A qualitative study of LiDAR technologies and their application areas

Daniel Jaster¹, Reiner Creutzburg^{1,2}, Eberhard Hasche¹

¹Technische Hochschule Brandenburg, Department of Informatics and Media, Magdeburger Str. 50, D-14770 Brandenburg, Germany ²SRH Berlin University of Applied Sciences, Berlin School of Technology, Ernst-Reuter-Platz 10, D-10587 Berlin, Germany

Email: jaster@th-brandenburg.de, creutzburg@th-brandenburg.de, hasche@th-brandenburg.de

Abstract

In this work, the most relevant 3D LiDAR technologies and their applications in 2022 were investigated. For this purpose, applications of LiDAR systems were classified into the typical application areas "3D modeling", "smart city", "robotics", "smart automotive" and "consumer goods".

The investigation has shown that neither "mechanical" LiDAR technologies, nor so-called solid-state LiDAR technologies, nor "hybrid" LiDAR technologies can be evaluated as optimal for the typical application areas. In none of the application areas could all of the elaborated requirements be met. However, the "hybrid" LiDAR technologies such as sequential MEMS LiDAR technology and sequential flash LiDAR technology proved to be among the most suitable for most typical application areas. However, other technologies also tended to be suitable for individual typical application areas. Finally, it was found that several of the LiDAR technologies investigated are currently equally suitable for some typical application areas. To evaluate the suitability, concrete LiDAR systems - of different technologies and properties - were compared with the specific requirements of exemplary applications of an application area. The results of the investigation provide an orientation as to which LiDAR technology is promising for which application area. [1, p. I]

1. Introduction

LiDAR" (acronym for "Light Detection And Ranging") is nowadays generally understood to mean a system with which the environment can be recorded and mapped in three dimensions. [2, p. 33] The operating principle is based on that of RaDAR technology ("Radio Detection And Ranging") developed several decades earlier and LASER technology. [3, p. 70] Instead of microwave beams as in RaDAR technology, however, laser beams are emitted in the visible, ultraviolet or infrared range and their reflections are received. [4, p. 318, 5, p. 42] The corresponding LiDAR technology can be used to determine not only the distances but also other properties of the illuminated objects or even of the medium passed by the laser beams.

Since the first presentation of LiDAR technology in the early 1960s, the technology has been further developed and adapted for a variety of applications in different fields. On the one hand, technological development is driven by specific requirements in the various application areas. On the other hand, advances in LiDAR technology enable its useful application in specific fields in the first place. Due to this interplay, technological development has gained momentum especially in the last decade. [6, p. 745] This development concerned not only individual components of a LiDAR system and their interaction, but also the measurement techniques

for obtaining information about the scanned objects and the procedures for scanning a section of the environment, as well as signal and data processing. In addition, advances have been made in the performance, cost-effectiveness, and reliability of LiDAR technology. [7, p. 1]

1.1 Research question

Against the background that currently different LiDAR technologies are competing for the application in the same fields, this work will address the question which LiDAR technologies are suitable for which fields of application. [8, p. 409].

The focus of the work is on the so-called 3D-LiDAR technology. An exhaustive treatment of the 3D-LiDAR technologies and their applications is not possible within the scope of this work, neither in depth, nor in breadth.

1.2 Structure of this work

This discursive work is divided into two main parts. In the first main part, the essential characteristics of LiDAR technologies are first elaborated, on the basis of which they are then classified. In the second main part, the LiDAR technologies are discussed with respect to their suitability for typical application areas. As a result of the investigation, suitable LiDAR technologies are finally assigned to the typical application areas in a tabular overview. Due to the continuous and dynamic development of LiDAR technologies, however, the results can only be preliminary and partial.

2. Foundations

In this part of the paper, essential characteristics of LiDAR technologies are described, which are finally used to differentiate and order LiDAR technologies.

2.1 Characteristics of LiDAR technologies

In order to differentiate and classify LiDAR technologies, it is first necessary to determine characteristic features. Such characteristics are firstly the so-called critical parameters, which can be used to evaluate the performance of a LiDAR system. [9, p. 7] A second feature is the measurement technology used to obtain the distances and, if necessary, other information about the target points. A third feature is the method used to scan the environment in a field of view. A fourth feature is the so-called key components of LiDAR systems.

2.1.1 Critical parameters of LiDAR systems

LiDAR systems are characterized by their specific properties. The comparability of the properties of different systems is ensured by assigning them to specific parameters. Some parameters, the socalled critical parameters, are of particular importance: they can be used to determine whether or not a particular LiDAR system is suitable for an application with its specific requirements. [9, p. 4] The main critical parameters are wavelength, laser class, field of view, range, angular resolution, geometric resolution, depth resolution, data rate, frame rate and reliability.

2.1.2 Measurement techniques

LiDAR technologies generate distance values from the travel time of laser light signals. [5, p. 42, 10, p. 17] The time of flight can be determined either directly or indirectly. [11, p. 25945] In the first measurement technique, which is considered the standard technology, usually only the intensity of the received light pulses is measured. [11, p. 25945] Indirect measurement techniques - such as FMCW or RMCW - usually emit coherent, uninterrupted, modulated light waves. [12, p. 1384] In such full waveform techniques, the properties of the light wave - such as its shape and amplitude - can be used to infer the geometric and physical properties of the target - e.g. its relative velocity. [13, pp. 62-63] Corresponding LiDAR technologies are also referred to as 4D LiDAR.

2.1.3 Procedures for scanning a field of view

A distinction can be made between sequential, parallel and hybrid methods for the complete scanning of all target points in a field of view. The conventional scanning method is sequential scanning of the target points at a specific angular distance with a single laser beam, the so-called "single beam". [8, p. 409, 14, p. 3561, 15, p. 4] Only one detector element is required to detect the reflected laser signals. In parallel processes, the field of view is scanned with several laser beams emitted simultaneously. The reflected light signals are detected simultaneously by a matrix of detectors. [8, p. 408] In hybrid scanning methods, too, several laser beams are emitted simultaneously. Unlike parallel methods, however, only a partial area of the field of view is scanned at the same time, so that several measurements must be performed sequentially in order to scan the field of view completely. LiDAR systems that emit multiple laser signals simultaneously are also referred to as multi-beam LiDAR systems. [16, p. 1, 16, p. 2]

2.1.4 Components of LiDAR systems

All LiDAR systems work according to the same basic principle: laser beams with specific properties are generated, modified and emitted onto the target points. The light signal reflected from the target is received, conditioned and finally processed. [17, p. 2, 18, p. 3] Each of these steps requires specific components. The key components of LiDAR technology are the emitters and detectors. [19, p. 102]. An emitter generates the laser beams that are emitted onto the target point. Emitters are usually low-cost, controllable laser diodes, i.e. semiconductor lasers. The most important emitters are currently fiber lasers, surface emitters (e.g. VCSEL emitters) and edge-emitting laser diodes. [20] The reflected light signals are received by photodetectors, usually photodiodes or so-called CMOS sensors, and converted into electrical signals. In LiDAR technology, variants of the "Avalanche Photon Diode" (APD) are often used. [3, p. 75]. Photodiodes can be combined to form larger modules, whereby each photodiode usually corresponds to a two-dimensional pixel. [5, p. 44]

Mirrors, prisms, lenses or so-called MEMS (Micro-Electro-Mechanical Systems) mirrors are used to direct light signals to the target points. MEMS mirrors are attached to two axles and are aligned within a few milliseconds either piezoelectrically, electrostatically, electro-magnetically or electrothermally. [21, p. 8, 21, p. 112] Lenses are also used to control the collimation of the emitted laser beam, amplify the received light signals and influence the size of the field of view. [2, p. 37] If several targets within a field of view are to be scanned in parallel with a single laser source, this can be split into a large number of partial laser beams of lower energy using so-called optical diffusers, usually diffusion lenses. In conventional LiDAR technologies, a rotating prism is often used to direct the laser beam to the target at a constant wavelength. Another possibility is to irradiate a static prism with a laser beam of variable wavelength. This takes advantage of the fact that light of different wavelengths is broken to different degrees in a prism. The latter technique is also known as "wavelength steering". Other important components are the signal and data processing components, but also the clock system and the system control. [22, p. 32] The performance of the corresponding LiDAR system is influenced by the signal processing component's ability to convert the prefiltered and amplified analog signals into digital signals. [7, p. 2, 22, p. 45]

2.2 Classification of LiDAR technologies

In this section, the current LiDAR technologies are defined, differentiated and classified on the basis of their characteristic features.

Basically, "mechanical" and so-called solid-state LiDAR technologies are to be distinguished from each other. The latter are characterized by the fact that they do not use moving components to scan the field of view. [9, p. 2] LiDAR technologies that do not use motors or the like to move the platform or components, but still use moving components such as MEMS, are classified in the literature as hybrid LiDAR technologies. However, in many sources, especially those of the manufacturers of corresponding LiDAR systems themselves, they are classified as a solid-state LiDAR technology.

2.2.1 Mechanical LiDAR technologies

So-called mechanical LiDAR technologies are characterized by the fact that the alignment of laser beams to the target points is performed with mechanically moved components or the movement of the entire platform. [23, p. 121] In mechanical multi-beam LiDAR systems, the entire LiDAR system or platform, including the emitters and detectors working in parallel, is usually rotated or pivoted mechanically. [14, p. 3561] The vertical resolution is determined by the angular separation of the parallel emitted laser beams. So-called single-beam LiDAR systems, which work with only a single laser beam, generally use mirrors or prisms moved by motors for the vertical alignment of the laser beam. [24, p. 167]

So-called "mechanical" LiDAR systems achieve a large range, a very wide field of view of up to 360° and a high scanning accuracy. [9, p. 3, 23, p. 121] However, they are not considered particularly energy-efficient, shock-resistant and robust. [9, p. 3] In addition, the mechanical components result in greater overall weight and volume. [3, p. 73, 17] These drawbacks have driven the development of alternative LiDAR technologies with no or fewer mechanically moving components.

2.2.2 Solid-state LiDAR technologies

So-called solid-state LiDAR technologies are characterized by the fact that, unlike "mechanical" or "hybrid" LiDAR technologies, they do not have any physically moving components. [25, p. 180, 26, p. 171] Sie nutzen die Halbleitertechnik für die optoelektrischen Schlüsselkomponenten. [23, p. 121, 27, p. 4091, 28, p. 1] As a result, they not only achieve the highest level of compactness and robustness, but are also particularly suitable for cost-efficient mass production, especially for so-called CMOS production techniques. [26, p. 171, 27, p. 4091]

There are solid-state LiDAR technologies with sequential and parallel scanning methods. The most important solid-state LiDAR technologies are optical phased array LiDAR technology and flash LiDAR technology. Another technology in which at least the deflection takes place on one axis without moving components is the so-called spectrum scan LiDAR technology.

2.2.2.1 Optical-Phased-Array-LiDAR-Technology

In optical phased array LiDAR technology, the field of view can be scanned sequentially without moving components. For this purpose, not a single laser source is used, but a matrix of several low-power laser diodes whose beam angle is constant, but whose phases can be individually controlled. [3, p. 77] Targeted phase shifts create interference between the laser beams, which determines the shape, intensity and, above all, the beam direction of the resulting laser beam. [3, p. 77, 8, p. 409, 9, pp. 2-3] Optical phased array LiDAR systems are characterized primarily by high robustness, vibration resilience and energy efficiency. [9, p. 2] They achieve a depth resolution in the centimeter range. [27, p. 4094]

2.2.2.2 Flash-LiDAR-Technology

In flash LiDAR technology, the field of view is scanned simultaneously with a large number of laser beams - like a flash. [9, p. 2] Flash LiDAR systems use either a single laser source (singlebeam flash LiDAR) with comparatively high peak power, whose laser beam - usually with a so-called diffuser lens - is fanned out to all target points in the field of view. [9, p. 2, 27, p. 4091] Or a matrix with a large number of lower-power laser sources - e.g. VCSEL components - is used (multi-beam flash LiDAR). The reflected light beams are detected by a matrix of photodetectors. The individual photodetectors of the matrix correspond to two-dimensional pixels to which distance values generated from the respective measurement signals are assigned. [10, p. 29, 29, p. 148] The geometric resolution thus depends on the number of photodetectors. The range of such a LiDAR system, on the other hand, is determined primarily by its sensitivity and the intensity of the emitted laser beams. [2, p. 36, 2, p. 38]

Flash LiDAR technology is characterized by very high frame rates. Due to the lack of moving components and their comparatively simple design, they are also considered to be robust, compact and cost-effective. [8, p. 408, 14, p. 3562, 16, p. 2, 29, p. 148]

2.2.3 Hybrid LiDAR technologies

In this paper, hybrid technologies are defined as technologies that have characteristics of both solid-state technologies and "mechanical" technologies. In contrast to solid-state LiDAR technologies, there are still, for example, electro-mechanically or piezo-electrically moved components. [9, p. 3] In some cases, technologies that use hybrid scanning methods are also classified as hybrid, for example the so-called sequential flash LiDAR technology.

The most important hybrid LiDAR technology is the so-called MEMS LiDAR technology, which uses controllable MEMS mirrors. By eliminating the need for motors to control the laser beams, the entire LiDAR-MEMS-LiDAR system is more compact, lighter and more robust than mechanical systems. [21, p. 62, 30, p. 4631, 30, p. 4631, 31, 31, p. 4] In MEMS LiDAR technology, which uses a single laser source, the laser beam is usually fanned out in a vertical line with a diffuser lens. [23, p. 122] Multiple laser sources

can also be used, with their laser beams hitting the MEMS mirror at different angles to simultaneously detect different target points. [3, p. 73, 9, p. 12] By panning the MEMS mirror, all target points in the field of view are acquired using a hybrid scanning method. Sequential scanning methods can also be realized: For this, one MEMS mirror is used to deflect the laser beam in the horizontal axis and one in the vertical axis. The light signals reflected from the target points in the field of view are also detected by photo detectors, which are usually combined into modules.

3. Discussion of LiDAR technologies

In this part of the paper, the LiDAR technologies presented are discussed with respect to their suitability for typical application areas. The goal is to give an orientation for the use of current LiDAR technologies in typical application areas. Finally, the result of the discussion is illustrated as an overview table.

In a first step, the diverse applications of LiDAR systems are grouped into application areas.

In the second step, common requirement parameters are developed for all application areas. This makes it possible to compare the requirement areas with each other and with the specific properties of LiDAR systems.

In a third step, the technology-independent, specific requirements are developed and weighted for each application area.

In a fourth step, the properties of a sufficient number of concrete LiDAR systems are researched using data sheets and other sources. In addition, each of these LiDAR systems will be assigned to either the "mechanical", the "hybrid" or the so-called solid-state LiDAR technologies. In addition, each LiDAR system will be assigned to a specific technology, such as MEMS LiDAR technology, Flash LiDAR technology, or Optical Phased Array LiDAR technology.

In the fifth step, the individual, weighted requirements of the exemplary applications are compared with the corresponding properties of the concrete LiDAR systems.

In the sixth step, the suitability of the concrete LiDAR systems for an application area is evaluated.

