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Abstract
The ability to synthesize convincing human speech has be-

come easier due to the availability of speech generation tools.
This necessitates the development of forensics methods that can
authenticate and attribute speech signals. In this paper, we ex-
amine a speech attribution task, which identifies the origin of a
speech signal. Our proposed method known as Synthetic Speech
Attribution Transformer (SSAT) converts speech signals into mel
spectrograms and uses a self-supervised pretrained transformer
for attribution. This transformer is pretrained on two large
publicly available audio datasets: Audio Set and LibriSpeech.
We finetune the pretrained transformer on three speech attribu-
tion datasets: the DARPA SemaFor Audio Attribution dataset,
the ASVspoof2019 dataset, and the 2022 IEEE SP Cup dataset.
SSAT achieves high closed-set accuracy on all datasets (99.8%
on ASVspoof2019 dataset, 96.3% on SP Cup dataset, and 93.4%
on DARPA SemaFor Audio Attribution dataset). We also in-
vestigate the method’s ability to generalize to unknown speech
generation methods (open-set scenario). SSAT has high per-
formance, achieving an open-set accuracy of 90.2% on the
ASVspoof2019 dataset and 88.45% on DARPA SemaFor Audio
Attribution dataset. Finally, we show that our approach is robust
to typical compression rates used by YouTube for speech signals.

Introduction
With deep learning [1–4], it is possible to generate high

quality, semantically consistent speech which is perceptually in-
distinguishable from speech recorded by human speaker. This
development is advantageous for voice-based applications such
as eLearning, virtual assistants, and commercials. However, it
can also enable convincing spoofing attacks, such as voice con-
version [5], impersonation [6], and cloning [7]. These synthetic
speech attacks have been used to spread misinformation and tar-
get financial fraud. An impersonator using synthetic speech tar-
geted a $40 million financial transaction with Goldman Sachs in
2021 [8]. In 2022, synthetic speech was used to spread misin-
formation during Russia-Ukraine war, where a deepfake video
showed Ukrainian President Volodymyr Zelensky surrendering to
Russia [9]. Therefore there is a need to develop methods to detect
synthetic speech. In a large-scale financial fraud and misinforma-
tion campaigns, it is possible that the same speech synthesizer is
used to create and spoof vast amounts of speech signals to target
different people. Thus, attributing the speech synthesizer used to
generate and spoof speech signals can provide more information
about how the campaign is spreading and may even point us to its
source.

Detecting and attributing synthetic speech to its source
becomes challenging due to the diverse methods for syn-

thetic speech generation. Common approaches for synthesiz-
ing speech include waveform concatenation [10] (a simple cut
and paste method), source-filter modeling of speech signal us-
ing vocoders [11], and deep learning-based methods [1–4, 12].
Handcrafted features (e.g., cepstral coefficients) [13–15], spectro-
grams [16–18], and time-domain speech analysis [19] have been
used for synthetic speech detection. In the last few years, new
deep learning-based synthetic speech generation method have
been proposed [1–4, 12].

In this paper, we propose Synthetic Speech Attribution
Transformer (SSAT) for synthetic speech attribution, which iden-
tifies the source of a speech signal. If the speech is spoken by a
human, we classify it as authentic/bona fide. If the speech signal is
synthetic, we identify the generation method used to create it. We
examine both closed-set and open-set attribution scenarios. In a
closed-set scenario, we evaluate our approach only on the speech
generation methods present in the training set. In an open-set sce-
nario, we also evaluate on methods which are not present in the
training set (we refer to them as unknown methods). We inves-
tigate and compare several approaches for open-set attribution.
Finally, we investigate robustness of SSAT against compression
for data rates of 16kbps or above. Our attribution results show
improvement in terms of balanced accuracy compared to other
approaches [20, 21], especially in the open-set scenario.

The rest of the paper is organized as follows: in the Related
Work section, we discuss common representations of speech sig-
nals, synthetic speech detection methods, and methods for syn-
thetic speech attribution. In the Proposed Method section, we de-
scribe our method. The experimental setup, dataset used for our
experiments, and results are mentioned in the Experiments and
Results section. Finally, we conclude the paper with a discussion
of results and directions for future research.

Related Work
Existing methods for detecting synthetic speech or manip-

ulation in a speech signal [13, 14, 22–24] use approaches based
on Gaussian Mixture Model (GMM), Support Vector Machine
(SVM), and neural networks. These approaches are used to pro-
cess temporal and spectral hand-crafted features such as Cochlear
Filter Cepstral Coefficients (CFCCs) [23], Constant Q Transform
(CQT) [22], Constant Q Cepstral Coefficients (CQCCs) [24], Mel
Frequency Cepstral Coefficients (MFCCs) [13], and Linear Fre-
quency Cepstral Coefficients (LFCCs) [22] for synthetic speech
detection. In [22], features such as log power magnitude spec-
trogram LFCCs, and CQT are used to train a Recurrent Neural
Network (RNN) [25] for synthetic speech detection. Other meth-
ods for detecting synthesized speech use a RNN [25] to capture
artifacts in the time-domain speech signal [19]. Recent methods
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Figure 1: The block diagram of our proposed method Synthetic
Speech Attribution Transformer (SSAT). FFF i represents the ith re-
gion, PPPi represents its positional encoding, EEE i is vector represen-
tation of FFF i, and OOOi is the 768-dimensional representation corre-
sponding to the ith region.

use spectrogram, a 2D representation of the speech signal for syn-
thetic speech detection and attribution [17, 21]. In a spectrogram,
the vertical axis represents frequency bands while the horizontal
axis represent time [26]. In a mel-spectrogram, the frequencies
are represented in the mel scale [16]. In [27] and [17, 28], spec-
trogram is processed using an Efficient Convolutional Neural Net-
work (EfficientCNN) [29] and transformer [30], respectively, for
synthetic speech detection. Methods based on mel-spectrogram
have shown promising results. Gong et al. and Koutini et al. have
used mel-spectrograms and a transformer network for audio clas-
sification tasks (e.g., environment classification [31–33]). Gong
et al. created a self supervised framework for training the trans-
former [32]. Based on its high performance in audio classification
tasks, we use this approach in our method for synthetic speech de-
tection and attribution.

