps). Green dots mark 22 directions preferred by
SI-UNIWARD while the remaining 32−22 dost are depicted in red.
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the bin of confusion matrix A at row S and column j is
given by

AS,j = |{c :Rd(S,c) = j}|
|BB-MS| , (5)

that is, AS,j is the relative number of samples for which
the rank of scheme S in terms of distance measurement is
j. The columns in Figure 5 are labelled by the the ste-
gos schemes according to the empirical security ranking to
aid in the comparison between distance measure and de-
tectability.

Note that the ranking reported in Table 3 remains the
same for BB-MS since it is a smaller version of BB1 but
with multiple samples for the same scene. The ranks based
on the Mahalanobis distance match the ordering of the
stego algorithms in terms of empirical security. In other
words, the cover likelihood does capture the security as
evaluated by real life detectors. In contrast, measuring
with the L2 distance does not capture detectability cor-
rectly, which can be seen for QF95. In particular, it does
not correctly predict the security of SIEp(DnCNN ) and
SI-UNI for QF95 and QF98.

In general, the Mahalanobis distance tends to be less
certain where L2 totally fails. For example, L2 distance
completely misranks for QF98, while the Mahalanobis dis-
tance just becomes less certain (less clear staircase pat-
tern). For QF95, the Mahalanobis distance clearly yields
better match than L2. This indirectly confirms our claim
that one needs to consider the embedding changes in their
entirety w.r.t. the model of content complexity of natu-
ral images to explain the mechanism behind the benefit of
using deblocked images for cost polarization.

Dequantizing with Wiener filter
In this section, we investigate another deblocker for

SIEp in the artificial datasets which is based entirely on the
known cover model instead of being data driven. Adopting
a uniform model for the quantization noise in the DCT
domain, we can dequantize using a Wiener filter in the
spatial domain since for the artificial dataset we do have
a known cover model. Curiously, this purely model based
deblocker gives very close performance as the data driven
deep learning deblockers.

Keeping the same notation as above, given a cover
JPEG c,5 we wish to estimate the spatial representation of
the precover x(p), x(p) = DT x, where DT ∈ R64×64 is the
matrix facilitating the inverse DCT and x is the precover
of c, which we write as

x = c+ f , (6)

where fi = qiei ∈ (−qi/2, qi/2] is the quantization error.
Applying the inverse DCT

x(p) = DT x = DT c+DT f (7)

with DT f being the JPEG quantization error represented
in the pixel domain. Since for the artificial dataset x(p)

5We remind the reader that c are the dequantized DCT co-
efficients, or equivalently, ci is an integer multiple of qi.

follows a known model x(p) ∼ N (µ(p),Σ(p)), we can use
a Wiener filter to estimate the spatial representation of
the precover x(p) provided the covariance of DT f is avail-
able. To this end, we assume the JPEG quantization error
ei ∼ U(−qi/2, qi/2) with ei mutually independent with co-
variance matrix Ξ = 1

12 diag(q2
1 , . . . , q

2
64). The covariance of

DT f is thus Ξ(p) = DT ΞD.
The Wiener filter estimate of x(p) is

x̂(p) = W(DT c−µ(p)), (8)

where W = Σ(p)(Σ(p) + Ξ(p))−1. Note that prior to ap-
plying the Wiener filter, we had to subtract the mean µ(p)

from DT c to make it zero mean.
Table 4 shows the detection error of SRNet for

SIEp(Wie) with SIEp(DnCNN ) and three deblockers all
based on the Wiener filter for the artificial datasets, J-
UNIWARD, and payload 0.4 bpnzac. Wie, WieE, and
WieER correspond to implementations of the Wiener filter
with the exact parameters µ(p),Σ(p), estimated from the
decompressed JPEG from a local 3× 3 window, and esti-
mated from the uncompressed image from a local 3× 3
window. As expected, the more accurate the model of
the signal that is being dequantized, the better the perfor-
mance of SIEp. In particular, with perfect modeling knowl-
edge (Wie) for quality 95 and the noisier dataset BB1, the
deblocker SIEp(Wie) achieves slightly better performance
than SIEp(DnCNN ), which is unaware of the model but
requires training on a large dataset.