Finally, the technologies on which the best evaluated LiDAR systems are based are investigated. As a result of the evaluation, the suitable LiDAR technologies will be assigned to the application areas. [1]

3.1 Determination of requirement parameters for the application of LiDAR systems.

LiDAR systems are used for different purposes and in different environments. The application purpose and the application environment significantly determine the specific requirements, which can be subsumed under requirements for performance, safety and economic efficiency. [9, p. 4, 29, p. 151, 32, p. 2] The requirement parameters include, but are not limited to, the critical parameters.

3.2 Determination of the areas of application

The number of applications for LiDAR systems is steadily increasing. LiDAR systems are already being used to create maps, for urban and traffic planning, for navigation and control of mobile robots and vehicles, in research, in forestry and agriculture, and in entertainment. [9, p. 1, 32, p. 1, 33, p. 2, 34, p. 1] However, there is no uniform classification of the diverse applications into application areas.

The environment in which a LiDAR system is used and its application purpose were used to determine application areas.

The following application areas were developed: 3D modeling (3D mapping), smart city, robotics, smart automotive, and consumer goods. [35, p. 6]

3.2.1 3D Modeling

3D modeling refers to the creation of three-dimensional representations from the point cloud data of a sampled area. These representations are usually three-dimensional geographic maps or models of buildings, objects, etc. of different scales. ([33, p. 3], [36], [37, p. 9]

3.2.2 Smart City

In a so-called smart city, different modes of transport, infrastructure and road users are coordinated with each other. This coordination requires the networking of sensors and control systems of various local - but also regional - systems. [38, p. 11] LiDAR systems are used in this field to measure and analyze the movements of traffic carriers and participants (general objects). This requires additional data processing steps such as segmentation, grouping and modeling of the point cloud data as well as classification, recognition and identification of objects and tracking and prediction of their movements.

3.2.3 Robotic

LiDAR systems are already widely used in the field of robotics. [39, p. 745] They not only help mobile robots to navigate independently, situationally adapted, reliably and safely to a given goal. They also support the safe interaction of robots with humans, animals and objects. [38, p. 8]

3.2.4 Smart Automotive

The application area that has triggered enormous momentum in the development and commercial application of LiDAR technologies is the automotive sector. There, LiDAR technology is regarded as a key technology for so-called autonomous driving. However, LiDAR systems have already been used in the automotive sector for quite some time: for driver assistance systems and automatics systems. The increasing use of these systems has also led to a reduction in their production costs. [22, p. 26] As vehicle automation increases, so do the demands on the reliability and performance of the subsystems involved, such as the LiDAR systems.

3.2.5 Consumer goods

In the meantime, very small and inexpensive LiDAR systems have also become available, which can be used for various purposes in the so-called consumer goods sector. The most relevant consumer goods currently being equipped with LiDAR systems are tablets and smartphones. [22, p. 24]

3.3 Specific requirements for LiDAR systems in the typical application areas

For each of the presented application areas, the corresponding requirements for performance, safety and economic efficiency are worked out from their typical application environment and their application purposes. In addition, the individual requirement parameters of an application area are weighted relatively in terms of their relevance. The results are finally summarized in a table. In the case of clear differences in the environment or the purpose of applications in an area - as in the case of 3D modeling and robotics - an exemplary application was selected and analyzed.

Table 1: Overview of specific requirements for LiDAR systems in application areas and their weighting

Specific requirements for	or LiDA	R sys	te	ms i	n app	licatio	n are	as and	l their	weigl	nting
	3D-Ma	pping		Smar	t City	Rob	otic	mart Au	tomoti	Cons	umer
	Exemplary		Exe	emplary		Exemplary	/	A ground-l	based,	Exemplary	
	applicatio	n:a	app	plication	n: A	applicatio	n: A	mobile Lif	DAR	applicatio	n:
	protession drong for	nai tiying	gro		sed, R ovetom	ground-ba	ised,	system. In	part with	smartpho	nes and
	effective 3	SD	for	flow co	ontrol of	system fo	r "last-	Robert Bo	sch	specific va	lues from
	modeling	ofa	peo	ople in t	rain	mile delive	ery" in	GmbH and	others.	Robert Bo	sch
	building co	omplex. A	sta	tions or	r in	urban env	iron-	(Robert Bo	osch	GmbH (Ro	bert
	flight altite	ude of up	air	port ter	minals.	ments. In	part with	GmbH 201	.9, p. 6;	Bosch Gm	ын 2019,
	to 100 m v	was	An	installa	tion	specific va	lues from	Spies and	Spies	p. 6, 2019	2019, p.
	assumeu.		3.a		neters	GmbH (Ro	hert	Kernhof et	JZ; tal. 2018.	η.	
			wit	th a con	stant	Bosch Gm	bH 2019,	p. 35).			
			ene	ergy sup	oply is	p. 6)					
		e- require- weight ment we									
narameter	require-	re- weight ment wu 2 1 2 25 24 90 1 18 0,05				require-	woight	require-	woight	require-	woight
min_detection_distance[m]	2	weight		2	weight 13	0.01	weight 21	0.2	weight 20	0.3	weight 16
max detection distance [m]	125	24		90	22	200	20	200	20	10	10
min_range resolution [*]	1	18		0.05	18	0.05	18	0.1	19	0.02	17
min hor field of view [°]	90	17		90	17	360	22	120	17	45	12
min. vert. field of view [°]	30	16		90	16	45	14	30	4	45	13
min. hor. geometric resolution [m]	1	20		0,3	20	0,2	19	1	21	0,05	14
min. vert. geometric resolution [m]	1	19		0,3	19	0,2	16	1	16	0,05	15
min. hor. angular resolution [°]	0,45	15		0,13	15	0,06	15	0,45	14	0,3	11
min. vert. angular resolution [*]	0,45	14		0,13	14	0,06	13	0,45	13	0,3	10
min. datarate	-	13		-	12	-	7	-	6	-	5
min. imagerate [Hz]	10	9		10	11	10	10	10	10	10	9
additional attributes		10	lec	tance	10	velocity	2	velocity	5	lectance	1
laser safety classification	2	22		1	24	1	24	1	24	1	24
min. wavelegth [nm]	800	23		800	23	800	23	800	23	800	22
min. working temprature [°C]	-25	6		-30	8	-30	8	-25	2	-25	3
max. working temprature [°C]	50	7		60	9	50	9	50	9	45	4
min. vibration resilience	medium	8		low	2	high	12	medium	12	medium	8
min. ambient light resilience	high	21		high	21	high	17	medium	18	medium	7
min. resilience to atmospheric distu	medium	11	me	edium	7	high	11	medium	11	low	2
max. Price	high	3		high	6	medium	5	medium	15	low	20
max. energy consumption	low	5		high	1	low	6	low	3	low	19
max. weight	low	12		high	3	low	3	high	1	low	21
max. volume	medium	4		high	5	low	4	high	7	low	23
min. production process	custom	12	cu	stom i	4	mass pr	1	custom	18	mass pr	18

3.4 Properties of current LiDAR systems

Finally, the specific requirements of LiDAR systems for typical application areas will be compared with the technical and economic properties of concrete LiDAR systems of different technologies. For this purpose, their technology class, the scanning method, the measurement technology and the properties of the selected LiDAR systems are first determined discursively (see appendix A, Table 8). The assignment of the concrete LiDAR systems to a certain technology class is partly associated with a certain uncertainty, because the companies have often only made vague or marketing-oriented statements about their product. The same applies to the scanning methods and the pricing information. If the data sheet for a LiDAR system contains several data for a single pair of meters, the best value was selected. The data for some parameters, e.g. range, can only be compared with each other to a limited extent, since different test procedures and evaluation criteria were used in some cases.

3.5 Evaluation of LiDAR technologies with regard to application areas

To answer the research question of which LiDAR technologies are suitable for which application areas, we now evaluate how the selected LiDAR systems of specific technologies fulfill the specific requirements of the application areas. For this purpose, points were assigned for each fulfilled requirement in each of the application areas according to their relative weighting (values between 1 and 24) (see appendix A, tables 13-17). Relative requirements such as low, medium, high were related to the spectrum of corresponding characteristics of all LiDAR systems studied. Then, LiDAR systems were ranked in descending order according to the mean value of their scores. The mean values are not only used for relative ordering of the LiDAR systems, but their absolute values also express the degree to which the requirements of a range could be met. If all requirements were met, the mean value is 12.5. It was determined by the author that LiDAR systems with a mean value lower than 9 are not considered suitable for the respective requirement area. Based on the order, the absolute points and the distribution of the LiDAR technologies, the evaluation was finally made.

3.5.1 Evaluation of LiDAR technologies in the 3D modeling application area

In the application area "3D modeling", which was represented by an airborne application (flying drone), the order of the LiDAR systems according to their achieved mean values shows that technologies of all three technology classes tend to be assessed as suitable. Systems of all three technology classes are placed among the first ranks and furthermore show almost the maximum mean value. Accordingly, they meet almost all requirements. The best rated system uses a so-called hybrid technology with a hybrid scanning method in which the field of view is expanded by mechanical movements. The upper half of the table shows an accumulation of so-called flash LiDAR technologies. Only the LiDAR systems with the lowest mean values show a larger difference to the neighboring values. Only the so-called optical phased array LiDAR technology has been classified exclusively in the middle field and is therefore to be assessed as less suitable for the application area "3D modeling".

Table 2: Order of technologies of selected LiDAR systemsaccording to the mean value of relative weights of matchingproperties with the requirements for airborne 3D modelingwith a flying drone as an exemplary application.

	Evaluation of ex	emplary LiD	AR systen	ns		
	for the applicati	on area 3D m	nodeling			
					Measure-	
			Technology		ment	
Rank			class	Procedures for scanning a field of view	technique	value
1	Innoviz Technologies	INNOVIZ360	hybrid	MEMS und rotatings Spiegel	ToF	12.3
2	Velodvne	Alpha Prime	mechanical	128 Laser, macromechanical scanning	ToF	12.
3	Ibeo Automotive Systems	IbeoNEXT	solid-state	VCSEL 128x80 Laser sequential Flash ("Pure-electronic s	ToF	11.1
4	Velodyne LiDAR	Velarray H800	solid-state	micro-lidar array (Multibeam-Flash)	-	11,3
5	Quanergy Systems	M8-Plus	mechanical		ToF	11.3
6	Quanergy Systems	M8-Ultra	mechanical		ToF	11,3
7	Ouster	OS0	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser An	-	11,3
8	Ouster	OS1	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser An	-	11,
9	Baraja	Spectrum Off-Road	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	11,0
10	Aeva Technologies	Aeries I	solid-state	multiple beam (Flash)	FMCW	10,9
11	Samsung	ISOCELL Vizion 33D	solid-state	Flash (VCSEL)	ToF	10,
12	Robosense	RS-LIDAR-M1	hybrid	MEMS	-	10,
13	Aeva Technologies	Aeries II	solid-state	multiple beam (Flash)	FMCW	10,
14	Velodyne LiDAR Inc.	Velarray M1600	solid-state	micro-lidar array (Multibeam-Flash)	-	10,
15	Ouster	OS2	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser An	-	10,
16	Quanergy Systems	M8-PoE	mechanical	-	ToF	10,
17	Baraja	Spectrum HD	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	10,
18	Faro	Focus Premium 350	mechanical	-	ToF	10,
19	Quanergy Systems	\$3-2W\$O-\$00	solid-state	optical phased array	ToF	10,
20	Quanergy Systems	M8-Core	mechanical	-	ToF	10,
21	Velodyne LiDAR Inc.	Puck VLP-16	mechanical	16 Laser	ToF	10,
22	Velodyn LiDAR	Puck LITE	mechanical	16 Laser	ToF	10,
23	Velodyne LiDAR Inc.	Ultra Puck VLP-32C	mechanical	32 Laser	ToF	10,
24	Luminar Technologies	Hydra	mechanical	2-Axen-Spiegel-Scanner	ToF	10,
25	Blickfeld	Cube1	hybrid	MEMS	-	10,
26	Innoviz	INNOVIZPRO	hybrid	MEMS	ToF	10,
27	Quanergy Systems	S3-2NSI-S00	solid-state	optical phased array	ToF	9,
28	Quanergy Systems	S3-2NSO-S00	solid-state	optical phased array	ToF	9,
29	Blickfeld	Cube Range 1	hybrid	MEMS	-	9,
30	Neuvition	Titan S2-120	hybrid	MEMS	ToF	9,
31	Ibeo Automotive Systems	Ibeo LUX 4L	mechanical	multi-layer	ToF	8,
32	Ibeo Automotive Systems	Ibeo LUX	mechanical	multi-layer	ToF	8,
33	Ibeo Automotive Systems	Ibeo LUX	mechanical	multi-layer	ToF	8,
34	Neuvition	Titan M1-R	hybrid	MEMS	ToF	8,
35	XenomatiX	XenoLidar-Xpert	solid-state	Flash (15000 Laser rays)	ToF	8,
36	AEye	4SIGHT M	hybrid	MEMS	ToF	8,
37	Velodyne LiDAR Inc.	HDL-32E	mechanical	32 Laser	ToF	8,
38	XenomatiX	XenoLidar-Xact	solid-state	Flash (15000 Laser rays)	ToF	7,
39	LeddarTech Inc.	Leddar Pixell	solid-state	Flash (Full Waveform)	-	6,

3.5.2 Evaluation of LiDAR technologies in the Smart City application area

In the "smart city" application area, which was represented by a hypothetical application for controlling the flow of people in public spaces, only "hybrid" technologies with hybrid sensing methods were ranked in the top four. The first ten ranks also include five purely "mechanical" technologies. They achieved mean values almost as high as those of the three top-ranked LiDAR systems. The lowest ranks - with significantly lower mean values than those in the top ranks - are again occupied by solid-state technologies. Accordingly, both "hybrid" and "mechanical" LiDAR technologies - but fewer so-called solid-state LiDAR technologies, with the exception of the so-called spectrum-scan LiDAR technology - currently tend to be suitable for use in the "smart city" sector.