AlBadawy et al. perform bispectral analysis of speech sig-
nal using hand-crafted feature Bicohorence to attribute the speech
signal [34]. Borrelli et al. estimate feature known as Short
Term Long Term (STLT) for synthetic speech detection [20]. The
method based on fusion of both of these features known as Bi-
coherence+STLT method outperform among all of them [20].
Hence, we used Bicoherence+STLT [20] as our baseline method
and compared all our results with it.

Proposed Method
Our proposed method Synthetic Speech Attribution Trans-

former (SSAT) converts the time-domain speech signal to a mel-
spectrogram [16] with 128 frequency bins as described in [31–
33]. The mel-spectrogram is estimated using a 25 ms Hanning
window with a shift of 10 ms. The height of the mel-spectrogram
corresponds to the 128 mel frequency bins and the width of the
mel-spectrogram corresponds to the duration of the speech signal.
We fixed the width to 512 in all our experiments. Overall, we ob-
tain a mel-spectrogram of dimension: 128×512. Figure 1 shows
a mel-spectrogram of a speech signal and our proposed method
SSAT.

As shown in Figure 1, the mel-spectrogram is divided into
overlapping regions using a window of dimension 128×2 with a
shift of 1. For each region, we find a corresponding vector rep-
resentation EEE using linear projection. Let EEE i be the vector repre-
sentation corresponding to the ith region. To EEE i, we add a posi-
tional encoding PPPi as described in [32]. Using the transformer
neural network [30] adapted from [32], we process the vector
EEE i + PPPi to obtain a 768-dimensional representation OOOi corre-
sponding to ith region. We use this region-based approach because
of its high performance in speech classification tasks [32]. The
transformer is pretrained on the Audio Set dataset [35] and the
Librispeech dataset [36] using a self-supervised learning frame-
work [32]. Training a transformer typically requires availability
of a large amount of data. Using a pretrained transformer facili-
tates transfer learning, and helps to counter our limited data avail-
ability. The vector representations for all the regions (i.e.,OOOi for
i ∈ 1,2,3, ...,N) are processed using a mean pooling operation
to obtain a single 768-dimensional representation for a speech
signal. Using a linear layer with SoftMax activation, we obtain
a classification label and corresponding confidence score. For
closed-set attribution, the classification label is either bona fide or
one of the speech generation methods present in the training set.
For open-set attribution, we threshold the confidence score. If the
confidence score for the speech signal is lower than the threshold
for bona fide class and all known generation methods, we classify
the speech signal as generated from an unknown method. We in-
vestigate two more approaches for open-set attribution, as detailed
in the Experiments and Results section. For all experiments, we
use the Adam optimizer [37] for 50 epochs and batch size of 48.
The initial learning rate is set to 2.5×10−4. From the 6th epoch,
the learning rate decays by a ratio of 0.85 in every epoch. For
evaluation, we select the model which achieves the highest accu-
racy on the validation set.

Experiments and Results
In this section, we describe the datasets used for the experi-

ments and the results of our proposed Synthetic Speech Attribu-
tion Transformer (SSAT). As we mentioned earlier we used Bico-
herence+STLT [20] as the baseline method and compared the per-
formance of Synthetic Speech Attribution Transformer (SSAT) to
it. We also qualitatively assess if SSAT can discriminate differ-
ent speech generation methods by visualizing the latent represen-
tation in each of the experiment. For the visualization, we pro-
jected the 768-dimensional representation learned by SSAT to a
2-dimensional space using an unsupervised method known as t-
distributed stochastic neighbor embedding (t-SNE) [38]. Finally,
we also discuss robustness of SSAT against compressed speech
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Table 1: Details of the ASVspoof2019 dataset.

ASVspoof2019 Dataset

Dtr Ddev Deval Category

Samples Bona fide 2580 2548 7355

Synthetic
22800 22296 63882

Speakers Bona fide 20 10 48

Synthetic A01 ✓ ✓ × NN

Methods A02 ✓ ✓ × VC

A03 ✓ ✓ × VC

A04 =
A16 ✓ ✓ ✓ WC

A05 ✓ ✓ × VC

A06 =
A19 ✓ ✓ ✓ VC

A07 × × ✓ NN

A08 × × ✓ NN

A09 × × ✓ VC

A10 × × ✓ NN

A11 × × ✓ NN

A12 × × ✓ NN

A13 × × ✓ NN

A14 × × ✓ VC

A15 × × ✓ VC

A17 × × ✓ VC

A18 × × ✓ VC

signal.
We use accuracy [39] and balanced accuracy [40] as our per-

formance metrics for all experiments. Accuracy is defined as ratio
of correct attribution to total number of attribution. For example,
Class A01 Accuracy = T PA01/NA01, where T PA01 is True Positives
attribution of speech signal synthesized from synthesizer A01 and
NA01 is the total number of speech signal synthesized from synthe-
sizer A01. The balance attribution accuracy is average of accuracy
for all classes.