The deblocker based on the Wiener filter is very dif-
ferent from a deep learning deblocker in the sense that the
former cannot consider relationships across 8×8 blocks in
contrast to the DnCNN. We take a look at this more closely
in the next section.

Encouraged by the success of the Wiener dequan-
tizer, we next inspect its performance on the real BB
dataset. The results are summarized in Table 5. Since
for real images the exact precover model is not known,
only SIEp(WieE) and SIEp(WieER) can be evaluated. In
general, SIEp with the WieE dequantizer is very close to
SSRQC in terms of empirical security (which is also the
case on artificial datasets). Interestingly, having access to
uncompressed images for model estimation yields only a
slight improvement. We also observe the same behavior
for the smaller payload 0.2 bpnzac with SIEp(WieER) be-
ing slighter better than SIEp(WieE).

Interblock Relationships
The cost modulation in SIEp (1) itself provides some

insight into why the asymmetric costs improve security.
First, the deblocked image is smoother than the cover im-
age as it should be by the nature of what a deblocker does.
The cost modulation then exerts pressure for the embed-
ding to make changes that make the resulting stego image
smoother. We quantify this using the so-called blockiness.
Formally, for a grayscale N1×N2 image z represented in
pixel domain with pixel values zij ∈ {0,1, . . . ,255}, N1,N2
multiples of 8 and pixel indexing starting from 1, the block-
iness is
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Dataset QF J-UNI SITp SIEp(SSRQC) SIEp(DnCNN) SI-UNI

BB1 95 0.2737 0.3184 0.3862 0.3894 0.4202
75 0.0838 0.1288 0.2195 0.2764 0.3337

BB1/2 95 0.1963 0.2423 0.2986 0.3622 0.3772
75 0.0363 0.0652 0.0936 0.1825 0.2713

Table 3. Detection error PE of SRNet on various steganographic schemes for payload 0.4 bpnzac on BB1 and BB1/2 for two quality
factors.
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Figure 5. Confusion matrices for multiple quality factors. The x-axis shows the order of the embedding algorithms in terms of security (left is the most secure,
right is the least). For the Mahalanobis distance, y-axis shows the average order in terms of dΣ(s,µ)−dΣ(c,µ). For L2 distance, y-axis shows the average
order in terms of ||s−µ||2−||c−µ||2. The number in each cell is the fraction of cases when the order of this cell matches the true order. The ranking is
averaged across all images from BB-MS.

Dataset QF SIEp(DnCNN) SIEp(Wie) SIEp(WieE) SIEp(WieER)

BB1 95 0.3894 0.3977 0.3256 0.3476
75 0.2764 0.2139 0.1756 0.1985

BB1/2 95 0.3622 0.3397 0.2979 0.2982
75 0.1825 0.0971 0.0839 0.0888

Table 4. Detection error PE with SRNet for the Wiener family of SIEp algorithms in artificial datasets, J-UNIWARD, 0.4 bpnzac. Wie,
WieE, and WieER correspond to deblockers implemented with the exact knowledge of the mean and variance µ(p),Σ(p), estimated
from the decompressed JPEG, and from the uncompressed cover.

QF J-UNI SI-JUNI SITp SIEp(SSRQC) SIEp(DnCNN) SIEp(FBCNN) SIEp(WieE) SIEp(WieER)
98 0.1468 0.3118 0.1855 0.2265 0.2237 0.2569 0.2103 0.2013
95 0.1672 0.3234 0.2022 0.2409 0.2775 0.2886 0.2291 0.2374
85 0.0783 0.2561 0.1051 0.1348 0.17 0.1719 0.1138 0.1301
75 0.0557 0.2481 0.0783 0.1083 0.1469 0.1439 0.0973 0.1023