Table 3: Ordering of technologies of selected LiDAR systems according to the mean value of relative weights of matching properties with the requirements for flow control in public spaces such as railroad stations or airports as an exemplary application in the field of "smart city".

f	for the application	on area Smar	t City			
					Measure- ment	Avg.
Rank C	Company	Product name	class	Procedures for scanning a field of view	technique	value
10	Duster	OS1	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser A	-	11,
2 0	Duster	OS0	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser A	-	11,
3 Ir	nnoviz Technologies	INNOVIZ360	hybrid	MEMS und rotatingr Spiegel	ToF	11,
4 C	Duster	OS2	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser Ar	-	11,
5 B	Baraja	Spectrum HD	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	11,
6 F	aro	Focus Premium 350	mechanical	-	ToF	11,
7 0	Quanergy Systems	M8-Core	mechanical	-	ToF	11,
8 0	Quanergy Systems	M8-Plus	mechanical	-	ToF	11,
9 0	Quanergy Systems	M8-Ultra	mechanical	-	ToF	11,
10 C	Quanergy Systems	M8-PoE	mechanical	-	ToF	11,
11 B	Baraja	Spectrum Off-Road	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	11,
12 A	Aeva Technologies	Aeries II	solid-state	multiple beam (Flash)	FMCW	10,
13 N	Neuvition	Titan M1-R	hybrid	MEMS	ToF	10,
14 V	/elodyne LiDAR Inc.	Puck VLP-16	mechanical	16 Laser	ToF	9,
15 V	/elodyn LiDAR	Puck LITE	mechanical	16 Laser	ToF	9,
16 V	/elodyne	Alpha Prime	mechanical	128 Laser, macromechanical scanning	ToF	9,
17 A	Aeva Technologies	Aeries I	solid-state	multiple beam (Flash)	FMCW	9,
18 S	amsung	ISOCELL Vizion 33D	solid-state	Flash (VCSEL)	ToF	9.
19 V	/elodyne LiDAR Inc.	Velarray M1600	solid-state	micro-lidar array (Multibeam-Flash)	-	9.
20 Ib	beo Automotive Systems	IbeoNEXT	solid-state	VCSEL, 128x80 Laser sequential Flash ("Pure-electronic se	ToF	9,
21 N	Neuvition	Titan S2-120	hybrid	MEMS	ToF	9,
22 0	Duanergy Systems	\$3-2W\$O-\$00	solid-state	optical phased array	ToF	9.
23 L	uminar Technologies	Hydra	mechanical	2-Axen-Spiegel-Scanner	ToF	9,
24 V	/elodyne LiDAR Inc.	HDL-32E	mechanical	32 Laser	ToF	9.
25 V	/elodyne LiDAR	Velarrav H800	solid-state	micro-lidar array (Multibeam-Flash)	-	8.
26 C	Duanergy Systems	\$3-2NSO-\$00	solid-state	optical phased array	ToF	8.
27 0	Duanergy Systems	\$3-2NSI-\$00	solid-state	optical phased array	ToF	8.
28 A	AEve	4SIGHT M	hybrid	MEMS	TOF	8.
29 V	/elodyne LiDAR Inc	Ultra Puck VI P-32C	mechanical	32 Laser	TOF	8.
30 B	Blickfeld	Cube Range 1	hybrid	MEMS	-	8.
31 8	Rohosense	RS-LIDAR-M1	hybrid	MEMS		7
32 B	Nickfeld	Cube1	hybrid	MEMS		7.
33 11	hen Automotive Systems	Ibeo I UX 4I	mechanical	multi-laver	TOF	7.
34 11	hen Automotive Systems	Ibeo I UX	mechanical	multi-laver	TOF	7.
35 11	hen Automotive Systems	Ibeo I UX	mechanical	multi-laver	TOF	7.
36 Ir	nnoviz	INNOVIZPRO	hybrid	MEMS	TOF	6.
37.1	eddarTech Inc	Leddar Pixell	solid-state	Flash (Full Waveform)	-	6.
38 ¥	(enomatiX	Xenol idar-Xact	solid-state	Flash (15000 Laser rays)	TOF	6
39 ¥	(enomatiX	Xenol idar-Xnert	solid-state	Flash (15000 Laser rays)	TOF	5

3.5.3 Evaluation of LiDAR technologies in the field of robotics

In the "robotics" application area, which was represented by a hypothetical application for so-called last-mile delivery, hybrid technologies are rated as the most suitable. Corresponding systems are ranked in the top three. Their mean values stand out clearly from the values of other technologies and are the only ones to exceed the critical mean value of 9. However, the mean values achieved in the area of robotics are characterized by their overall lower absolute values compared to the previous results. Accordingly, several requirements were not met.

 Table 4: Ordering of technologies of exemplary LiDAR

 systems according to the mean value of relative weights of

 matching properties with the requirements for "last-mile

 delivery" as an exemplary application in the field of "robotics"

	Evaluation of ex	emplary LiDA	AR system			
	for the applicati	on area for ro	obotics			
			Technology		Measure- ment	Avg.
tank	Company	Product name	class	Procedure for scanning a field of view	technique	value
1	Ouster	OS2	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser A	-	9,5
2	Ouster	OS0	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser A	-	9,5
3	Ouster	OS1	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser A	-	9,5
4	Quanergy Systems	M8-Ultra	mechanical	-	ToF	8,9
5	Baraja	Spectrum HD	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	8,6
6	Baraja	Spectrum Off-Road	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	8,5
7	Quanergy Systems	M8-Core	mechanical	•	ToF	8,5
8	Quanergy Systems	M8-Plus	mechanical	-	ToF	8,3
9	Innoviz Technologies	INNOVIZ360	hybrid	MEMS und rotatingr Spiegel	ToF	8,3
10	Quanergy Systems	M8-PoE	mechanical	-	ToF	8,2
11	Faro	Focus Premium 350	mechanical	•	ToF	8,1
12	Velodyn LiDAR	Puck LITE	mechanical	16 Laser	ToF	7,3
13	Velodyne LiDAR Inc.	Puck VLP-16	mechanical	16 Laser	ToF	7,6
14	Ibeo Automotive Systems	IbeoNEXT	solid-state	VCSEL, 128x80 Laser sequential Flash ("Pure-electronic se	ToF	7,5
15	Velodyne LiDAR Inc.	Velarray M1600	solid-state	micro-lidar array (Multibeam-Flash)	-	7,1
16	Samsung	ISOCELL Vizion 33D	solid-state	Flash (VCSEL)	ToF	7,0
17	Velodyne LiDAR	Velarray H800	solid-state	micro-lidar array (Multibeam-Flash)	-	6,1
18	Neuvition	Titan M1-R	hybrid	MEMS	ToF	6,3
19	Quanergy Systems	S3-2NSI-S00	solid-state	optical phased array	ToF	6,5
20	Neuvition	Titan S2-120	hybrid	MEMS	ToF	6,2
21	Velodyne	Alpha Prime	mechanical	128 Laser, macromechanical scanning	ToF	6,0
22	Quanergy Systems	S3-2NSO-S00	solid-state	optical phased array	ToF	6,0
23	Quanergy Systems	\$3-2W\$O-\$00	solid-state	optical phased array	ToF	6,0
24	Blickfeld	Cube Range 1	hybrid	MEMS	-	6,0
25	Aeva Technologies	Aeries I	solid-state	multiple beam (Flash)	FMCW	6,0
26	Velodyne LiDAR Inc.	Ultra Puck VLP-32C	mechanical	32 Laser	ToF	5,9
27	AEye	4SIGHT M	hybrid	MEMS	ToF	5,9
28	Aeva Technologies	Aeries II	solid-state	multiple beam (Flash)	FMCW	5,7
29	Velodyne LiDAR Inc.	HDL-32E	mechanical	32 Laser	ToF	5,7
30	Innoviz	INNOVIZPRO	hybrid	MEMS	ToF	5,4
31	Blickfeld	Cube1	hybrid	MEMS	-	5,2
32	LeddarTech Inc.	Leddar Pixell	solid-state	Flash (Full Waveform)	-	5,0
33	Ibeo Automotive Systems	Ibeo LUX	mechanical	multi-layer	ToF	4,9
34	Luminar Technologies	Hydra	mechanical	2-Axen-Spiegel-Scanner	ToF	4,8
35	Robosense	RS-LIDAR-M1	hybrid	MEMS	-	4,8
36	Ibeo Automotive Systems	Ibeo LUX 4L	mechanical	multi-layer	ToF	4,1
37	Ibeo Automotive Systems	Ibeo LUX	mechanical	multi-layer	ToF	4,1
38	XenomatiX	XenoLidar-Xpert	solid-state	Flash (15000 Laser rays)	ToF	3,6
39	XenomatiX	XenoLidar-Xact	solid-state	Flash (15000 Laser rays)	ToF	3,6

3.5.4 Evaluation of LiDAR technologies in the field of Smart Automotive

The order of the LiDAR systems according to their achieved mean values indicates relatively clearly in the application area "intelligent motor vehicles" that solid-state LiDAR technologies, in particular the so-called flash LiDAR technology and the so-called spectrum scan technology, are best suited here. Moreover, of all the LiDAR systems investigated, the top six rankings are precisely those that use uninterrupted, modulated laser beams for indirect measurement of the time of flight. The mean values of the bestranked LiDAR systems of "hybrid" technologies, especially those that use movements of the platform to extend the field of view, are not significantly different from those of the best-ranked systems. Therefore, so-called hybrid technologies are also to be assessed as having a tendency to be suitable. Since systems based on "mechanical" technologies are listed in the middle and lower ranges of the table, with only a few exceptions, the "mechanical" technology class tends not to be suitable for the application area "intelligent vehicles".

Table 5: Order of technologies of selected LiDAR systemsaccording to the mean value of relative weights of matchingproperties with the requirements for the application area"intelligent motor vehicles".

	Evaluation of ex	emplary LiDA	AR systen	าร		
	for the application	on area Smai	rt Autom	otive		
					Measure.	
			Technology		ment	Avg
Rank		Product name	class	Procedure for scanning a field of view	technique	value
1	Velodyne LiDAR	Velarray H800	solid-state	micro-lidar array (Multibeam-Flash)	-	11.4
2	Baraia	Spectrum Off-Road	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	11.0
3	Velodyne LiDAR Inc.	Velarray M1600	solid-state	micro-lidar array (Multibeam-Flash)	-	10,6
4	Baraja	Spectrum HD	solid-state	Wavelengh steering/ "Spectrum Scan", RMCW (Random	RMCW	10,5
5	Aeva Technologies	Aeries II	solid-state	multiple beam (Flash)	FMCW	10,4
6	Aeva Technologies	Aeries I	solid-state	multiple beam (Flash)	FMCW	10,3
7	Velodyne	Alpha Prime	mechanical	128 Laser, macromechanical scanning	ToF	10,3
8	Innoviz Technologies	INNOVIZ360	hybrid	MEMS und rotatingr Spiegel	ToF	10,2
9	Ouster	OS2	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser Ar	-	10,2
10	Ibeo Automotive Systems	IbeoNEXT	solid-state	VCSEL, 128x80 Laser sequential Flash ("Pure-electronic se	ToF	10,1
11	Samsung	ISOCELL Vizion 33D	solid-state	Flash (VCSEL)	ToF	9,9
12	Velodyne LiDAR Inc.	Ultra Puck VLP-32C	mechanical	32 Laser	ToF	9,8
13	Faro	Focus Premium 350	mechanical	-	ToF	9,5
14	Quanergy Systems	M8-Ultra	mechanical	-	ToF	9,4
15	Robosense	RS-LiDAR-M1	hybrid	MEMS	-	9,4
16	Luminar Technologies	Hydra	mechanical	2-Axen-Spiegel-Scanner	ToF	9,2
17	Ouster	OS0	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser Ar	-	9,2
18	Ouster	OS1	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser Ar	-	9,2
19	Quanergy Systems	M8-Plus	mechanical	-	ToF	9,2
20	Quanergy Systems	M8-PoE	mechanical	-	ToF	9,2
21	Velodyne LiDAR Inc.	Puck VLP-16	mechanical	16 Laser	ToF	9,0
22	Quanergy Systems	M8-Core	mechanical	-	ToF	8,9
23	Innoviz	INNOVIZPRO	hybrid	MEMS	101	8,8
24	Velodyn LiDAR	Puck LITE	mechanical	16 Laser	TOF	8,7
25	Neuvition	I Itan IVI1-K	nybrid	MEMS	101	8,5
26	ALye	4SIGHT M	hybrid	MEMS	TOF	8,4
27	Velodyne LIDAK Inc.	HUL-32E	mechanical	32 Laser	101	8,0
20	Qualities by Systems	55-21151-500	Solid-State	opucal priased array	TUP	7,9
29	Outporgy Systems	CUDE Range 1	rolid state	optical phased array	- ToF	7,9
21	Quartergy Systems	53-21450-500	solid-state	optical phased array	ToF	7,0
32	Rickfold	Cube1	hybrid	MEMS	-	7,8
22	VonomatiV	Yopolidar Vact	colid state	Elach (15000 Lacor rays)	ToF	7,0
34	Iheo Automotive Systems	Ibeo I UX 4I	mechanical	multi-laver	ToF	7.5
35	Iheo Automotive Systems	Ibeo I UX	mechanical	multi-laver	ToF	7.5
36	Ibeo Automotive Systems	Ibeo LUX	mechanical	multi-laver	ToF	7.5
37	Neuvition	Titan S2-120	hybrid	MEMS	ToF	7.5
38	XenomatiX	XenoLidar-Xpert	solid-state	Flash (15000 Laser rays)	ToF	7,3
39	LeddarTech Inc.	Leddar Pixell	solid-state	Flash (Full Waveform)	-	6,9

3.5.5 Evaluation of LiDAR technologies in the consumer goods sector

In the consumer goods sector, which was re-presented by smartphone and tablet applications, the LiDAR systems ranked according to their mean values show relatively clearly that solidstate LiDAR technologies are to be rated as the most suitable. Only LiDAR systems of such technologies occupy the first four ranks and even exceed the critical mean value of 9. However, they achieve at most 80 percent of the maximum mean value. Several requirements were therefore not met. The best-ranked solid-state technologies are flash LiDAR technology based on VCSEL emitters and optical phased array LiDAR technology. Hybrid technologies, like "mechanical" technologies, which for the most part occupy the last ranks, are not considered suitable for applications in the so-called consumer goods sector.