ASVspoof2019 Dataset
In this section, we briefly describe the ASVspoof2019

dataset and detail our closed-set and open-set experiments.

Dataset
We use the ASVspoof2019 dataset which is described in

[41, 42]. The dataset consists of speech signals for different tasks
(e.g., speech verification, spoofing detection and countermeasures
to replay attacks). We consider only a part of the dataset which is
relevant to synthetic speech detection and attribution. This subset

Table 2: Confusion matrices showing closed-set results for
baseline- Bicoherence+STLT and the proposed Synthetic Speech
Attribution Transformer (SSAT) (in bold) for dataset Ddev

Predicted label
BF A01 A02 A03 A04 A05 A06

Tr
ue

la
be

l

BF 0.85
0.997

0.01
0

0
0

0
0

0.10
0

0
0.002

0.04
0

A01 0
0

0.97
0.995

0
0

0
0

0.02
0.005

0
0

0
0

A02 0
0

0
0

0.99
1

0
0

0
0

0
0

0
0

A03 0
0

0
0

0.02
0

0.89
1

0
0

0.08
0

0
0

A04 0.09
0

0.01
0

0
0

0
0.001

0.85
0.998

0
0

0.05
0.001

A05 0
0

0
0

0
0.002

0.01
0

0
0

0.98
0.998

0
0

A06 0.02
0

0
0

0
0

0
0

0
0.001

0
0

0.98
0.999

is referred to as the Logical Access (LA) dataset in [41, 42]. It
contains bona fide speech signals and synthesized speech signals.

The bona fide speech signals are spoken by humans, and the
synthesized speech signals are generated using neural networks
(NN), vocoders (VC), and waveform concatenation (WC) [42].
The LA dataset is partitioned into a training set Dtr, a validation
set Ddev, and a evaluation set Deval . Dtr consists of bona fide
speech from 20 speakers (8 male and 12 female) and synthetic
speech generated from 6 methods (A01 to A06 ). Ddev consists of
bona fide speech from 10 speakers (4 male and 6 female) and syn-
thetic speech generated with A01 to A06 methods. Deval consists
of bona fide speech from 48 speakers (21 male and 27 female)
and synthetic speech generated from 13 methods (A07 to A19).
Deval contains two synthetic speech generation methods, A16 and
A19 which are same as A04 and A06 (in Ddev and Dtr), respec-
tively. Each of the synthetic speech generation methods (A01 to
A19) is described in [42]. Dtr, Ddev, and Dtr are disjoint in terms
of speakers. All speech signals are sampled at 16KHz in identi-
cal recording conditions and encoded using Free Lossless Audio
Codec (FLAC). Table 1 summarizes the details of the dataset.

Closed-Set Attribution
Closed-set attribution is a multi-class classification where all

classes in the test set are the same as the classes in the training
set. We consider the bona fide class to be a separate class and
speech signal generated by different methods as different classes.
Our goal is to classify a given speech signal either as bona fide
or as synthetic speech generated using a known method from the
training set.

Following [20], we did two experiments: Experiment 1 and
Experiment 2. In Experiment 1, 80% of the speech signals in Dtr
are used for training, and the remaining 20% are used for val-
idation. Ddev is used for testing because Dtr and Ddev share the
same synthetic speech generation (A01 to A06) methods. Table 2
shows the confusion matrix for Bicoherence+STLT [20] and our
proposed method. Our method has balanced accuracy of 0.998
which is approximately 7% higher compared to the balanced ac-
curacy of 0.930 obtained by Bicoherence+STLT [20].

For Experiment 2, we divide Deval according to a 60:20:20
ratio for training, validation, and testing sets, respectively. Note
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(a) Baseline Method: Bicoherence+STLT [20] (b) Our Method: Synthetic Speech Attribution Transformer (SSAT)

Figure 2: Confusion matrices showing closed-set results for baseline- Bicoherence+STLT [20] and our method on dataset Deval .

Figure 3: SSAT Latent space t-SNE visualization for ASVspoof2019 closed-set Experiment 1 (left) and closed-set Experiment 2.

that Bicoherence+STLT [20] is trained on 80% of Deval and tested
on 20% of Deval . Hence, we are training on less data but testing
on the same number of samples as Bicoherence+STLT. Figure 2
shows the confusion matrix for this experiment obtained using
Bicoherence+STLT and our proposed SSAT. Our method shows
significant improvement in the balanced accuracy. The balanced
accuracy for our method is 0.998, which is approximately 14%
higher than the balanced accuracy of Bicoherence+STLT at 0.866.

Overall, both Experiment 1 and Experiment 2 show that our
method has very high balanced accuracy (i.e., 99.8%) for closed-
set attribution. Figure 3 also shows the t-SNE [38] visualization
of the latent representation learned by our method for these exper-
iments. We observe from the visualization plot that SSAT sep-
arates different generation methods in the latent space. Different
generation methods form different clusters in the t-SNE visualiza-

tion for both of the closed-set experiments.