Table 5. Detectability of various versions of SIEp in terms of PE for SRNet on BB, J-UNIWARD, 0.4 bpnzac.
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B(z) = 1
255

(
N1∑
i=1

N2/8−1∑
l=1

|zi,8l−zi,8l+1|+

+
N1/8∑
k=1

N2∑
j=1
|z8k,j −z8k+1,j |

)
(9)

Figure 6 proves this statement by showing the his-
togram of differences between the blockiness of the stego
and the blockiness of the corresponding cover image over
a dataset. Note that SIEp increases the blockiness less
than J-UNIWARD. Also, for SIEp(DnCNN ), the differ-
ence between the stego and cover blockiness is the least
biased (approximately centered around 0). While J-
UNIWARD stego images are always blockier than for the
side-informed counterparts, making them too smooth (the
case of SIEp(jpeg2png)) in the end makes the embedding
more detectable.

Next, we analyze the dependencies among embedding
changes between adjacent blocks. Figure 7 shows the co-
variance matrix between the sign of the estimated rounding
error (2) of all 64 DCT coefficients (scanned by rows) and
the sign of the estimated error of 64 coefficients from a hor-
izontally and vertically adjacent blocks. Notice that signs
of errors of DCT modes with even horizontal frequencies
exhibit a positive correlation with errors from horizontal
frequencies from a horizontally neighboring blocks while a
negative correlation exists between odd horizontal frequen-
cies. This confirms the tendency of the embedding to pre-
serve smoothness between blocks and decreases the block-
iness that would otherwise be increased in a scheme with
symmetric costs. A similar (complementary) observation
can be made about vertical frequencies between vertically
adjacent blocks.

Deblockers
This section describes the deblockers used in this paper

together with all information needed for their implemen-
tation. We also contrast their performance in terms of the
PSNR between the uncompressed image and the deblocked
image and in terms of the accuracy of predicting the signs
of quantization errors. We note that all deblockers are
given a decompressed JPEG image, which is not rounded
to integers. They also output non-rounded images.

For faster convergence, the two deep learning deblock-
ers (DnCNN and FBCNN) were forced to output within
the dynamic range [0, 255]. DnCNN was also trained with
L2 and L1 loss, and in both the spatial and DCT do-
mains to see if there is a benefit for security (which was
not observed). FBCNN was trained only with L1 loss as
suggested in the original paper. The batch size is set to
16. The learning rate is controlled with Cosine Anneal-
ing scheduler varying it from 10−3 to 10−8 for DnCNN
and from 10−4 to 1.25× 10−5 for FBCNN. FBCNN is
also seeded with weights given in https://github.com/
jiaxi-jiang/FBCNN to exploit pre-trained attention layer.
Both DnCNN and FBCNN are trained for each quality fac-
tor separately on two NVIDIA TITAN RTX GPUs. Each

training of deblocker takes approximately three hours to
complete.

SSRQC deblocker was downloaded from https://
github.com/coolbay/Image-deblocking-SSRQC and used
without modifications. The jpeg2png deblocker was down-
loaded from https://github.com/victorvde/jpeg2png
and modified to support grayscale images.

The deblocking performance is reported in Table 6
with PSNR and sign accuracy computed over the TST set.
The state-of-the-art FBCNN deblocker yields the best re-
sults for a wide range of quality factors. We also give a ref-
erence number in column “Cover” for the PSNR between
uncompressed and cover JPEG images decompressed to the
spatial domain without rounding. Both Wiener 3×3 and
jpeg2png deblockers smooth the images too harshly, which
results in a smaller PSNR.

BACKPACK
In this section, we provide more details on how BACK-

PACK was implemented and used in this paper. To de-
crease the computational cost, it was used with only two
global attack iterations. The detector the attack is per-
formed against is J-XuNet [40]. The J-XuNet is re-trained
after each iteration on covers and composition of stegos,
where the best stego for each cover is selected from the past
iterations according to the “minmax” strategy. During the
attack, the algorithm samples multiple stego images with
modified costs to reduce the noise in the gradients. We set
the number of stego samples to 20 to fit within the GPU
memory. For each image, the number of attacking itera-
tions was set to 500 to ensure a higher chance of success.
The initial temperature used for soft stego generation is
set to 5.