Table 6: Order of technologies of selected LiDAR systems according to the mean value of relative weights of matching properties and requirements for the so-called consumer goods sector, represented by the application in smartphones and tablets.

	for the concurre	r goods cost				
	for the consume	r goods secto	Jr			
			Technology		Measure-	Avg.
Rank	Company	Product name	class	Procedure for scanning a field of view	ment	value
1	Samsung	ISOCELL Vizion 33D	solid-state	Flash (VCSEL)	ToF	10,2
2	Quanergy Systems	\$3-2W\$O-\$00	solid-state	optical phased array	ToF	9,8
3	Quanergy Systems	S3-2NSI-S00	solid-state	optical phased array	ToF	9,4
4	Quanergy Systems	S3-2NSO-S00	solid-state	optical phased array	ToF	9,4
5	Ouster	OS0	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser An	-	8,8
6	Ouster	OS1	hybrid	sequential Multibeam-Flash (128 rotating VCSEL Laser An	-	8,8
7	Innoviz Technologies	INNOVIZ360	hybrid	MEMS und rotatingr Spiegel	ToF	8,7
8	Velodyne LiDAR	Velarray H800	solid-state	micro-lidar array (Multibeam-Flash)	-	8,6
9	Neuvition	Titan S2-120	hybrid	MEMS	ToF	8,3
10	XenomatiX	XenoLidar-Xact	solid-state	Flash (15000 Laser rays)	ToF	8,2
11	Ibeo Automotive Systems	IbeoNEXT	solid-state	VCSEL, 128x80 Laser sequential Flash ("Pure-electronic se	ToF	8,0
12	XenomatiX	XenoLidar-Xpert	solid-state	Flash (15000 Laser rays)	ToF	7,6
13	Blickfeld	Cube Range 1	hybrid	MEMS	-	7.5
14	Velodyn LiDAR	Puck LITE	mechanical	16 Laser	ToF	7.3
15	Velodyne LiDAR Inc.	Ultra Puck VLP-32C	mechanical	32 Laser	ToF	7.2
16	Blickfeld	Cube1	hybrid	MEMS		7.2
17	Robosense	RS-LIDAR-M1	hybrid	MEMS	-	7.2
18	Velodyne LiDAR Inc.	Velarray M1600	solid-state	micro-lidar array (Multibeam-Flash)		7.0
19	Velodyne LiDAR Inc.	Puck VLP-16	mechanical	16 Laser	ToF	7.0
20	Raraia	Spectrum Off-Road	solid-state	Wavelengh steering/ "Spectrum Scap" RMCW (Random	RMCW	6.8
21	Aeva Technologies	Aeries II	solid-state	multiple heam (Elash)	FMCW	6.5
22	AFve	4SIGHT M	hybrid	MEMS	ToF	6.5
23	Aeva Technologies	Aprios I	solid-state	multiple heam (Flash)	EMCW	6.4
24	Raraia	Snectrum HD	solid-state	Wavelengh steering/ "Spectrum Scap" RMCW (Random	RMCW	6.4
25	Ouster	052	hybrid	sequential Multiheam-Flach (128 rotating VCSFL Laser A		6.0
26	Velodyne LiDAR Inc	HDL-32F	mechanical	32 Jasor	ToF	6.0
27	Innoviz	ININOV/IZERO	hybrid	MEMAC	ToF	E 9
20	Luminar Technologies	Hydro	mochanical	2 Avan Spioral Scannor	ToF	5,0
20	Earo	Focus Promium 250	mechanical	2-Axen-spieger-scanner	ToF	5,0
20	Outport Surtoms	M8 Coro	mochanical		ToF	5,7
21	Voloduno	Alpha Brimo	mochanical	129 Lacor, macromochanical coanning	ToF	5,5
22	Outporter Systems	Mg Dive	mochanical	120 Laser, macromechanical scanning	ToF	5,4
22	Quanergy Systems	M9 Liltra	mochanical		ToF	5,5
24	Quartergy Systems	Inter-Old a	mechanical	-	Ter	5,5
34	Ibeo Automotive Systems	IDEO LOX 4L	mechanical	multi-layer	Ter	5,1
35	Ibeo Automotive Systems	IDEO LOX	mechanical	multi-layer	Ter	5,1
35	Neuroities	Tites M41 D	mechanical	nuur-iayer	Ter	5,1
37	Over every Sustaine	MAR Dec	nyonu meshaniar'	IVIE IVIS	Ter	4,6
38	Quariergy Systems	IVIO-POE	mechanical	-	101	4,5
- 39	Leadar Lech Inc.	Leddar Mixell	solia-state	Flash (Full Waveform)	-	3,9

3.6 Conclusion

Having evaluated the suitability of LiDAR technologies for each of the typical application areas, the individual results are now summarized in a table.

Table 7: Evaluation of the suitability of the different LiDAR technologies for typical application areas (green tick - tends to be suitable, red cross - not suitable).

			Appli	cation	area	
LiDAR-Techr	nology	3D-modeling	Smart City	Robotic	Smart Automotiv	Consumer goods
mechanical	rotating	>	•	×	×	×
hybrid	MEMS	X	X	×	×	X
	seq. MEMS	×	>	×	>	X
	seq. Flash	>	>	>	>	X
solid-state	Flash	>	X	X	 Image: A second s	×
	OPA	X	×	X	×	>
	other	>	~	×	~	X

The results show which current technologies tend to be suitable for an area. In all the application areas considered - with the exception of the so-called consumer goods and robotics areas several current technologies can be considered equally suitable. In the "robotics" and "consumer goods" application areas, a single LiDAR technology class is currently considered to be suitable in each case: In the "robotics" sector - especially for applications with mobile, autonomous robots - these are "hybrid" technologies. In the consumer goods sector, on the other hand, especially for compact mobile devices, only solid-state technologies have proven to be suitable. On the other hand, special "hybrid" technologies, which are characterized by hybrid scanning processes, have proven to be suitable for all typical applications - except for the so-called consumer goods sector.

The influence of error sources on the results was not quantified in this work. One potential source of error is the methodological approach to the evaluation of the LiDAR technologies: On the one hand, a selection of concrete LiDAR systems of different technologies had to be made to represent the characteristics of the respective technology. A larger selection of LiDAR systems of different technologies could improve the robustness of the results. On the other hand, the requirements of the typical application areas were also determined on the basis of exemplary applications. A different selection of exemplary applications, different requirements and weightings, would lead to different results. Another source of error is missing or erroneous data from the LiDAR systems. In addition, many specifications, e.g., the range of a LiDAR system, are not standardized. Another potential source of error is the assignment of LiDAR systems to one technology. Manufacturers have tended to assign their own LiDAR systems to so-called solid-state technologies. At the same time, meaningful descriptions of the technology were often avoided or the product data withheld in order to protect the manufacturers' intellectual property.

4. Summary

This work investigated which 3D LiDAR technologies are suitable for which application areas. The areas of "3D modeling", "intelligent city", "robotics", "intelligent vehicles" and "consumer goods" were determined as typical application areas. In order to evaluate the suitability of LiDAR technologies for typical application areas, exemplary applications were identified for each area - with the exception of the relatively homogeneous application area "intelligent vehicles" - and their specific requirements for performance, safety and cost-effectiveness were worked out and weighted relatively. The methodological approach of the study is based on the assumption that, on the one hand, these exemplary applications represent their entire field of application and, on the other hand, that concrete LiDAR systems represent a specific LiDAR technology.

Based on their essential characteristics, three LiDAR technology classes were determined: "mechanical" LiDAR technologies, so-called solid-state LiDAR technologies, and "hybrid" LiDAR technologies. The components used, the scanning method, and the measurement technique were identified as important characteristics of the LiDAR technologies. The scanning methods can be divided into sequential, parallel, and hybrid methods. The investigation of current LiDAR systems has shown that most of the distance measurement is done by direct time-of-flight measurement using laser light pulses. Few of the LiDAR systems considered use indirect techniques such as the so-called FMCW or RMCW technique, in which modulated uninterrupted laser light is emitted. LiDAR systems with indirect measurement techniques have proven to be particularly suitable for the application area of "intelligent vehicles".

This study indicates that technologies from all three technology classes are suitable for the areas of "3D modeling" and "smart city". In contrast, only "hybrid" technologies were assessed as suitable for the "robotics" application area, and only solid-state LiDAR technologies were assessed as suitable for the "consumer goods" application area. For the application area "intelligent vehicles", only mechanical technologies were assessed as tending to be unsuitable. In addition, it was shown that current "hybrid" technologies tend to be suitable for almost all application areas - except for the so-called consumer goods area. The so-called flash LiDAR technology has proven to be the most significant solid-state LiDAR technology at present. However, it has also been shown that the so-called spectrum scan LiDAR technology is promising. [1]

5. Outlook

In this work, the current state of the technologies was examined in terms of their suitability for typical applications. The various LiDAR technologies show different potential in terms of increasing performance while reducing cost, size, weight, and power consumption. To meet a wide range of requirements, multiple LiDAR systems could be used, possibly networked together. Another approach to cover a wide range of requirements is the development of so-called intelligent LiDAR systems whose performance characteristics - for example, the resolution of a part of the field of view or the so-called frame rate - can be controlled. Hybrid MEMS-LiDAR technologies are considered particularly suitable for this purpose. It is predicted that, analogous to the development of photo and video cameras, semiconductor-based flash LiDAR technology based on VCSEL emitters and CMOS detectors will eventually prevail. [40] So-called mechanical LiDAR technologies could continue to play a role for such applications in the future, when performance characteristics are clearly more important than cost and physical characteristics. Finally, the most suitable technology for a specific application could be selected and customized to achieve optimal performance, taking into account safety and economic requirements. [35, p. 4]

References

- D. Jaster, "LiDAR: Eine qualitative Untersuchung von LiDAR-Technologien und ihrer Anwendungsbereiche," Bachelor Thesis, Department of Computer Science and Media, University of Applied Sciences Brandenburg, Brandenburg, 2022.
- [2] N. R. Council, Sciences, Division on Engineering and Physical, and Security, Committee on Review of Advancements in Active Electro-Optical Systems to Avoid Technological Surprise Adverse to U.S. National, Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing. Washington, D.C: National Academies Press, 2014.
- [3] X. Bi, Environmental Perception Technology for Unmanned Systems, 1st ed.
- H. Gotzig and G. Geduld, "LIDAR-Sensorik," in *Handbuch Fahrerassistenzsysteme*, Wiesbaden: Springer Vieweg, 2015, 2015.
- [5] F. Friedl, "LiDAR and autonomous cars: no conventional solution: TOF lidars are recognized as the norm, but FMCW systems are increasingly growing in popularity," *PhotonicsViews*, vol. 19, no. 1, pp. 42–44, 2022, doi: 10.1002/phvs.202200003.
- [6] I. J. Jacob, S. Kolandapalayam Shanmugam, and R. Bestak, Eds., Data Intelligence and Cognitive Informatics. Singapore: Springer Singapore, 2022.
- [7] C.-Y. Chen, "A LIDAR sensor prototype with embedded 14-bit 52 ps resolution ILO-TDC array," *Analog integrated circuits and signal processing*, pp. 1–14, 2017, doi: 10.1007/s10470-017-1067-3.
- [8] H. W. Yoo *et al.*, "MEMS-based lidar for autonomous driving," *Elektrotech. Inftech.*, vol. 135, no. 6, pp. 408–415, 2018, doi: 10.1007/s00502-018-0635-2.

- [9] D. Wang, C. Watkins, and H. Xie, *MEMS Mirrors for LiDAR: A Review*, 2020.
- [10] J. Haase, Algorithmen und Signalverarbeitung für LiDAR. Duisburg, Essen: Universität Duisburg-Essen, 2021.
- [11] C. S. Sambridge, J. T. Spollard, A. J. Sutton, K. McKenzie, and L. E. Roberts, "Detection statistics for coherent RMCW LiDAR," *Optics express*, vol. 29, no. 16, pp. 25945–25959, 2021, doi: 10.1364/OE.433904.
- [12] N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, "Random modulation cw lidar," *Applied optics*, vol. 22, no. 9, p. 1382, 1983, doi: 10.1364/ao.22.001382.
- [13] V. Murino and E. Puppo, *Image analysis and processing ICIAP* 2015. Cham: Springer International Publishing, 2015. Accessed: Apr. 8 2022. [Online]. Available: https://link-springer-com.ezproxy.thbrandenburg.de/content/pdf/10.1007%2F978-3-319-23231-7_6.pdf
- [14] H. Choi and W.-C. Kim, "Optical system design for light detection and ranging sensor with an ultra-wide field-of-view using a micro actuator," *Microsystem Technologies*, vol. 26, no. 11, pp. 3561–3567, 2020, doi: 10.1007/s00542-020-04997-1.
- [15] H. A. Lassiter, T. Whitley, B. Wilkinson, and A. Abd-Elrahman, Scan Pattern Characterization of Velodyne VLP-16 Lidar Sensor for UAS Laser Scanning, 2020.
- [16] I. Yoon, "Performance Analysis of Flash LiDAR Based TRN Using Different Correlation Functions," *International journal of aeronautical and space sciences*, pp. 1–8, 2018, doi: 10.1007/s42405-018-0065-8.
- [17] S.-H. Chung, S.-W. Lee, S.-K. Lee, and J.-H. Park, "LIDAR system with electromagnetic two-axis scanning micromirror based on indirect time-of-flight method," *Micro and Nano Systems Letters*, vol. 7, no. 1, p. 3, 2019, doi: 10.1186/s40486-019-0082-9.
- [18] Z. Liu, Y. Cai, H. Wang, and L. Chen, "Surrounding Objects Detection and Tracking for Autonomous Driving Using LiDAR and Radar Fusion," *Chin. J. Mech. Eng.*, vol. 34, no. 1, 2021, doi: 10.1186/s10033-021-00630-y.
- [19] M. Spies and H. Spies, "Automobile Lidar Sensorik: Stand, Trends und zukünftige Herausforderungen," *Advances in radio science*, vol. 4, pp. 99–104, 2006, doi: 10.5194/ars-4-99-2006.
- [20] Lumentum, "Making Vehicles Smarter and Safer with Diode Laser-Based 3D Sensing," [Online]. Available: https:// resource.lumentum.com/s3fs-public/technical-library-items/ diodelaservehicle-wp-cl-ae.pdf
- [21] H. Xie, MEMS Mirrors. s.l.: MDPI Multidisciplinary Digital Publishing Institute, 2018. [Online]. Available: https:// www.doabooks.org/doab?func=fulltext&uiLanguage=en&rid=26656
- [22] J. Kernhof, J. Leuckfeld, and G. Tavano, "LiDAR-Sensorsystem für automatisiertes und autonomes Fahren," in *Automobil-Sensorik 2: Systeme, Technologien und Applikationen*, T. Tille, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 29–54.
- [23] H. Choi, N.-C. Park, and W.-C. Kim, "Optical system design for light detection and ranging with ultra-wide field-of-view using liquid lenses," *Microsystem Technologies*, vol. 26, no. 1, pp. 121–131, 2020, doi: 10.1007/s00542-019-04490-4.
- [24] G. P. M. (. [Nachname nicht vorhanden], State-of-the-Art Sensors Technology in Spain 2017 Volume 2. Erscheinungsort nicht ermittelbar: MDPI - Multidisciplinary Digital Publishing Institute,

2018. [Online]. Available: https://directory.doabooks.org/handle/ 20.500.12854/59995

- [25] M. Bargende, H.-C. Reuss, and A. Wagner, Eds., 20. Internationales Stuttgarter Symposium. Wiesbaden: Springer Fachmedien Wiesbaden, 2020.
- [26] S. Erichsen, J. Nitsch, M. Schmidt, and A. Schlaefer, "Semantic segmentation of solid state LiDAR measurements for automotive applications," in 20. Internationales Stuttgarter Symposium, Wiesbaden, 2020, pp. 179–192.
- [27] C. V. Poulton et al., "Coherent solid-state LIDAR with silicon photonic optical phased arrays," Opt. Lett., vol. 42, no. 20, pp. 4091– 4094, 2017, doi: 10.1364/OL.42.004091.
- [28] Dietrich Paulus, Anselm von Gladiss, and Roman Abayev, "Eigenschaften verschiedener Solid-State-LIDAR-Systeme," [Online]. Available: https://www.uni-koblenz.de/~agas/Public/ Abayev2021EVS.pdf
- [29] C. H. Jang, C. S. Kim, K. C. Jo, and M. Sunwoo, "Design factor optimization of 3D flash lidar sensor based on geometrical model for automated vehicle and advanced driver assistance system applications," *Int.J Automot. Technol.*, vol. 18, no. 1, pp. 147–156, 2017, doi: 10.1007/s12239-017-0015-7.
- [30] B. Shin, D. Oh, and K. Lee, "Biaxial scanning mirror with large rotation angle and low resonance frequency for LIDAR application," *Microsystem Technologies*, vol. 24, no. 11, pp. 4631–4639, 2018, doi: 10.1007/s00542-018-3858-6.
- [31] H. Xie and F. Zamkotsian, *Optical MEMS*. Erscheinungsort nicht ermittelbar: MDPI - Multidisciplinary Digital Publishing Institute, 2019. [Online]. Available: https://www.doabooks.org/doab?func= fulltext&uiLanguage=en&rid=42468
- [32] M. Lato, "Pinliang Dong and Qi Chen: LiDAR Remote Sensing and Applications: CRC Press, 2018, ISBN 9781138747241," *Mathematical geosciences*, pp. 1–2, 2018, doi: 10.1007/s11004-018-09778-1.
- [33] R. A. A. Agha and W. Monnet, "A virtual & an augmented reality application of the Rashid Agha's diwakhana in the citadel of erbil using 360° 3D Lidar," in *Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems*, Dubai, United Arab Emirates, 2019, pp. 1–9. Accessed: Apr. 7 2022. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/ 3368691.3368723
- [34] M. Ishino *et al.*, "Scanning 3D-LiDAR based on visible laser diode for sensor-integrated variable distribution lighting," *Optical review*, pp. 1–8, 2018, doi: 10.1007/s10043-018-0483-7.
- [35] Robert Bosch GmbH, Teilvorhaben Bosch: FKZ 13N14019: Automotive LiDAR, integrierte Treiber, Lasermontage Hochvolumen, Mikrospiegel; FKZ 13N14020: Consumer und Robotik LIDAR (von BOSCH Sensortec übernommen); Verbundname: PLUS: Puls-Laser und Scanner für LiDAR-Anwendungen: Automotive, Consumer, Robotic; Verbandname: Effilas: Schlussbericht BMBF-Projekt PLUS, Teilprojekte Robert BOSCH GmbH : Laufzeit des Verbundprojekts: 01.07.2016-30.06.2019. Stuttgart: Bosch, 2019.