Open-Set Attribution
Open-set attribution is a multi-class classification where all

the classes in the test set do not overlap with the classes in the
training set. All classes not present in the training set are com-
bined into one class referred to as the unknown class. For open-
set synthetic speech attribution, we train our method with samples
from bona fide class and limited set of known method from all the
available speech synthesizing methods. The goal is to evaluate if
our method can classify the known classes as such and also detect
synthetic speech generated from other unknown methods as un-
known. The major challenge is to define the decision rule for un-
known class. Note our main objective while defining the decision
rule for unknown class should be that synthetic speech generated
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from unknown methods should not be classified as bona fide.
We investigate open-set attribution with four different exper-

iments: Experiment 3 to Experiment 6. In all experiments, we
use Dtr split according to a 80:20 ratio for training and validation.
For testing, we use the union of Ddev and Deval . In Experiment
3 and Experiment 4, we use the same approach as in [20] and
included an additional class label ‘unknown’ during training. We
consider 4 out of the 6 synthetic speech classes and bona fide class
present in Dtr as known classes. We consider two remaining syn-
thetic speech methods in Dtr as known-unknown(KN-UNKN).
The speech samples from known-unknown methods are used to
train for unknown class. We assume that they are enough to model
the unknown class. Similar to [20], we consider the pair (A02,
A05) and pair (A04, A06) as KN-UNKN class for our first and
second experiments, respectively. During evaluation, our method
classifies speech sample into 6 classes: bona fide (BF), one of
the 4 known synthetic methods, and unknown (UNKN). We sep-
arate methods A16 and A19 from the testing set as they should
be recognised as A04 and A06, respectively. We also separate the
known-unknown and known classes, as they should be recognized
correctly. Table 3 and Table 4 show the confusion matrices for
Experiment 3 and Experiment 4, respectively.

In both Experiment 3 and Experiment 4, our method outper-
forms the baseline in overall balanced accuracy. In Experiment
3, balanced accuracy of attribution is 0.853, and 39% of approx-
imately 61.5K synthetic speech from unknown methods are de-
tected as bona fide. This is an improvement of 10% over Bicoher-
ence+STLT. In Experiment 4, balanced accuracy is higher than
the baseline, our method has balanced accuracy of 0.788. How-
ever, in Experiment 4 our method classifies a higher percentage
of samples from unknown synthetic speech method as bona fide.

Note that synthetic speech generation methods A16 and A19
are exactly same as methods A04 and A06, respectively (though
they are trained using different data). For example, A04 is trained
using CMUdict1, while A16 is trained using VCTK data2. Both
Experiment 3 and Experiment 4 are able to correctly classify A16
as A04 and A19 as A06. Hence, our method learns features at-
tributing the underlying principle used in these methods for syn-
thesizing speech and not the exact data used in these methods dur-
ing their training. Additionally, it models the unknown class using
synthetic speech samples from only two methods.

In Experiment 5, we threshold the confidence score. In Ex-
periment 6, we use the representation from latent space.

In Experiment 5, we use 80% of Dtr to train our method on
all the 7 classes in Dtr. Using 20% of Dtr, we found a threshold
for the confidence score. The threshold is the mean of highest
confidence score for each class such that 90% of samples in each
class have confidence score higher than this. Any sample in our
testing set(i.e.,union of Ddev and Deval), classified with confidence
score less than this threshold is assigned to unknown class.

In Experiment 6, we assume that SSAT cluster the 768-
dimensional representations for speech signals from each known
class inside a ‘D’ radius hypersphere centered at ‘C’. Any repre-
sentation falling outside this hypersphere is considered as sample
from unknown class. For each class, we estimated ‘C’ using the
mean of representations for all speech signals inside that class.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict/
2https://datashare.ed.ac.uk/handle/10283/2651/

The ‘D’ is the mean of radius for each class such that 95% of the
samples in each class are within that radius. We use the Euclidean
distance as our metric for the distance estimate.

Table 5 show the confusion matrix for Experiment 5 and
Experiment 6 where the normalface is for Experiment 5 results
and the boldface is for Experiment 6 results. In Experiment 5,
balanced accuracy is 0.885 and 15% of approximately 54K syn-
thetic speech from unknown methods are classified as bona fide.
In Experiment 6, the balanced accuracy is 0.902 and only 11% of

Table 3: Confusion matrix showing open-set results for Ex-
periment 3 with KN-UNKN = (A02, A05) for Bicoher-
ence+STLT [20] and our method (in bold) on the union of Ddev
and Deval .

Predicted label

BF A01 A03 A04 A06 UNKN

Tr
ue

la
be

l

BF 0.80
1

0.01
0

0
0

0.14
0

0.05
0

0
0

A01 0
0

0.97
1

0
0

0.03
0

0
0

0
0

A03 0
0

0
0

0.85
1

0
0

0
0

0.15
0

A04 0.11
0

0.01
0

0
0

0.82
1

0.06
0

0
0

A06 0.03
0

0
0

0
0

0.01
0

0.96
1

0
0

A16 0.12
0

0.04
0

0
0

0.77
1

0.06
0

0
0

A19 0.08
0

0
0

0
0

0.04
0.02

0.89
0.97

0
1

KN-
UNKN

0
0

0
0

0.02
0

0
0

0
0

0.98
1

UNKN
0.49
0.39

0.09
0.02

0.02
0.4

0.11
0.17

0.05
0

0.24
0.02

Table 4: Confusion matrix showing open-set results for Exper-
iment 4 with KN-UNKN = (A04, A06) for baseline- Bicoher-
ence+STLT and our method (in bold) on the union of Ddev and
Deval .

Predicted label

BF A01 A02 A03 A05 UNKN

Tr
ue

la
be

l

BF 0.92
1

0
0

0
0

0
0

0
0

0.08
0

A01 0.01
0

0.94
1

0
0

0
0

0
0

0.04
0

A02 0
0

0
0

0.98
1

0
0

0.01
0

0
0

A03 0
0

0
0

0.02
0

0.88
1

0.09
0

0
0

A05 0
0

0
0

0
0

0.02
0

0.97
1

0
0

A16 0.04
0

0.03
0

0
0

0
0

0
0

0.93
1

A19 0.04
0

0
0

0
0

0
0

0
0

0.96
1

KN-
UNKN

0.03
0

0
0

0
0

0
0

0
0

0.97
1

UNKN
0.55
0.69

0.06
0.01

0.07
0

0.03
0.14

0.17
0.14

0.13
0.02
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Table 5: Confusion matrix showing open-set results for Ex-
periment 5(i.e.,thresholding confidence score) and Experiment 6
(i.e.,using 768-dimensional representation in the latent space).
The Experiment 6 results are in boldface.