It is also worth mentioning that the attack is quite
computationally demanding. To complete two iterations
for BB QF95, it takes 8 hours with 8 NVIDIA TITAN
RTX GPUs, not counting the time needed to train the J-
XuNet. For BB QF75, the attack time is 10 hours with 10
threads utilizing 2 NVIDIA TITAN RTX GPUs for the first
iteration and 11 hours with 22 threads utilizing 3 NVIDIA
TITAN RTX GPUs and 3 NVIDIA GeForce RTX 2080 Ti
GPUs for the second iteration.

Conclusions
Simple ideas that are powerful are always significant

even if they are heuristic because they show the way and
point out existence of new phenomena and connections.
The SIEp method for polarizing costs with a dequantized
cover is a prime example of this. In this paper, we shed
some light on the inner workings of this approach. Our
explanation starts with a critique. While it is true that
better deblockers (in terms of PSNR) lead to more se-
cure steganography, even the best deep learning deblockers
are only slightly better in predicting the polarities of true
rounding errors where it matters – for the smallest costs
where the vast majority of embedding changes are exe-
cuted. Instead, we argue that the key aspect is the fact
that the polarities are determined from a real dequantized
image. After all, from previous research we know that
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Figure 7. Covariance between the sign of the estimated rounding error êi from two neighboring 8×8 blocks adjacent horizontally (left) and vertically (right)
for the SSRQC deblocker (top) and DnCNN (bottom). JPEG quality 95. The covariance is computed over 2×2 DCT block window (16×16 DCT coefficients)
across all images in BB TST. The covariance matrix is thresholded for a better contrast.

11IS&T International Symposium on Electronic Imaging 2023
Media Watermarking, Security, and Forensics 2023 374-11



Metric QF Cover Wiener 3×3 jpeg2png SSRQC DnCNN FBCNN

PSNR, dB

98 51.963 34.214 47.444 52.085 52.95 52.937
95 45.561 34.182 43.023 46.062 47.097 47.165
85 38.925 33.917 38.047 39.551 40.824 40.914
75 36.43 33.531 36.005 37.109 38.335 38.453

Sign accuracy

98 N/A 0.5518 0.547 0.569 0.5893 0.588
95 N/A 0.5617 0.5597 0.5734 0.6057 0.6093
85 N/A 0.5678 0.5651 0.5843 0.6137 0.6196
75 N/A 0.5642 0.5581 0.5841 0.6108 0.6171

Table 6. Performance of various JPEG deblockers in terms of their PSNR w.r.t. the uncompressed image and in terms of accuracy
of predicting the signs of quantization errors.

when another JPEG exposure of the same scene is avail-
able to the sender, the polarities learned from it provide a
significant security boost [10]. The final piece of evidence
(and critique) is the fact that a deblocker that predicts the
rounding error polarities perfectly does not perform well
with the constant cost modulation factor of SIEp.

To gain insight and prove our point, we move from a
real dataset to an artificial dataset by introducing a model
of content complexity in the pixel domain. Porting it into
the DCT domain, we use the log cover likelihood (the Ma-
halanobis distance) as a scalar measure of performance.
This measure considers the covariance structure of the
cover model in the DCT domain, and it closely correlates
with empirical detectability as established by machine-
learning detectors. In particular, it predicts that SIEp
with true rounding error polarities will not perform well.
For some quality factors on the artificial dataset a simple
Wiener filter achieves equal detection performance as data-
driven deblockers implemented as deep convolutional neu-
ral networks. Additionally, we inspect the impact of cost
polarization from a deblocked image in terms of blockiness
and inter-block correlations of embedding changes in spe-
cific DCT modes. The behavior we see is consistent with
the recent findings determined from models [29, 37].
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