- [36] 06: Die Welt in 3D-Karten | The ArcGIS Book. [Online]. Available: https://learn.arcgis.com/de/arcgis-book/chapter6/ (accessed: Apr. 7 2022).
- [37] Christian Harder and Clint Brown, Eds., "Das ArcGIS Buch: Zweite Ausgabe," The Science of Where - 10 wesentliche Aspekte, Esri Press, Redlands California, 2017.
- [38] Deutsche Akademie der Technikwissenschaften, Fachforum Autonome Systeme: Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft : Abschlussbericht - Langversion. München: acatech - Deutsche Akademie der Technikwissenschaften, 2017. [Online]. Available: http://web.archive.org/web/ 20181115005253/http://www.acatech.de/wp-content/uploads/2018/ 03/HTF_FF_Autonome_Systeme_Langversion_web_niedrig.pdf
- [39] M. Likhita, N. S. Sumanth, A. A. Harish, R. R. Reddy, K. A. Nethravathi, and M. U. Kumari, "Obstacle Detection in Autonomous Vehicles Using 3D LiDAR Point Cloud Data," in *Data Intelligence* and Cognitive Informatics, Singapore, 2022, pp. 745–757.
- [40] A. Pacala, "How Multi-Beam Flash Lidar Works Ouster Medium," Ouster, 08 Nov., 2018. https://medium.com/ouster/how-multi-beamflash-lidar-works-silicon-eats-industries-lidar-is-next-d0a385a90c08 (accessed: May 23 2022).

Author Biographies

Daniel Jaster received his B. Sc. degree in computer science and digital media (2022) from the Technische Hochschule Brandenburg in Brandenburg, Germany. During his studies, he focused on LiDAR technologies, imaging and autonomous driving from different perspectives.

Reiner Creutzburg is a Retired Professor for Applied Computer Science at the Technische Hochschule Brandenburg in Brandenburg, Germany. Since 2019 he has been a Professor of IT Security at the SRH Berlin University of Applied Sciences, Berlin School of Technology.

He has been a member of the IEEE and SPIE and chairman of the Multimedia on Mobile Device (MOBMU) Conference at the Electronic Imaging conferences since 2005. In 2019, he was elected a member of the Leibniz Society of Sciences to Berlin e.V. His research interest is focused on Cybersecurity. Digital Forensics. Open Source Intelligence (OSINT), Multimedia Signal Processing, eLearning, Parallel Memory Architectures, and Modern Digital Media and Imaging Applications.

Eberhard Hasche is a Retired Professor for audio and video technology at Technische Hochschule Brandenburg in Brandenburg, Germany. He received his diploma in electrical engineering from the Technical University of Dresden (1976). Then he studied double bass, composition, and arranging at Hochschule für Musik "Carl Maria von Weber" in Dresden (state examination 1989). He is focused on image compositing (certified Nuke Trainer by The Foundry in 2012). He has been a member of the Visual Effects Society since 2018.

Appendix A

 Table 8: Overview of the technology and properties of LiDAR systems from different manufacturers.

	Properties of a	selected I	Lil	DAR s	yste	ms																							
	Producer	Productname	Datasheet	Technology class/ Architectur	Proc. for scanning a field of view	Measurement technique	min. detection distance in m	max. detection distance in m	Range resolution in m	max. hor. Field of View in °	max. vert. Field of View in $^\circ$	min. hor. geometric resolution	min. vert. geometric resolution	hor. angular resolution in \degree	vert. angular resulution in $^\circ$	data rate in mill. points/s	max. frame rate in Hz	ad ditional attributes lesser sefector classification	wavelength in nm	min. working temperature in °C	max. working temperature in °C	vibration resilience	ambient light resilien ce	resilience to atmospheric disturbances	max. price in thous. USD	energy consumption in W	max. weight in kg	volume (WxHxD) in dm ³	production process
1	Luminar Technologies	Hydra		mechani	2-Axer	ToF	2,00	500	0,01	120	30	0,61	0,26	0,070	0,030		30	Ref 1	155	0 -10	40	SAE	J121	1, IEC	60068	55	4,500	4,41	1 suita
2	AEye	4SIGHT M	х	hybrid	MEMS	ToF		1000	0,03	60	30	1,75	1,75	0,100	0,100	4,00	100	1	155	0 -40	70	IECE	60068	Rain,	0,40	40	3,000	2,60) suita
З	Aeva Technologies	Aeries I	х	solid-sta	tmultip	FMCW		300	0,02	120	30	0,16	0,52	0,030	0,100		20	Ges 1		0	45	ISO	imm	une	0,50		5,500	4,50) suita
4	Aeva Technologies	Aeries II	х	solid-sta	tmultip	FMCW		500	0,02	120	30	0,22	0,22	0,025	0,025		20	Ges 1		-40	85	ISO	1675	0	0,50		1,800	1,26	5 suita
5	Innoviz Technologies	INNOVIZ360	х	hybrid	MEMS	ToF	0,30	300		360	64	0,26	0,26	0,050	0,050		25	1	90	5 -40	85		imm	Rain,	1,00	25	0,700	0,84	4 aime
e	Innoviz Technologies	INNOVIZPRO	х	hybrid	MEMS	ToF	2,10	135	0,05	72	19	0,42	0,94	0,180	0,400	2,00	16	1	90	5 -10	50	relia	resili	resili	1,00	40	0,950	0,79) aime
7	Ouster	OS0	х	hybrid	sequer	-	0,30	45	0,03	360	90	0,01	0,01	0,010	0,010	2,62	20	1	86	5 -40	60	IECE	imm	all co	10,86	20	0,377	0,53	3
8	Ouster	OS1	х	hybrid	sequer	i -	0,30	100	0,03	360	45	0,02	0,02	0,010	0,010	2,62	20	1	86	5 -40	60	IECE	imm	all co	19,30	20	0,377	0,53	3
9	Ouster	OS2	х	hvbrid	sequer	-	1.00	210	0.03	360	23	0.04	0.04	0.010	0.010	2.62	20	1	86	5 -20	60	IECE	imm	all co	nditio	24	1.100	1.4:	1
10	Velodyne LiDAR Inc.	Velarray M1600	х	solid-sta	micro-	-	0.10	30	0.05	120	32	0.10	0.10	0.200	0.200		25	1	90	5 -40	85	ISO	imm	all co	1.00	15	1.000	0.80) suita
11	Velodyne LiDAR	Velarray H800	x	solid-sta	micro-	-	0.10	200	0.05	120	16	0.91	0.70	0.260	0.200		25	1	90	5 -40	85	ISO	dav/	indo	0.50	13	1.000	0.75	5 well-
12	Velodyne LiDAR Inc.	Puck VI P-16	x	mechani	16 Lase	TOF		100	0.03	360	30	0.17	3.49	0.10	2.000	0.60	20	1	90	3 -10	60	high	high	highl	3.47	8	0.830	0.7	7
13	Velodyne LiDAR Inc	Illtra Puck VI P-3	×	mechani	32 1 25	TOF	0 10	200	0.03	360	40	0.35	1 15	0 100	0 330	1 20	20	1	90	3 - 20	60			almo	9.99	10	0.925	0.91	2 suita
14	Velodyn LiDAR	Puck LITE	x	mechani	16 Lase	TOF	0,10	100	0.03	360	30	0.17	3 49	0 100	2 000	1,20	20	1	90	3 -10	60	wid	wide	wide	enviro	8	0.590	0.7	7
15	Velodyne LiDAR Inc	HDI-32F	Ŷ	mechani	32126	TOF		100	0,03	360	41	0,1/	2 32	0,100	1 3 3 0	1 30	20	1	90	5 -10	60	WIG	wide	wide	CIIVIIC	12	1,000	1.05	5
16	Velodyne LibAit IIIc.	Alpha Prime	Ŷ	mechani	128 12	TOF		300	0,02	360	40	0,14	0.58	0,000	0 1 1 0	4.60	20	1	90	5 - 20	60		Little	51150	75.00	23	3 500	3.81	7 mult
17	Quanerry Systems	S3-2NSI-S00	Ŷ	solid-sta	tontical	TOF	0.50	20	0.15	500	40	0,52	0,00	0,100	0,110	4,00	25	1	90	5 -10	50	true	indo	indor	75,00	25	0.671	0.53	3 Cost
10	Quanergy Systems	53-21151-500	~	colid cto	toptical	TOF	0,50	10	0,15	50	4	0,03	0,03	0,100	0,100		25	1	00	10	50	truc	0000	01.00	/	0	0,071	0,5	Cost
10	Quartergy Systems	53-21030-300	~	colid sta	optical	TOF	0,30	10	0,15	100	4	0,02	0,02	0,100	0,100		25	1	00	10	50	true	0000			9	0,071	0,53	Cost
20	Quartergy Systems	33-2W30-300	~	machani	optical	TOF	0,23	100	0,13	260	20	0,01	0,01	0,100	0,100	1 20	20	Pof 1	00	5 -10	50	ETC	imm	barch	onvir	16	0,071	0,33	2 CUSI
20	Quartergy Systems	M8 Dluc	~	mochani	-	TOF	0,50	100	0,03	260	20	0,00	0,00	0,033	0,033	1,30	20	Ref 1	00	20	60	ETC	imm	hard	2 70	10	0,900	0,92	2
21	Qualiergy Systems	NIO-FIUS	^	mechani	-	TUP	0,50	100	0,03	300	20	0,09	0,09	0,033	0,033	1,50	20	Nel 1		-20	00	ETG		110151	3,79	10	0,900	0,92	-
22	Quallergy Systems		x	mechani	-	TOP	0,50	200	0,03	360	20	0,12	0,12	0,033	0,033	1,50	20	Rei	90	- 20	60	EIS		narsi	4,40	10	0,900	0,92	-
23	Quanergy Systems	IVI8-POE	X	mechani	-	IOF	0,50	150	0,03	360	20	0,09	0,09	0,033	0,033	1,30	20	Ket 1	90	-20	60	EIS	imm	narsi	4,13	18	1,360	2,00	2
24	Blickfeld	Cube Range 1	x	nybrid	MENIS	-	5,00	250	0,02	18	12	1,05	0,26	0,240	0,060		50	Ket 1	90	30	60			85%	lumid	9	0,385	0,42	4
25	BIICKTEID	Cubel	x	nybrid	MENIS	-	1,50	250	0,02	70	30	1,75	0,33	0,400	0,075		50	кет 1	90	5 -30	60			85%	4,16	9	0,275	0,25	2
26	Ibeo Automotive Systems	IbeoNEXT	х	solid-sta	128x8	ToF		250		120	60	0,17	0,31	0,040	0,070		25	Ref 1	. 88	5 -40	85	rob	ust u	zuve	1,00	7	0,650	0,96	5 in lar
27	Ibeo Automotive Systems	Ibeo LUX 4L	х	mechani	multi-l	ToF		50	0,04	110	3	0,22	0,70	0,250	0,800		25	1	90	5 -40	85				9,00	9	1,000	1,35	i i
28	Ibeo Automotive Systems	Ibeo LUX	х	mechani	multi-l	ToF		50	0,04	110	6	0,22	0,70	0,250	0,800		25	1	90	5 -40	85				9,00	9	1,000	1,35	i i
29	Ibeo Automotive Systems	Ibeo LUX	х	mechani	multi-l	ToF		30	0,04	110	3	0,13	0,42	0,250	0,800		25	1	90	5 -40	85				9,00	9	1,000	1,35	i i
30	Baraja	Spectrum HD	х	solid-sta	Wavel	RMCW	0,01	250	0,05	120	25	0,05	0,17	0,013	0,040		30	Ges 1		-40	105	ISO	imm	uneit	1,00	20		0,30) mass
31	Baraja	Spectrum Off-Ro	х	solid-sta	Wavel	RMCW	0,00	240		120	- 30	0,21	0,08	0,050	0,020	0,66	40	Ges 1	153	0 -40	50	ISO	imm	toug	1,00	- 5	2,200	3,46	5 mass
32	LeddarTech Inc.	Leddar Pixell	х	solid-sta	Flash (-		56	0,03	178	16	1,86	1,95	1,900	2,000		20	1	90	5 -30	65	IEC	6006	harsl	2,40	20	2,100	2,74	4
33	XenomatiX	XenoLidar-Xpert	Х	solid-sta	tFlash (ToF	0,20	150	1,50	30	10	0,39	0,39	0,150	0,150	0,30	20	Ref 1	94	0 -10	40	true	solic	10-90	10,00	12	0,550	0,55	5 prep
34	XenomatiX	XenoLidar-Xact	Х	solid-sta	Flash (ToF	0,20	50	0,50	60	20	0,26	0,26	0,300	0,300	0,30	20	Ref 1	94	0 -10	40	true	solic	10-90	10,00	13	0,550	0,55	5 prep
35	Robosense	RS-LIDAR-M1	х	hybrid	MEMS	-	0,70	200	0,05	120	25	0,70	0,70	0,200	0,200	1,50	10	1	90	5 -40	85				10,20	18	0,730	0,53	3 desg
36	Neuvition	Titan M1-R	х	hybrid	MEMS	ToF	1,00	300	0,02	15	8	0,05	0,05	0,010	0,010	1,00	30	1	155) -20	65				10,00	25	1,520	1,58	8
37	Neuvition	Titan S2-120	х	hybrid	MEMS	ToF	0,30	18	0,02	220	128	0,16	0,16	0,500	0,500		10	1	94	0 -40	65				10,00	9	0,620	0,72	2
38	Samsung	ISOCELL Vizion 3	х	solid-sta	Flash (ToF	0,20	5	0,05	78	78	0,01	0,01	0,122	0,163		120	1	94	0 - 30	70		indo	or/ou	0,30	0	0,010	0,00	2
39	Faro		x															1											
Aν	erage						0,71	143	0,14	160	37	0,34	0,31	0,22	0,27	1,41	32	1	99	4 -26	65				8,75	17	1,321	1,35	5
M	edian						0,50	150	0,03	120	25	0,17	0,26	0,10	0,10	1,30	20	1	90	5 -20	60				4,14	13	0,913	0,92	2

 Table 9: Comparison of the specific requirements of an exemplary airborne application in the application area "3D modeling"

 with the properties of concrete LiDAR systems and the evaluation as the mean value of the weighted points.