Predicted label

BF A01 A02 A03 A04 A05 A06 UNKN

Tr
ue

la
be

l

BF 0.91
0.85

0
0

0
0

0
0

0
0

0
0

0
0

0.09
0.15

A01 0
0

0.92
0.99

0
0

0
0

0
0

0
0

0
0

0.08
0.01

A02 0
0

0
0

0.98
1

0
0

0
0

0
0

0
0

0.02
0

A03 0
0

0
0

0
0

1
0.99

0
0

0
0

0
0

0
0.01

A04 0
0

0
0

0
0

0
0

0.94
0.94

0
0

0
0

0.06
0.06

A05 0
0

0
0

0
0

0
0

0
0

0.96
0.89

0
0

0.04
0.11

A06 0
0

0
0

0
0

0
0

0
0

0
0

0.77
0.89

0.23
0.11

UNKN
0.15
0.11

0
0

0
0

0.17
0.11

0.07
0.05

0
0

0
0

0.60
0.72

approximately 54K synthetic speech from unknown methods are
classified as bona fide. These experiments show that naive thresh-
olding of the confidence score and finding similarity in latent rep-
resentation can significantly boost the detection rate for synthetic
speech from unknown methods. As in Bicoherence+STLT, our
Experiment 3, and Experiment 4 which model unknown class us-
ing samples from limited methods more than 50% of synthetic
speech from unknown methods are classified as bona fide. While
only 15% and 11% of such synthetic speech are classified as bona
fide in Experiment 5 and Experiment 6, respectively.

We visualized the latent space of SSAT on speech signals
from unknown speech speech generation methods A07-A19. The
SSAT was trained on only bona fide speech signals and speech
signals generated from A01 to A06 generation methods. Figure
4 shows the 2-dimensional t-SNE [38] visualization. We found
that the SSAT cluster several unknown speech generation meth-
ods. This is very promising since SSAT was never trained on
these unknown speech generation methods and is still able to dif-
ferentiate speech signals from these unknown methods in different
clusters. Overall, our experiments show that SSAT with an appro-
priate choice of decision rule such as using representations as in
our Experiment 6 can attain balanced accuracy of more than 90%
for open-set synthetic speech attribution. Our results also suggest
that naive approaches such as thresholding the confidence score
and estimating similarity in representation in the latent space are
better approaches to model unknown class than using limited sam-
ples to train for unknown class. As the later inherently bias our
unknown class decision rule.

DARPA SemaFor Audio Attribution Dataset
This section provide details about the DARPA SemaFor Au-

dio Attribution dataset, closed-set and open-set experiments. We
also visualize the latent space of Synthetic Speech Attribution
Transformer (SSAT) trained on this dataset.

Dataset
The DARPA SemaFor Audio Attribution dataset has in total

17,000 synthetic speech signals from 11 different speech synthe-
sizers as summarized in the Table 6.

Figure 4: t-SNE visualization of latent representations for un-
known speech generation methods A07-A19. SSAT is trained
on bona fide and A01-A06 speech generation methods.

This dataset was generated for the Semantic Forensics (Se-
maFor) program organized by the Defense Advanced Research
Projects Agency (DARPA) [43]. All the speech signals are Wave-
form Audio File Format (WAV) signals at a sampling rate of
16kHz. The dataset has training and testing splits. The train-
ing set consist of 8 different speech generation methods. The 8
speech generation methods are Fastpitch, Fastspeech2, Glowtts,
Gtts, Riva, Tacotron, Tacotron 2 and Talknet. There are 1,000
speech signals for each speech generation method in the training
set except for FastSpeech2 and Tacotron 2, each of them contain
only 500 speech signals. The testing set contains speech signals
from all the 8 speech generation methods in the training set and 3
additional methods, that are Mixertts, Speedyspeech and Vits.

Closed-Set Attribution
For closed-set attribution, we trained Synthetic Speech At-

tribution Transformer (SSAT) on synthetic speech samples from
all the 8 different speech generation methods present in the train-
ing set. Since, the official split does not have validation split. We
use K-fold training strategy (i.e.,we divide the training set into K
parts randomly and then use one part for validation and remaining
4 parts for training). We used K=5. Hence, each of our models
is trained on 5600 samples and validated on 1400 samples. From
the 5 models from K-fold training, we select the model with high-
est accuracy on validation set for final evaluation. For closed-set
evaluation we only test SSAT on speech samples generated from
8 different generation methods that are also present in the training
set. Table 7 details our experimental results and compares them
with other methods reported for the same dataset in [21]. We
evaluate accuracy, precision, recall, and F-1 score [39]. Figure
5 shows a 2-dimensional t-SNE visualization of the latent space
of SSAT trained for closed-set attribution on DARPA SemaFor
Audio Attribution dataset.

Results show that our method outperforms all approaches re-
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Table 6: Details of DARPA SemaFor Audio Attribution dataset.