Comparison of	the propert	ies of	selected Li	DA	R sy	/ste	ms	wi	th t	he	requ	uirer	nen	ts	tor	3D	mo	bde	elin	ng.								
		Require	ement parameter	min. detection distance in m	max. detection distance in m	min. range resolution in m	min. horiz. Field of View in °	min. vert. Field of View in °	min. hor. geom. resolution in m	min. vert. geom. resolution in m	min. horiz. angular resolution in 。	min. vert. angular resolution in $^\circ$	data rate in points/s	min. frame rate in Hz	data point attributes	min. laser safety classification	min. wavelength in nm	min. working temprature in °C	max. working temprature in °C	min. vibration resilience	min. ambient light resilience	min. resilience to atmospheric disturbances	max. price	max. energy consumotion	max. weight in kg	max. volume	production process	srage (only values)
		· .	relative weighting		24	18	17	16	20	19	15	14	13		10	22	23			8	21	11			12		2	Ă
Producer	Productname	Tech.	Cla Proc. fcMeasu	2,00	125	1,00	90	30	1,00	1,00	0,45	0,45		10	Ref	28	300	-25	50 (ediu	high	ediur	high	low	low	nediun	single	e-unit
1 Luminar Technologies	Hydra	mecha	ani 2-Axen ToF	1	24	18	17	16	20	19	15	14	-	9	10	22	23	0	0	8	0	-	3	0	0	0	2	10,0
2 AEye	4SIGHT M	hybric	MEMS ToF	-	24	18	0	16	0	0	15	14	-	9	-	22	23	6	7	8	0	11	3	0	0	0	2	8,5
3 Aeva Technologies	Aeries I	solid-s	stat multipl FMCW	-	24	18	17	16	20	19	15	14	-	9	0	22	-	0	0	8	21	-	3	-	0	0	2	10,9
4 Aeva Technologies	Aeries II	solid-s	stat multipl FMCW	-	24	18	17	16	20	19	15	14	-	9	0	22	-	6	7	8	0	-	3	-	0	4	2	10,7
5 Innoviz Technologies	INNOVIZ360	hybric	MEMS ToF	1	24	-	17	16	20	19	15	14	-	9	-	22	23	6	7	-	21	11	3	0	12	4	2	12,3
6 Innoviz	INNOVIZPRO	hybric	MEMS ToF	0	24	18	0	0	20	19	15	14	-	9	-	22	23	0	7	8	21	11	3	0	0	4	2	10,0
7 Ouster	OS0	hybric	d sequen-	1	0	18	17	16	20	19	15	14	-	9	-	22	23	6	7	8	21	11	3	0	12	4	2	11,3
8 Ouster	OS1	hybric	d sequen-	1	0	18	17	16	20	19	15	14	-	9	-	22	23	6	7	8	21	11	3	0	12	4	2	11,3
9 Ouster	OS2	hybric	d sequen-	1	24	18	17	0	20	19	15	14	-	9	-	22	23	0	7	8	21	11	3	0	0	0	2	10,6
10 Velodyne LiDAR Inc.	Velarray M1600	solid-s	stat micro-I -	1	0	18	17	16	20	19	15	14	-	9	-	22	23	6	7	8	21	11	3	0	0	4	2	10,7
11 Velodyne LiDAR	Velarray H800	solid-s	stat micro-l -	1	24	18	17	0	20	19	15	14	-	9	-	22	23	6	7	8	21	11	3	5	0	4	2	11,3
12 Velodyne LiDAR Inc.	Puck VLP-16	mecha	anic16 Lase ToF	-	0	18	17	16	20	0	15	0	-	9	-	22	23	0	7	8	21	11	3	5	12	4	2	10,1
13 Velodyne LiDAR Inc.	Ultra Puck VLP-32	C mecha	ani(32 Lase ToF	1	24	18	17	16	20	0	15	14	-	9	-	22	23	0	7	-	0	11	3	5	0	4	2	10,0
14 Velodyn LiDAR	Puck LITE	mecha	anic 16 Lase ToF	-	0	18	17	16	20	0	15	0	-	9	-	22	23	0	7	8	21	11	3	5	12	4	2	10,1
15 Velodyne LiDAR Inc.	HDL-32E	mecha	ani(32 Lase ToF	-	0	18	17	16	20	0	15	0	-	9	-	22	23	0	7	-	0	-	3	5	0	4	2	8,5
16 Velodyne	Alpha Prime	mecha	ani (128 Las ToF	-	24	18	17	16	20	19	15	14	-	9	-	22	23	0	7	-	21	-	3	0	0	0	2	12,1
17 Quanergy Systems	S3-2NSI-S00	solid-s	stat optical ToF	1	0	18	0	0	20	19	15	14	-	9	-	22	23	0	7	8	21	11	3	5	12	4	2	9,7
18 Quanergy Systems	S3-2NSO-S00	solid-s	stat optical ToF	1	0	18	0	0	20	19	15	14	-	9	-	22	23	0	7	8	21	-	3	5	12	4	2	9,7
19 Quanergy Systems	S3-2WSO-S00	solid-s	stat optical ToF	1	0	18	17	0	20	19	15	14	-	9	-	22	23	0	7	8	21	-	3	5	12	4	2	10,5
20 Quanergy Systems	M8-Core	mecha	ani(- ToF	1	0	18	17	0	20	19	15	14	-	9	10	22	23	0	7	8	21	11	3	0	12	4	2	10,3
21 Quanergy Systems	M8-Plus	mecha	anic- ToF	1	24	18	17	0	20	19	15	14	-	9	10	22	23	0	7	8	21	11	3	0	12	4	2	11,3
22 Quanergy Systems	M8-Ultra	mecha	anic- ToF	1	24	18	17	0	20	19	15	14	-	9	10	22	23	0	7	8	21	11	3	0	12	4	2	11,3
23 Quanergy Systems	M8-PoE	mecha	anic- ToF	1	24	18	17	0	20	19	15	14	-	9	10	22	23	0	7	8	21	11	3	0	0	0	2	10,6
24 Blickfeld	Cube Range 1	hybric	MEMS -	0	24	18	0	0	0	19	15	14	-	9	10	22	23	6	7	-	0	11	3	5	12	4	2	9,3
25 Blickfeld	Cube1	hybric	MEMS -	1	24	18	0	16	0	19	15	14	-	9	10	22	23	6	7	-	0	11	3	5	12	4	2	10,0
26 Ibeo Automotive Systems	IbeoNEXT	solid-s	stat VCSEL, ToF	-	24	-	17	16	20	19	15	14	-	9	10	22	23	6	7	8	0	11	3	5	12	4	2	11,8
27 Ibeo Automotive Systems	Ibeo LUX 4L	mecha	ani(multi-laToF	-	0	18	17	0	20	19	15	0	-	9	-	22	23	6	7	-	0	-	3	5	0	4	2	8,9
28 Ibeo Automotive Systems	Ibeo LUX	mecha	ani(multi-laToF	-	0	18	17	0	20	19	15	0	-	9	-	22	23	6	7	-	0	-	3	5	0	4	2	8,9
29 Ibeo Automotive Systems	Ibeo LUX	mecha	ani(multi-laToF	-	0	18	17	0	20	19	15	0	-	9	-	22	23	6	7	-	0	-	3	5	0	4	2	8,9
30 Baraja	Spectrum HD	solid-s	stat Wavele RMCW	1	24	18	17	0	20	19	15	14	-	9	0	22	-	6	7	8	21	-	3	0	-	4	2	10,5
31 Baraja	Spectrum Off-Roa	d solid-s	stat Wavele RMCW	1	24	-	17	16	20	19	15	14	-	9	0	22	23	6	7	8	21	11	3	5	0	0	2	11,0
32 LeddarTech Inc.	Leddar Pixell	solid-s	stat Flash (I -	-	0	18	17	0	0	0	0	0	-	9	-	22	23	6	7	8	0	11	3	0	0	0	2	6,0
35 xenomatiX	xenoLidar-Xpert	solid-s	stat Flash (110F	1	24	0	0	0	20	19	15	14	-	9	10	22	23	0	U	8	0	11	3	5	12	4	2	8,8
34 XenomatiX	XenoLidar-Xact	solid-s	stat Flash (1ToF	1	0	0	0	0	20	19	15	14	-	9	10	22	23	0	0	8	0	11	3	5	12	4	2	7,7
35 KODOSENSE	KS-LIDAR-M1	hybric	MEMS -	1	24	18	1/	0	20	19	15	14	-	9	-	22	23	6	/	-	U	-	3	0	12	4	2	10,8
36 Neuvition	Titan M1-R	hybric	MEMS TOF	1	24	18	0	0	20	19	15	14	-	9	-	22	23	0	/	-	U	-	3	0	0	0	2	8,9
37 INEUVITION	111dfl 52-120	nypric D colid c		1	0	10	1/	10	20	19	15	14	-	9	-	22	23	0	/ 7	-	0	-	3	5	12	4	2	9,2
50 Samsung	SOULLL VIZION 33	solid-s		1	0	10	17	10	20	19	15	14	-	9	-	22	23	0	/ 7	-	21	-	3	5	12	4	2	10,9
29 FdI/0	rocus Premium 35	mecha	anii 10F	Ŧ	24	18	1/	TP	20	19	15	14	-	9	-	22	23	U	/	-	U	-	3	U	U	U	2	10,5

Comparison of th	ne properties o	f selected Li	DAR s	syste	ems	wit	h tl	he r	equ	irei	nent	s for	the	Sm	art	Cit	y se	cto	r									
		Requirement par	ameter	ដំ min. detection distance in m	3 max. detection distance in m	ä min. range resolution in m	្នី min. horiz. Field of View in °	ភី min. vert. Field of View in °	g min. hor. geom. resolution in m	👌 min. vert. geom. resolution in m	្ចុ min. horiz. angular resolution in ភ្លុ	ζ min. vert. angular resolution in \degree	🕇 data rate in points/s	🕇 min. frame rate in Hz	5 data point attributes	Z min. laser safety classification	🎖 min. wavelength in nm	» min. working temprature in °C	۵ max. working temprature in °C	• min. vibration resilience	2 min. ambient light resilience	min. resilience to atmospheric disturbances	ה max. price	 max. energy consumption 	۵ max. weight in kg	n max. volume	> production process	werage (only values)
Broducor	Broductoamo	Toch Cla Broc f	ignung	2.00	- 00	0.05	00	00	0.20	0.20	0.12	0.12	12	10	Rof	24	200	20	50 1		21 high	odiur	high	high	high	high	cingle	-
1 Luminar Tachnologias	Productname	mochanic2 Avon	ToF	12	22	10	17	90	0,50	10	15	14		11	10	24	22	-30		2		lealur	nign	nign 1	nign	nign	Singi	0.4
2 AEvo	ASIGHT M	hubrid MEME	TOF	15	22	10	1/	0	0	15	15	14		11	10	24	23	0	0	2	0	7	6	1	2	5	4	9,4
3 Aeva Technologier	Aeries I	solid-statmultin	EMCM	-	22	18	17	0	20	0	15	14	-	11	10	24	23	0	0	2	21	'	6	1	3	5	4	9.7
4 Aeva Technologies	Aeries II	solid-statmultip	FMCW	-	22	18	17	0	20	19	15	14		11	10	24		8	9	2	0	-	6	1	3	5	4	10.4
5 Innoviz Technologies	INNOVIZ360	hybrid MEMS	TOF	13	22	- 10	17	0	20	19	15	14	-	11	-	24	23	8	9	2	21	7	6	1	3	5	4	11.6
6 Innoviz	INNOVIZPRO	hybrid MEMS	ToF	0	22	18	0	0	0	0	0	0	-	11	-	24	23	0	0	2	21	7	6	1	3	5	4	6.7
7 Ouster	050	hybrid sequer	1-	13	0	18	17	16	20	19	15	14		11	-	24	23	8	9	2	21	7	6	1	3	5	4	11.6
8 Ouster	051	hybrid sequer	-	13	22	18	17	0	20	19	15	14		11		24	23	8	9	2	21	, 7	6	1	3	5	4	11.9
9 Ouster	052	hybrid sequer	-	13	22	18	17	0	20	19	15	14		11		24	23	0	9	2	21	7	6	1	3	5	4	11.5
10 Velodyne LiDAR Inc	Velarray M1600	solid-statmicro-	-	13	0	18	17	0	20	19	0	0		11		24	23	8	9	2	21	7	6	1	3	5	4	9.6
11 Velodyne LiDAR	Velarray H800	solid-stat micro-	-	13	22	18	17	0	0	0	0	0		11	-	24	23	8	9	2	21	7	6	1	3	5	4	8.8
12 Velodyne LiDAR Inc.	Puck VI P-16	mechanic 16 Lase	ToF		22	18	17	0	20	0	15	0		11	-	24	23	0	9	2	21	7	6	1	3	5	4	9,9
13 Velodyne LiDAR Inc.	Ultra Puck VLP-32C	mechani(32 Lase	ToF	13	22	18	17	0	0	0	15	0		11	-	24	23	0	9	2	0	7	6	1	3	5	4	8.2
14 Velodyn LiDAR	Puck LITE	mechanic 16 Lase	ToF		22	18	17	0	20	0	15	0		11	-	24	23	0	9	2	21	7	6	1	3	5	4	9.9
15 Velodyne LiDAR Inc.	HDL-32E	mechanic32 Lase	ToF		22	18	17	0	20	0	15	0	-	11	-	24	23	0	9	2	0	-	6	1	3	5	4	9.0
16 Velodyne	Alpha Prime	mechanic 128 Las	ToF	-	22	18	17	0	0	0	15	14	-	11	-	24	23	0	9	2	21	-	6	1	3	5	4	9,8
17 Quanergy Systems	\$3-2NSI-\$00	solid-stat optical	ToF	13	0	0	0	0	20	19	15	14	-	11	-	24	23	0	0	2	21	7	6	1	3	5	4	8,5
18 Quanergy Systems	S3-2NSO-S00	solid-stat optical	ToF	13	0	0	0	0	20	19	15	14	-	11	-	24	23	0	0	2	21	-	6	1	3	5	4	8,6
19 Quanergy Systems	S3-2WSO-S00	solid-stat optical	ToF	13	0	0	17	0	20	19	15	14	-	11	-	24	23	0	0	2	21	-	6	1	3	5	4	9,4
20 Quanergy Systems	M8-Core	mechanic-	ToF	13	22	18	17	0	20	19	15	14	-	11	10	24	23	0	9	2	21	7	6	1	3	5	4	11,5
21 Quanergy Systems	M8-Plus	mechanic-	ToF	13	22	18	17	0	20	19	15	14	-	11	10	24	23	0	9	2	21	7	6	1	3	5	4	11,5
22 Quanergy Systems	M8-Ultra	mechani(-	ToF	13	22	18	17	0	20	19	15	14	-	11	10	24	23	0	9	2	21	7	6	1	3	5	4	11,5
23 Quanergy Systems	M8-PoE	mechanic-	ToF	13	22	18	17	0	20	19	15	14	-	11	10	24	23	0	9	2	21	7	6	1	3	5	4	11,5
24 Blickfeld	Cube Range 1	hybrid MEMS	-	0	22	18	0	0	0	19	0	14	-	11	10	24	23	8	9	2	0	7	6	1	3	5	4	8,1
25 Blickfeld	Cube1	hybrid MEMS	-	13	22	18	0	0	0	0	0	14	-	11	10	24	23	8	9	2	0	7	6	1	3	5	4	7,8
26 Ibeo Automotive System	s IbeoNEXT	solid-stat VCSEL,	ToF	-	22	-	17	0	20	0	15	14	-	11	10	24	23	8	9	2	0	7	6	1	3	5	4	9,6
27 Ibeo Automotive System	s Ibeo LUX 4L	mechani(multi-l	ToF	-	0	18	17	0	20	0	0	0	-	11	-	24	23	8	9	2	0	-	6	1	3	5	4	7,6
28 Ibeo Automotive System	s Ibeo LUX	mechani(multi-l	ToF	-	0	18	17	0	20	0	0	0	-	11	-	24	23	8	9	2	0	-	6	1	3	5	4	7,6
29 Ibeo Automotive System	s Ibeo LUX	mechani(multi-l	ToF	-	0	18	17	0	20	0	0	0	-	11	-	24	23	8	9	2	0	-	6	1	3	5	4	7,6
30 Baraja	Spectrum HD	solid-stat Wavel	RMCW	13	22	18	17	0	20	19	15	14	-	11	10	24	-	8	9	2	21	-	6	1	3	5	4	11,5
31 Baraja	Spectrum Off-Road	solid-stat Wavel	RMCW	13	22	-	17	0	20	19	15	14	-	11	10	24	23	8	0	2	21	7	6	1	3	5	4	11,1
32 LeddarTech Inc.	Leddar Pixell	solid-stat Flash (-	-	0	18	17	0	0	0	0	0	-	11	-	24	23	8	9	2	0	7	6	1	3	5	4	6,6
33 XenomatiX	XenoLidar-Xpert	solid-stat Flash (ToF	13	22	0	0	0	0	0	0	0	-	11	10	24	23	0	0	2	0	7	6	1	3	5	4	5,7
34 XenomatiX	XenoLidar-Xact	solid-stat Flash (ToF	13	0	0	0	0	20	19	0	0	-	11	10	24	23	0	0	2	0	7	6	1	3	5	4	6,4
35 Robosense	RS-LIDAR-M1	hybrid MEMS	-	13	22	18	17	0	0	0	0	0	-	11	-	24	23	8	9	2	0	-	6	1	3	5	4	7,9
36 Neuvition	Titan M1-R	hybrid MEMS	ToF	13	22	18	0	0	20	19	15	14	-	11	-	24	23	0	9	2	0	-	6	1	3	5	4	10,0
37 Neuvition	Titan S2-120	hybrid MEMS	ToF	13	0	18	17	16	20	19	0	0	-	11	-	24	23	8	9	2	0	-	6	1	3	5	4	9,5
38 Samsung	ISOCELL Vizion 33D	solid-stat Flash (ToF	13	0	18	0	0	20	19	15	0	-	11	-	24	23	8	9	2	21	-	6	1	3	5	4	9,6
39 Faro	Focus Premium 350	mechani(-	ToF	13	22	18	17	16	20	19	15	14	-	11	-	24	23	0	9	2	0	-	6	1	3	5	4	11,5