Generation
Method

Training
Set

Testing
Set Total

Fastpitch 1,000 1,500 2,500

Fastspeech2 500 300 800

Glowtts 1,000 1,500 2,500

Gtts 1,000 1,500 2,500

Riva 1,000 1,000 2,000

Tacotron 1,000 1,500 2,500

Tacotron2 500 300 800

Talknet 1,000 1,500 2,500

Mixertts - 300 300

Speedyspeech - 300 300

Vits - 300 300

Total 7,000 10,000 17,000

ported in [21]. Note that these are all machine learning-based
approaches. Our visualization show that SSAT clusters synthetic
speech signals generated from same generation method and forms
different cluster for different speech generation methods.

Open-Set Attribution
For open-set attribution, we trained Synthetic Speech Attri-

bution Transformer (SSAT) on synthetic speech samples from all
the 8 different speech generation methods present in the training
set. We use K-fold training strategy and divide the training set
into 5 parts randomly and then use one part for validation and
remaining 4 parts for training. From the 5 models from K-fold
training, we select the model with highest accuracy on validation
set for final evaluation. Speech signals from any of the 3 speech
generation methods not present in the training set are classified
in a single class referred as unknown. We used the latent repre-
sentation for open-set attribution. If, for a given speech signal, its
representation in the latent space is at a distance above a thresh-

Table 7: Results of all methods on closed-set attribution on
DARPA SemaFor Audio Attribution dataset. Performance of
methods other than SSAT is taken from [21].

Method Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Baseline-Minority 3.30 0.11 3.30 0.21
Baseline-Majority 16.48 2.72 16.48 4.67

QDA 19.34 16.82 19.34 11.75
GP 21.62 68.80 21.62 12.82

AdaBoost 33.58 32.71 33.58 23.69
KNN 52.22 56.63 52.22 49.83

Naive Bayes 68.14 70.95 68.14 69.08
Decision Tree 69.02 71.08 69.02 69.93

MLP 78.91 77.06 78.91 77.68
Random Forest 81.04 79.90 81.04 79.10

Non-Linear SVM 81.13 81.35 81.13 81.05
Linear SVM 81.57 80.99 81.57 81.22

LogReg 90.68 88.29 90.68 89.43
CNN 91.99 90.21 91.99 90.88
CAT 92.53 90.37 92.53 91.27

SSAT 93.38 91.37 93.38 91.62

Figure 5: t-SNE visualization of latent representations for closed-
set attribution on DARPA SemaFor Audio Attribution Dataset.

old from the mean representation for each class, we classify it as
speech signal generated from unknown method. This approach
for open-set attribution outperformed all approaches that we in-
vestigated on ASVspoof2019 dataset and is described in detail in
open-set attribution Experiment 6 on ASVspoof2019 dataset. Ta-
ble 8 details our experimental results and compares them with
previous methods on the same dataset reported in [21]. When we
visualize the latent representation (Figure 6) for unknown speech
generation methods, we see that the three unknown speech gen-
eration method form three different clusters. Overall, our results
and visualizations show that SSAT outperforms all previous work
and is able to differentiate even unknown speech generation meth-
ods.

Table 8: Results of all methods on open-set attribution on DARPA
SemaFor Audio Attribution dataset. Performance of methods
other than SSAT is taken from [21].

Method Accuracy(%) Precision(%) Recall(%) F1-Score(%)

Baseline-Minority 3.00 0.09 3.00 0.17
Baseline-Majority 15.00 2.25 15.00 3.91

QDA 17.60 14.45 17.60 9.86
GP 9.00 0.81 9.00 1.49

AdaBoost 17.51 10.84 17.51 12.80
KNN 47.52 46.89 47.52 42.77

Naive Bayes 62.01 59.58 62.01 59.95
Decision Tree 62.66 60.01 62.66 60.77

MLP 55.97 57.03 55.97 53.36
Random Forest 47.74 80.92 47.74 46.29

Non-Linear SVM 65.41 73.24 65.41 66.41
Linear SVM 68.47 71.78 68.47 68.80

LogReg 83.85 81.44 83.85 81.62
CNN 83.56 77.26 83.56 79.67
CAT 84.10 82.37 84.10 83.00

SSAT 88.45 89.01 88.45 87.59
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Figure 6: t-SNE visualization of latent representations for 3 un-
known speech generation methods in DARPA SemaFor Audio At-
tribution Dataset.

IEEE SP Cup 2022 Synthetic Speech Attribution
Dataset and Robustness to Compressed Speech
Signal

In this section, we detail experiments using the IEEE SP
Cup 2022 Synthetic Speech Attribution Open Competition 1
dataset3and robustness to compressed speech signal.

The IEEE SP Cup 2022 Synthetic Speech Attribution Open
Competition 1 dataset consist of training and testing sets. We di-
vided the total 5000 synthetic speech recordings generated from
5 different algorithms provided in the training set in 80:20 for our
train and validation set, respectively. We evaluated on total 7500
synthetic speech signals present in the testing set generated from
the 5 algorithms. We investigated the closed-set attribution perfor-
mance of Synthetic Speech Attribution Transformer (SSAT) on
this dataset as both the training and testing set have speech sig-
nals from same generation methods. Our method is able to ac-
curately attribute 96.3% of these uncompressed synthetic speech
signals. The Figure 7 shows the visualization of the latent space
of SSAT trained on IEEE SP Cup 2022 Synthetic Speech Attri-
bution Open Competition 1 dataset. We can see that speech sig-
nals from same generation method have similar representations
and cluster in a region while speech signals from different gener-
ation methods have relatively different representation and part of
different clusters.

Synthetic speech generated with malicious intent is shared
on social platforms such as YouTube which result in lossy com-
pression of these speech signals [44]. Hence, we also assess the
robustness of our method on compressed speech signal. We en-
coded the speech signals in the testing set of IEEE SP Cup 2022
Synthetic Speech Attribution Open Competition 1 dataset to in-
vestigate the robustness of our method on compressed speech sig-

3https://signalprocessingsociety.org/community-
involvement/signal-processing-cup

Figure 7: t-SNE visualization for closed-set attribution on IEEE
SP Cup 2022 Synthetic Speech Attribution Open Competition 1
dataset.

0 16 32 64 128 150
15
20

40

60

80

100

21.2

94.6 95.8 96.1

Bitrate [in Kbps]

A
ttr

ib
ut

io
n

A
cc

ur
ac

y
[i

n
%

]

attribution accuracy

Figure 8: Attribution accuracy of our method on encoded speech
signal

nal. We used Advanced Audio Coding (AAC) [45] for compres-
sion. AAC is successor to MP3 and one of the most popular audio
codecs, used by Apple iTunes, and Youtube. We used bitrate of
126kbps, 64kbps, 32kbps and 16kbps. Figure 8 plot attribution
accuracies of SSAT for different compression bitrates. We can
observe that our method is robust and is able to accurately at-
tribute speech signal AAC encoded at bitrate from 32kbps to 126
kbps. The performance of our method decrease drastically only
for speech signal AAC encoded aggressively at bitrate of 16kbps.

Overall, our results and visualization of the latent space show
that our method is able to attribute synthetic speech signal in
IEEE SP Cup 2022 Synthetic Speech Attribution Open Compe-
tition 1 dataset and our method is robust to speech signal AAC
compressed at bitrate of 32kbps or higher.
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Conclusion
In this paper, we proposed a method using transformer for

synthetic speech attribution. We tested our method for closed-set
attribution on different datasets. Our experimental results show
that our method works for closed-set attribution and achieves
high accuracy of 99.8% on ASVspoof2019 dataset, 96.3% on SP
Cup dataset, and 93.4% on DARPA SemaFor Audio Attribution
dataset. We also investigated open-set scenario to examine our
method’s ability to identify unknown speech generation methods.
Our experiments highlight the challenges in open-set attribution.
We propose different strategies for open-set attribution. We find
that instead of modelling unknown class with samples from lim-
ited classes, thresholding confidence score, and using representa-
tion from latent space significantly improve attribution accuracy
in open-set scenario. We obtained an open-set attribution accu-
racy of 90.2% on ASVspoof2019 dataset and 88.45% on DARPA
SemaFor Audio Attribution dataset . Our method outperform both
closed-set and open-set performance from existing methods on
ASVspoof2019 dataset and DARPA SemaFor Audio Attribution
dataset. We also find that our method is robust to AAC com-
pression at data rates of 32kbps or larger. The transformer in our
method has ≈ 87 M parameters. In future, we plan to reduce the
computational complexity of our method and improve our accu-
racy for open-set attribution.

We also want to investigate robustness of our method against
noise, mixup, and reverberation in speech signal. Also, although
we can not know actual methods in unknown class, we are explor-
ing ways to determine number of methods present in unknown
class.

References
[1] J. Kim, J. Kong, and J. Son, “Conditional Variational Au-

toencoder with Adversarial Learning for End-to-End Text-
to-Speech,” Proceedings of the International Conference on
Machine Learning, vol. 139, pp. 5530–5540, July 2021, Vir-
tual.

[2] T. Wang, R. Fu, J. Yi, J. Tao, Z. Wen, C. Qiang, and
S. Wang, “Prosody and Voice Factorization for Few-Shot
Speaker Adaptation in the Challenge M2voc 2021,” Pro-
ceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 8603–8607, June
2021, Toronto, Canada.

[3] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudi-
nov, “Grad-TTS: A Diffusion Probabilistic Model for Text-
to-Speech,” Proceedings of the International Conference on
Machine Learning, vol. 139, pp. 8599–8608, July 2021, Vir-
tual.

[4] K. Zhou, B. Sisman, R. Liu, and H. Li, “Seen and Unseen
Emotional Style Transfer for Voice Conversion with A New
Emotional Speech Dataset,” Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 920–924, June 2021, Toronto, Canada.

[5] X. Tian, S. W. Lee, Z. Wu, E. S. Chng, and H. Li, “An
exemplar-based approach to frequency warping for voice
conversion,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 25, no. 10, pp. 1863–1876,
July 2017.

[6] Y. Gao, R. Singh, and B. Raj, “Voice impersonation using
generative adversarial networks,” Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2506–2510, April 2018, Calgary,
Canada.

[7] S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural
voice cloning with a few samples,” Proceedings of the Ad-
vances in Neural Information Processing Systems, vol. 31,
p. 10019–10029, December 2018, Montreal, Canada.

[8] B. Smith, “Goldman Sachs, Ozy Media and a $40
Million Conference Call Gone Wrong,” The New York
Times, September 2021, https://www.nytimes.com/2021/
09/26/business/media/ozy-media-goldman-sachs.html.

[9] B. Allyn, “Deepfake Video of Zelenskyy Could be
‘Tip of the Iceberg’ in Info War, Experts Warn,”
https://www.npr.org/2022/03/16/1087062648/deepfake-
video-zelenskyy-experts-war-manipulation-ukraine-russia,
March 2022.

[10] F. Tesser, G. Paci, G. Sommavilla, and P. Cosi, “Open source
voice creation toolkit for the mary tts platform,” Proceed-
ings of the International Speech Communication Associa-
tion (INTERSPEECH), pp. 3253–3256, August 2011, Flo-
rence, Italy.