Table 10: Comparison of the specific requirements of an exemplary application in the application area "smart city" with the characteristics of concrete LiDAR systems and the evaluation as the mean value of the weighted points.

Table 11: Comparison of the specific requirements of an exemplary application in the field of robotics with the p	roperties of
concrete LiDAR systems and the evaluation as the mean value of the weighted points.	

Comparison of	the propertion	es of s	elected Li	DA	R sy	/ste	ms	wi	th t	he	requ	irer	nen	ts i	for	th	e fie	ld	of	rol	oot	ics.						
																						pheric						
																sific					silie							
							Ş	ž																				_
																	£				ligh	9						les
										geo		ang				safi		ing	ting									valt
						nge																silie and						È
																						a ti						9 8
		Requirem	ent parameter																			dist					br	rag
			ative weighting													24												Ave
Producer	Productname	Technolo	Proc. fcMeasu	0,01	200	0,05	360	45	0,20	0,20	0,06	0,06		10	Ges	1	800	-30	50 I	high	high	highn	ediur	low	low	low	Serie	
1 Luminar Technologies	Hvdra	mechani	2-Axen ToF	0	20	18	0	0	0	0	0	13		10	0	24	23	0	0	12	0	0	-	0	0	0	1	4.
2 AEye	4SIGHT M	hybrid	MEMS TOF	-	20	18	0	0	0	0	0	0	-	10	-	24	23	8	9	12	0	11	5	0	0	0	1	5
3 Aeva Technologies	Aeries I	solid-sta	t multipl FMCW	-	20	18	0	0	19	0	15	0	-	10	2	24	0	0	0	12	17	0	5	-	0	0	1	6
4 Aeva Technologies	Aeries II	solid-sta	t multipl FMCW	-	20	18	0	0	0	0	15	13	-	10	2	24	0	8	9	12	0	0	5	-	0	0	1	5,
5 Innoviz Technologies	INNOVIZ360	hybrid	MEMS ToF	0	20	-	22	14	0	0	15	13	-	10	-	24	23	8	9	0	17	11	5	0	3	4	1	8,
6 Innoviz Technologies	INNOVIZPRO	hybrid	MEMS ToF	0	0	18	0	0	0	0	0	0	-	10	-	24	23	0	9	12	17	11	5	0	0	4	1	5,
7 Ouster	OS0	hybrid	sequen-	0	0	18	22	14	19	16	15	13	-	10	-	24	23	8	9	12	17	11	0	0	3	4	0	9,
8 Ouster	OS1	hybrid	sequen-	0	0	18	22	14	19	16	15	13	-	10	-	24	23	8	9	12	17	11	0	0	3	4	0	9,
9 Ouster	OS2	hybrid	sequen-	0	20	18	22	0	19	16	15	13	-	10	-	24	23	0	9	12	17	11	-	0	0	0	0	9,
10 Velodyne LiDAR Inc.	Velarray M1600	solid-sta	t micro-l -	0	0	18	0	0	19	16	0	0	-	10	-	24	23	8	9	12	17	11	5	0	0	4	1	7,
11 Velodyne LiDAR	Velarray H800	solid-sta	t micro-l -	0	20	18	0	0	0	0	0	0	-	10	-	24	23	8	9	12	17	11	5	6	0	4	1	6,
12 Velodyne LiDAR Inc.	Puck VLP-16	mechani	16 Lase ToF	-	0	18	22	0	19	0	0	0	-	10	-	24	23	0	9	12	17	11	5	6	3	4	0	7,
13 Velodyne LiDAR Inc.	Ultra Puck VLP-32C	mechani	32 Lase ToF	0	20	18	22	0	0	0	0	0	-	10	-	24	23	0	9	0	0	11	0	6	0	4	1	5,
14 Velodyn LiDAR	Puck LITE	mechani	(16 Lase ToF	-	0	18	22	0	19	0	0	0	-	10	-	24	23	0	9	12	17	11	-	6	3	4	0	7,
15 Velodyne LiDAR Inc.	HDL-32E	mechani	32 Lase ToF	-	0	18	22	0	19	0	0	0	-	10	-	24	23	0	9	0	0	0	-	6	0	0	0	5,
16 Velodyne	Alpha Prime	mechani	128 Las TOF	-	20	18	22	0	0	0	0	0	-	10	-	24	23	0	9	0	17	0	U	0	0	0	1	6,
17 Quanergy Systems	53-2NSI-500	solid-sta	toptical ToF	0	0	0	0	0	19	16	0	0	-	10	-	24	23	0	9	12	17	11	-	6	3	4	1	ь, с
18 Quanergy Systems	53-2NSU-SUU	solid-sta	toptical ToF	0	0	0	0	0	19	16	0	0	-	10	-	24	23	0	9	12	17	0	-	6	3	4	1	ь, с
20 Quanergy Systems	33-2W30-300	mochani		0	0	10	22	0	10	10	15	12		10	0	24	23	0	9	12	17	11	•	0	2	4	1	, ,
21 Quanergy Systems	M8-Plus	mechani		0	0	18	22	0	10	16	15	13		10	0	24	23	0	9	12	17	11	5	0	3	0	0	, ,
22 Quanergy Systems	M8-Ultra	mechani	- TOF	0	20	18	22	0	19	16	15	13		10	0	24	23	0	9	12	17	11	0	0	3	0	0	8
23 Quanergy Systems	M8-PoF	mechani	- ToF	0	0	18	22	0	19	16	15	13		10	0	24	23	0	9	12	17	11	5	0	0	0	0	8
24 Blickfeld	Cube Range 1	hybrid	MEMS -	0	20	18	0	0	0	0	0	13		10	0	24	23	8	9	0	0	11	-	6	3	4	0	6.
25 Blickfeld	Cube1	hybrid	MEMS -	0	20	18	0	0	0	0	0	0	-	10	0	24	23	8	9	0	0	11	0	6	3	4	0	5,
26 Ibeo Automotive Systems	IbeoNEXT	solid-sta	VCSEL, ToF	-	20	-	0	14	19	0	15	0	-	10	0	24	23	8	9	12	0	11	5	6	3	0	1	7,
27 Ibeo Automotive System:	s Ibeo LUX 4L	mechani	multi-la ToF	-	0	18	0	0	0	0	0	0	-	10	-	24	23	8	9	0	0	0	0	6	0	0	0	4,
28 Ibeo Automotive System	s Ibeo LUX	mechani	multi-la ToF	-	0	18	0	0	0	0	0	0	-	10	-	24	23	8	9	0	0	0	0	6	0	0	0	4,
29 Ibeo Automotive System	s Ibeo LUX	mechani	multi-la ToF	-	0	18	0	0	19	0	0	0	-	10	-	24	23	8	9	0	0	0	0	6	0	0	0	4,
30 Baraja	Spectrum HD	solid-sta	t Wavele RMCW	21	20	18	0	0	19	16	15	13	-	10	2	24	0	8	9	12	17	0	5	0	-	4	1	8,
31 Baraja	Spectrum Off-Road	solid-sta	t Wavele RMCW	21	20	-	0	0	0	16	15	13	-	10	2	24	23	8	9	12	17	11	5	6	0	0	1	8,
32 LeddarTech Inc.	Leddar Pixell	solid-sta	t Flash (í -	-	0	18	0	0	0	0	0	0	-	10	-	24	23	8	9	12	0	11	5	0	0	0	0	5,
33 XenomatiX	XenoLidar-Xpert	solid-sta	tFlash (1ToF	0	0	0	0	0	0	0	0	0	-	10	0	24	23	0	0	12	0	11	0	6	3	4	1	3,
34 XenomatiX	XenoLidar-Xact	solid-sta	tFlash (1ToF	0	0	0	0	0	0	0	0	0	-	10	0	24	23	0	9	12	0	11	0	6	3	4	1	4,
35 Robosense	RS-LIDAR-M1	hybrid	MEMS -	0	20	18	0	0	0	0	0	0	-	10	-	24	23	8	9	0	0	0	0	0	3	4	1	4,
36 Neuvition	Titan M1-R	nybrid	MEMS TOF	0	20	18	0	0	19	16	15	13	-	10	-	24	23	0	9	0	0	0	0	0	0	0	0	6,
37 Neuvition	Litan S2-120	nybrid	NIEMS IOF	0	0	18	0	14	19	16	0	0	-	10	-	24	23	8	9	0	0	0	0	6	3	4	0	6,
20 Fare	FORUS PROMIUM 33D	solia-sta	Top	0	20	10	22	14	19	16	15	12	-	10	-	24	23	8	9	0	1/	0	5	6	5	4	0	1,
35 1410	rocus Premium 350	mechani	- 105	U	20	10	22	14	19	10	12	13	-	10	-	24	23	U	э	U	U	U	U	U	U	U	U	٥,

 Table 12: Comparison of the specific requirements in the application area "intelligent motor vehicles" with the properties of concrete LiDAR systems and the evaluation as the mean value of the weighted points.

Comparison of the properties of selected LIDAR systems with the requirements for Smart Automotive.																											
		Requirem	ent parameter	min. detection distance in m	max. detection distance in m	min. range resolution in m	min. horiz. Field of View in °	min. vert. Field of View in °	min. hor. geom. resolution in m	min. vert. geom. resolution in m	min. horiz. angular resolution in 。	min. vert. angular resolution in $^{\circ}$	data rate in points/s	min. frame rate in Hz	data point attributes	min. laser sarety classification	min. wavelengtn in nm	max. working temprature in °C	min. vibration resilience	min. ambient light resilience	min. resilience to atmospheric disturbances	max. price	max. energy consumotion	max. weight in kg	max. volume	production process	rerage (only values)
		rela	tive weighting	20	22	19	17	4	21	16	14	13	6	10	5 3	24 2	3	2 9	12	18	11	15	3	1	7	8	Æ
Producer	Productname	Technolo	Proc. fcMeasu	0,20	200	0,10	120	30	1,00	1,00	0,45	0,45		10	Ges	1 8	00 -2	5 50	edi	Jediu	ediu	nediu	low	high	high	single	
1 Luminar Technologies	Hydra	mechani	2-Axen ToF	0	22	19	17	4	21	16	14	13	-	10	0	24 2	3 (0 0	12	-	-	-	0	1	7	8	9,2
2 AEye	4SIGHT M	hybrid	MEMS ToF	-	22	19	0	4	0	0	14	13	-	10		4 2	3	2 9	12	-	11	15	0	1	7	8	8,4
3 Aeva Technologies	Aeries I	solid-stat	multipl FMCW	-	22	19	1/	4	21	16	14	13		10	5 2	4	- 1	0	12	18	-	15	-	1	/	8	10,3
4 Aeva Technologies	Aeries II	solid-stat	multipl FMCW	-	22	19	1/	4	21	16	14	13		10	5	4		2 9	12	-	-	15	-	1	/	8	10,4
5 Innoviz Technologies	INNOVIZ360	nybrid	MEMS TOP	0	22	-	1/	4	21	16	14	13		10		4 4	3.	2 9	-	18	11	15	0	1	/	8	10,2
6 Innoviz Technologies	INNOVIZPRO	nybrid	MEMS TOP	0	0	19	17	0	21	16	14	13		10		4 4	3 1	9	12	18	11	15	0	1	7	8	8,8
7 Ouster	050	hybrid	sequen-	0	0	19	17	4	21	10	14	13		10		4 4		. 9	12	10	11	0	0	1	7	0	9,2
8 Ouster	051	hybrid	sequen-	0	22	19	17	4	21	10	14	13		10		4 4		. 9	12	10	11	U	0	1	7	0	9,2
10 Valadura LiDAD Iaa	Valana M1000	inyonu aalid atat	sequen-	20	22	19	17	0	21	10	14	13	-	10		4 4	3 1	, 9	12	10	11	- 15	0	1	7	0	10,2
11 Volodyno LiDAR	Velarray H800	solid stat	micro-I-	20	22	10	17	4	21	16	14	12		10		4 4			12	10	11	15	2	1	7	0	10,0
12 Velodyne LiDAR	Puck VID 16	mochani	16 Lars ToF	20	0	10	17	4	21	10	14	15		10		4 4			12	10	11	15	2	1	7	0	11,4
12 Velodyne LiDAR Inc.	Hiltra Buck VI D 22C	mochani	22 Lass ToF	20	22	10	17	4	21	0	14	12		10		4 4		, ,	12	10	11	15	2	1	7	0	5,0
14 Velodyn LiDAR	Duck LITE	mechani	16 Lase ToP	20	0	10	17	4	21	0	14	15		10		4 2	2 1) 9) 0	12	18	11	0	3	1	7	0	5,0
15 Velodyne LiDAR Inc	HDI-32E	mechani	32 Lase ToF	-	0	10	17	4	21	0	14	0	-	10		4 2	3 1	, ,	12	10	-		3	1	7	8	8.0
16 Velodyne	Alnha Prime	mechani	128 Jas ToF	-	22	19	17	4	21	16	14	13		10		4 3	3 1	, ,		18		0	0	1	7	8	10.3
17 Quanergy Systems	53-2NSI-500	solid-stat	ontical ToF	0	0	0	0	0	21	16	14	13		10		4 3	3 (1 9	12	18	11	-	3	1	7	8	7.9
18 Quanergy Systems	53-2NSO-500	solid-stat	optical ToF	0	0	0	0	0	21	16	14	13		10	- 1	4 2	3 () 9	12	18			3	1	7	8	7.8
19 Quanergy Systems	53-2WSO-500	solid-stat	optical ToF	0	0	0	0	0	21	16	14	13		10	- 3	4 2	3 () 9	12	18			3	1	7	8	7.8
20 Quanergy Systems	M8-Core	mechani	- ToF	0	0	19	17	0	21	16	14	13		10	0	4	3 () 9	12	18	11	-	0	1	7	8	8.9
21 Quanergy Systems	M8-Plus	mechani	- ToF	0	0	19	17	0	21	16	14	13		10	0	4 2	3 () 9	12	18	11	15	0	1	7	8	9.2
22 Quanergy Systems	M8-Ultra	mechani	- ToF	0	22	19	17	0	21	16	14	13		10	0 3	4 2	3 () 9	12	18	11	0	0	1	7	8	9,4
23 Quanergy Systems	M8-PoE	mechani	- ToF	0	0	19	17	0	21	16	14	13		10	0	4 2	3 () 9	12	18	11	15	0	1	7	8	9.2
24 Blickfeld	Cube Range 1	hvbrid	MEMS -	0	22	19	0	0	0	16	14	13	-	10	0	4 2	3	2 9	-	-	11	-	3	1	7	8	7.9
25 Blickfeld	Cube1	hybrid	MEMS -	0	22	19	0	4	0	16	14	13	-	10	0	4 2	3	2 9	-	-	11	0	3	1	7	8	7,8
26 Ibeo Automotive Systems	IbeoNEXT	solid-stat	VCSEL, ToF	-	22	-	17	4	21	16	14	13	-	10	0	4 2	3	2 9	12	-	11	15	3	1	7	8	10,1
27 Ibeo Automotive Systems	i lbeo LUX 4L	mechani	multi-laToF	-	0	19	0	0	21	16	14	0	-	10	- 1	4 2	3	2 9	-	-	-	0	3	1	7	8	7,5
28 Ibeo Automotive Systems	i lbeo LUX	mechani	multi-laToF	-	0	19	0	0	21	16	14	0	-	10	- 1	4 2	3	2 9	-	-	-	0	3	1	7	8	7,5
29 Ibeo Automotive Systems	Ibeo LUX	mechani	multi-laToF	-	0	19	0	0	21	16	14	0	-	10	- 1	4 2	3	2 9	-	-	-	0	3	1	7	8	7,5
30 Baraja	Spectrum HD	solid-stat	Wavele RMCW	20	22	19	17	0	21	16	14	13	-	10	5 3	4	- 1	2 9	12	18	-	15	0	1	7	8	10,5
31 Baraja	Spectrum Off-Road	solid-stat	Wavele RMCW	20	22	-	17	4	21	16	14	13	-	10	5 3	4 2	3	2 9	12	18	11	15	3	1	7	8	11,0
32 LeddarTech Inc.	Leddar Pixell	solid-stat	Flash (F-	-	0	19	17	0	0	0	0	0	-	10	- 2	4 2	3	2 9	12	-	11	15	0	1	7	8	6,9
33 XenomatiX	XenoLidar-Xpert	solid-sta	Flash (: ToF	20	0	0	0	0	21	16	14	13	-	10	0	4 2	3 () ()	12	-	11	0	3	1	7	8	7,3
34 XenomatiX	XenoLidar-Xact	solid-stat	Flash (: ToF	20	0	0	0	0	21	16	14	13	-	10	0	4 2	3 () 9	12	-	11	0	3	1	7	8	7,7
35 Robosense	RS-LiDAR-M1	hybrid	MEMS -	0	22	19	17	0	21	16	14	13	-	10	- 2	4 2	3	2 9	-	-	-	0	0	1	7	8	9,4
36 Neuvition	Titan M1-R	hybrid	MEMS ToF	0	22	19	0	0	21	16	14	13	-	10	- 2	4 2	3 () 9	-	-	-	0	0	1	7	8	8,5
37 Neuvition	Titan S2-120	hybrid	MEMS ToF	0	0	19	17	4	21	16	0	0	-	10	- 3	4 2	3	2 9	-	-	-	0	3	1	7	8	7,5
38 Samsung	ISUCELL Vizion 33D	solid-stat	Hash (VIOF	20	0	19	0	4	21	16	14	13	-	10	- 3	4 2	3	2 9	-	18	-	15	3	1	7	8	9,9
39 Faro	Focus Premium 350	mechani	- ToF	0	22	19	17	4	21	16	14	13	-	10	- 12	4 2	3 1) 9	1 -		-	0	0	1	7	8	9,5

 Table 13: Comparison of the specific requirements of a portable application in the application area "consumer goods" with the characteristics of concrete LiDAR systems and the evaluation as the mean value of the weightings.

Comparison of the properties of selected LIDAR systems with the requirements for the consumer goods sector.																											
	e properties o		DANS	in. detection distance in m	ax. detection distance in m	in. range resolution in m	in. horiz. Field of View in °	in. vert. Field of View in °	in. hor. geom. resolution in m	in. vert. geom. resolution in m	in. horiz. angular resolution in	in. vert. angular resolution in °	ata rate in points/s	in. frame rate in Hz	in brown for the form	in. wavelength in nm	in. working temprature in °C	ax. working temprature in °C	in. vibration resilience	in. ambient light resilience	in. resilience to atmospheric sturbances	ax. price	ax. energy consumotion	ax. weight in kg	ax. volume	oduction process	age (only values)
		Requirement par	ameter	ε	Ê	ε	ε	Έ	Ε	ε	Έ.	Ε	da	ε	-b	Ε.	Ε	Ê	ε	Ε	εë	Ê	Ê	Ê	Ê	p	vera
D	0.1.1	relative we	eighting	16	6	17	12	13	14	15	11	10	5	9	12	1 22	3	4	8	7	2	20	19	21	23	18	4
Producer	Productname	Technolo Proc. T	civieasu	0,30	10	17	45	45	0,05	0,05	0,3	0,3		10	Ket 1	800	-25	45	eaiu	eaiui	low	IOW	low	low	low	Serie	
2 AFivo		hubrid MEME	ToF	U	6	1/	12	0	0	0	11	10	-	9	1 2	+ 22	2	4	0	-	2	- 20	0	0	0	10	5,6
2 Acya Tachnologias	Aprior I	colid stat multin	TOP	-	6	17	12	0	0	0	11	10	-	9	- 2	+ 22	3	4	0	- 7	2	20	U	0	0	10	0,5 6 /
4 Agua Tachnologies	Aeries I	solid-statmultip	ENACIA		6	17	12	0	0	0	11	10		9	0 2		2	4	0	'	2	20	-	0	0	10	6,4
5 Innoviz Technologies	INNOVI7360	bybrid MEMS	TOF	16	6	1/	12	12	0	0	11	10		9	- 2	• • 1 77	3	4	•	7	2	20	0	21	23	10	9,5
6 Innovia Tachnologies	INNOVIZBRO	hybrid MEMS	ToF	0	6	0	12	0	0	0	11	10	-	0	- 2	1 22	0	4	0	7	2	0	0	0	2.5	10	5,7
7 Ouster		hybrid seque	TOP	16	6	0	12	12	14	15	11	10		9	- 2	+ 22	3	4	0	7	2	0	0	21	23	10	5,6
8 Ouster	050	hybrid seque		16	6	0	12	13	14	15	11	10	-	0	- 2	1 22	3	4	8	7	2	0	0	21	23	0	0,0
9 Ouster	052	hybrid seque		0	6	0	12	0	14	15	11	10		0	- 2	1 22	0	4	8	7	2		0	0	0	0	6.0
10 Velodyne LiDAR Inc	Velarray M1600	solid-stat micro-		16	6	0	12	0	0	0	11	10		0	. 2	1 22	3	4	8	7	2	0	0	0	23	18	7.0
11 Velodyne LiDAR	Velarray H800	solid-stat micro-		16	6	0	12	0	0	0	11	10		9	- 2	1 22	3	4	8	7	2	20	19	0	23	18	8.6
12 Velodyne LiDAR Inc	Puck VI P-16	mechanii 16 Lasi	TOF		6	0	12	0	0	0	11	0		9	- 2	1 22	0	4	8	7	2	0	19	21	23	0	7.0
13 Velodyne LiDAR Inc.	Ultra Puck VI P-32C	mechanic 32 Las	TOF	16	6	0	12	0	0	0	11	0		9	- 2	1 22	0	4	-	-	2	0	19	0	23	18	7.2
14 Velodyn LiDAR	Puck LITE	mechani(16 Las	TOF		6	0	12	0	0	0	11	0		9	- 2	1 22	0	4	8	7	2		19	21	23	0	73
15 Velodyne LiDAR Inc.	HDI-32F	mechanic 32 Las	TOF		6	17	12	0	0	0	11	0		9	- 2	1 22	0	4	-	-	2		19	0	0	0	6.0
16 Velodyne	Alpha Prime	mechanii 128 La	ToF		6	0	12	0	0	0	11	10		9	- 2	1 22	0	4	-	7	2	0	0	0	0	18	5.4
17 Quanergy Systems	\$3-2NSI-\$00	solid-stat optical	ToF	0	6	0	12	0	14	15	11	10		9	- 2	1 22	0	4	8	7	2	-	19	21	23	18	9.4
18 Quanergy Systems	S3-2NSO-S00	solid-stat optical	ToF	0	6	0	12	0	14	15	11	10	-	9	- 2	1 22	0	4	8	7	2	-	19	21	23	18	9,4
19 Quanergy Systems	\$3-2W\$O-\$00	solid-stat optical	ToF	16	0	0	12	0	14	15	11	10		9	- 2	1 22	0	4	8	7	2	-	19	21	23	18	9.8
20 Quanergy Systems	M8-Core	mechani(-	ToF	0	6	0	12	0	0	0	11	10	-	9	1 2	1 22	0	4	8	7	2	-	0	21	0	0	5,5
21 Quanergy Systems	M8-Plus	mechani(-	ToF	0	6	0	12	0	0	0	11	10	-	9	1 2	1 22	0	4	8	7	2	0	0	21	0	0	5,3
22 Quanergy Systems	M8-Ultra	mechani(-	ToF	0	6	0	12	0	0	0	11	10	-	9	1 2	1 22	0	4	8	7	2	0	0	21	0	0	5,3
23 Quanergy Systems	M8-PoE	mechani(-	ToF	0	6	0	12	0	0	0	11	10		9	1 2	1 22	0	4	8	7	2	0	0	0	0	0	4,5
24 Blickfeld	Cube Range 1	hybrid MEMS	-	0	6	17	0	0	0	0	11	10	-	9	1 2	1 22	3	4	-	-	2	-	19	21	23	0	7,5
25 Blickfeld	Cube1	hybrid MEMS	-	0	6	17	12	0	0	0	0	10	-	9	1 2	1 22	3	4	-	-	2	0	19	21	23	0	7,2
26 Ibeo Automotive Systems	IbeoNEXT	solid-stat VCSEL,	ToF	-	6	-	12	13	0	0	11	10	-	9	1 2	1 22	3	4	8	-	2	0	19	21	0	18	8,0
27 Ibeo Automotive Systems	Ibeo LUX 4L	mechani(multi-l	ToF	-	6	0	12	0	0	0	11	0	-	9	- 2	1 22	3	4	-	-	2	0	19	0	0	0	5,1
28 Ibeo Automotive Systems	Ibeo LUX	mechani(multi-l	ToF	-	6	0	12	0	0	0	11	0	-	9	- 2	1 22	3	4	-	-	2	0	19	0	0	0	5,1
29 Ibeo Automotive Systems	Ibeo LUX	mechani(multi-l	ToF	-	6	0	12	0	0	0	11	0	-	9	- 2	1 22	3	4	-	-	2	0	19	0	0	0	5,1
30 Baraja	Spectrum HD	solid-stat Wavel	RMCW	16	6	0	12	0	0	0	11	10	-	9	0 2	1 -	3	4	8	7	2	0	0	-	23	18	6,4
31 Baraja	Spectrum Off-Road	solid-stat Wavel	RMCW	16	6	-	12	0	0	0	11	10	-	9	0 2	1 22	3	4	8	7	2	0	19	0	0	18	6,8
32 LeddarTech Inc.	Leddar Pixell	solid-stat Flash (F -	-	6	0	12	0	0	0	0	0		9	- 2	1 22	3	4	8	-	2	0	0	0	0	0	3,9
33 XenomatiX	XenoLidar-Xpert	solid-stat Flash (ToF	16	6	0	0	0	0	0	11	10	-	9	1 2	1 22	0	0	8	-	2	0	19	21	23	18	7,6
34 XenomatiX	XenoLidar-Xact	solid-stat Flash (ToF	16	6	0	12	0	0	0	11	10	-	9	1 2	1 22	0	4	8	-	2	0	19	21	23	18	8,2
35 Robosense	RS-LIDAR-M1	hybrid MEMS	-	0	6	0	12	0	0	0	11	10	-	9	- 2	1 22	3	4	-	-	2	0	0	21	23	18	7,2
36 Neuvition	Titan M1-R	hybrid MEMS	ToF	0	6	17	0	0	0	0	11	10	-	9	- 2	1 22	0	4	-	-	2	0	0	0	0	0	4,6
37 Neuvition	Titan S2-120	hybrid MEMS	ToF	16	6	17	12	13	0	0	0	0		9	- 2	1 22	3	4	-	-	2	0	19	21	23	0	8,3
38 Samsung	ISOCELL Vizion 33D	solid-stat Flash (ToF	16	0	0	12	13	14	15	11	10	-	9	- 2	1 22	3	4	-	7	2	20	19	21	23	0	10,2
39 Faro	Focus Premium 350	mechanic-	TOF	0	6	17	12	12	0	0	11	10	-	0	- 2	1 22	0	1			2	0		0	0		57