[11] M. Morise, F. Yokomori, and K. Ozawa, “World: a vocoder-
based high-quality speech synthesis system for real-time
applications,” IEICE TRANSACTIONS on Information and
Systems, vol. 99, no. 7, pp. 1877–1884, 2016.

[12] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-
Y. Liu, “Fastspeech 2: Fast and high-quality end-to-end text
to speech,” Proceedings of the International Conference on
Learning Representations (ICLR), pp. 1–15, May 2021, vir-
tual.

[13] M. Sahidullah and G. Saha, “Design, Analysis, and Experi-
mental Evaluation of Block Based Transformation in MFCC
Computation for Speaker Recognition,” Speech Communi-
cation, vol. 54, pp. 543–565, May 2012.

[14] B. Bogert, M. Healy, and J. Tukey, “The Quefrency Alanysis
of Time Series for Echoes: Cepstrum, Pseudo Autocovari-
ance, Cross-Cepstrum and Saphe Cracking,” Proceedings of
the Symposium on Time Series Analysis, vol. 15, pp. 209–
243, June 1963, New York, NY.

[15] K. Bhagtani, A. K. S. Yadav, E. R. Bartusiak, Z. Xiang,
R. Shao, S. Baireddy, and E. J. Delp, “An Overview of
Recent Work in Multimedia Forensics,” Proceedings of the
IEEE Conference on Multimedia Information Processing
and Retrieval, August 2022, Virtual.

[16] S. Stevens, J. Volkmann, and E. Newman, “A Scale for the
Measurement of the Psychological Magnitude Pitch,” Jour-
nal of the Acoustical Society of America, vol. 8, pp. 185–
190, June 1937.

[17] E. R. Bartusiak and E. J. Delp, “Synthesized Speech Detec-
tion Using Convolutional Transformer-Based Spectrogram
Analysis,” Proceedings of the IEEE Asilomar Conference on
Signals, Systems, and Computers, October 2021, Asilomar,
CA.

[18] ——, “Frequency Domain-Based Detection of Generated
Audio,” Proceedings of the IS&T Media Watermarking, Se-
curity, and Forensics Conference, Electronic Imaging Sym-
posium, pp. 273(1)–273(7), January 2021.

[19] G. Hua, A. B. J. Teoh, and H. Zhang, “Towards End-to-End
Synthetic Speech Detection,” IEEE Signal Processing Let-

IS&T International Symposium on Electronic Imaging 2023
Media Watermarking, Security, and Forensics 2023 372-9

https://www.nytimes.com/2021/09/26/business/media/ozy-media-goldman-sachs.html
https://www.nytimes.com/2021/09/26/business/media/ozy-media-goldman-sachs.html
https://www.npr.org/2022/03/16/1087062648/deepfake-video-zelenskyy-experts-war-manipulation-ukraine-russia
https://www.npr.org/2022/03/16/1087062648/deepfake-video-zelenskyy-experts-war-manipulation-ukraine-russia


ters, vol. 28, pp. 1265–1269, June 2021.
[20] C. Borrelli, P. Bestagini, F. Antonacci, A. Sarti, and

S. Tubaro, “Synthetic speech detection through short-term
and long-term prediction traces,” EURASIP Journal on In-
formation Security, vol. 2021, no. 1, p. 2, April 2021.

[21] E. R. Bartusiak and E. J. Delp, “Transformer-Based
Speech Synthesizer Attribution in an Open Set Sce-
nario,” Proceedings of the IEEE International Conference
on Machine Learning and Applications, December 2022,
arxiv:2210.07546.

[22] X. Li, N. Li, C. Weng, X. Liu, D. Su, D. Yu, and H. Meng,
“Replay and Synthetic Speech Detection with Res2Net Ar-
chitecture,” Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pp. 6354–
6358, June 2021, Toronto, Canada.

[23] T. B. Patel and H. A. Patil, “Cochlear Filter and Instanta-
neous Frequency Based Features for Spoofed Speech Detec-
tion,” IEEE Journal of Selected Topics in Signal Processing,
vol. 11, no. 4, pp. 618–631, December 2017.

[24] M. Todisco, H. Delgado, and N. Evans, “Constant Q Cep-
stral Coefficients: A Spoofing Countermeasure for Auto-
matic Speaker Verification,” Computer Speech & Language,
vol. 45, pp. 516–535, September 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learn-
ing for Image Recognition,” Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
770–778, June 2016, Las Vegas, NV.

[26] L. Rabiner and R. Schafer, Theory and Applications of Dig-
ital Speech Processing, 1st ed. USA: Prentice Hall Press,
2010.

[27] N. Subramani and D. Rao, “Learning Efficient Representa-
tions for Fake Speech Detection,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 04, pp.
5859–5866, April 2020, New York, NY.

[28] J. Khochare, C. Joshi, B. Yenarkar, S. Suratkar, and F. Kazi,
“A Deep Learning Framework for Audio Deepfake Detec-
tion,” Arabian Journal for Science and Engineering, vol. 47,
p. 3447–3458, November 2021.

[29] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scal-
ing for Convolutional Neural Networks,” Proceedings of the
International Conference on Machine Learning, vol. 97, pp.
6105–6114, June 2019, Long Beach, CA.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is All
You Need,” Proceedings of the Neural Information Process-
ing Systems, December 2017, Long Beach, CA.

[31] Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio Spectro-
gram Transformer,” Proceedings of the ISCA Interspeech,
pp. 571–575, August 2021, Brno, Czech Republic.

[32] Y. Gong, C.-I. J. Lai, Y.-A. Chung, and J. Glass, “SSAST:
Self-Supervised Audio Spectrogram Transformer,” arXiv,
October 2021.
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