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Abstract
Time-series prediction problems have been effectively solved

by deep neural networks lately given their ability to understand
temporal characteristics found in time series. In this study, a deep
learning-based flood occurrence prediction method, LSTM-PCA
is presented for the successful interpretation of weather events
and meteorological data with higher accuracy. The proposed
model is evaluated on the United States National Climate Data
Center (NCDC) dataset, and NCDC storm events. Correlation
analysis was performed on the meteorological and weather phe-
nomenal data for choosing the appropriate parameters. The ex-
perimental results show that the model achieved 96.49% accuracy
while predicting floods in the United States from the year 2013 to
2019.

Introduction
Flooding is one of the most destructive natural disasters in

the world, causing significant damage to infrastructure, homes,
and lives. Early warning and prediction of floods are essential
for reducing their impact [1]. various data sources, including me-
teorological, hydrological, and topographical data. Meteorolog-
ical data includes information on precipitation, temperature, and
wind, while hydrological data includes information on river flow,
water levels, and soil moisture. Topographical data includes in-
formation on the terrain and land use, such as elevation and land
cover. In addition to these data sources, other information that can
be useful for flood prediction includes historical flood data, land
use and land cover maps, and data from remote sensing devices
such as radar and satellites [2]. However, due to the changing na-
ture of climatic conditions, it is essentially difficult to estimate the
time and location of floods. As a result, the main flood prediction
models used today are primarily data-specific and rely on a num-
ber of simplified assumptions [3]. In recent years, machine learn-
ing and deep learning has emerged as a powerful tool for making
predictions in various fields, including weather forecasting and
hydrological modeling [4]. Deep learning models, such as convo-
lutional neural networks (CNNs) and recurrent neural networks
(RNNs) are commonly used to analyze this data and make predic-
tions. These models can be trained on large amounts of historical
data to learn patterns and make predictions [5]. The combination
of various data sources and deep learning models can provide an
accurate and robust approach for flood prediction, enabling early
warning and mitigation of flood impacts. Furthermore, because
of the accessibility of vast amounts of meteorological data and
the computational effectiveness of deep learning techniques, it
may be used to predict floods and provide outcomes compara-
ble to those of conventional models. Deep learning models are
a good substitute for sophisticated physical models in the flood
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prediction process because they do not require a complete grasp
of the physical system that explains the atmosphere surrounding
the globe [6]. For training and testing proposed deep neural net-
works we have used a standard large set of realtime open source
data which is available from United Sates National Climate Data
Center (NCDC) and National Oceanic and Atmospheric Admin-
istration (NOAA).

The specific contributions of this work are as follows:

1. First, correlation analysis was performed as part of ex-
ploratory data analysis on the meteorological and weather
phenomenal data for choosing the appropriate parameters.

2. Second, a deep learning-based flood occurrence prediction
method called LSTM-PCA is presented for the successful
interpretation of weather events and meteorological data
with higher accuracy.

3. Finally, a comparative performance evaluation of LSTM-
PCA model was performed with the United States National
Climate Data Center (NCDC) dataset, NCDC storm events
with SVM (machine learning) and LSTM methods.

The remainder of this paper is organized as follows. Section
II presents experimental setup for dataset details and data prepro-
cessing techniques. Section III discusses the proposed methods
SVM and LSTM with PCA. In Section IV, results are discussed.
Conclusion and future work are present in section V.

Related Work
There has been a significant amount of research in the field

of using deep learning for flood prediction. Some previous works
have used various types of neural networks, such as recurrent
neural networks (RNNs) [7] and convolutional neural networks
(CNNs) [8], to analyze historical flood data and make predic-
tions about future floods. These studies have been able to achieve
high levels of accuracy in their predictions, and have also been
able to identify important factors that contribute to flood risk.
Other works have used deep learning to process satellite imagery
to detect and predict floods. Some works have also used deep
learning to predict floods by analyzing social media data to de-
tect early warning signs of floods [9]. In terms of improved
deep learning-based models, [10] proposed an improved long-
term short-term memory neural network LSTM flood forecast-
ing model, for stream-flow prediction implemented a deep learn-
ing model for small watershed stream flow forecasting based on
LSTM. The dataset considers past stream-flow data, past weather
data, weather forecast data of the hydrological stations.

The work in [11] presented one machine learning model to
predict floods and send that alert by email. They have combined
three different datasets together by using GeoPandas, GeoJSON
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with the help of longitude, latitude and time. These datasets
are from United Sates NCDC and NOAA. The datasets used in
their research were named NCDC Storm events dataset, NOAA
Daily summaries dataset and NOAA precipitation Reconstruction
dataset. In the NCDC storm dataset a field named event type,
which is type of event such as Flood, Flash Flood, Hail, Thun-
derstorm wind, Heavy Rain etc., Out of these events Flood and
Flash Flood considered as Flood which is labeled as 1 and all
others considered as no flood which is labeled as 0. They feed
this dataset to Random forest machine learning algorithm. They
achieved 80% of accuracy, 85% of precision, 80% of recall and
82% of F1 score.

Dataset details and Preprocessing
The National Centers for Environmental Information (NCEI)

is a division of the National Oceanic and Atmospheric Admin-
istration (NOAA) that maintains and provides access to a wide
range of climate-related data sets, including historical weather
and climate observations, as well as climate model output and
projections. The NCEI’s Climate Data Online (CDO) portal pro-
vides access to such data sets, which can be used for a variety
of research and application purposes, including climate predic-
tion.The NCEI maintains a large archive of climate-related data
that can be used to train and evaluate deep learning models for cli-
mate prediction. Some relevant examples of data sets include His-
torical weather observations, such as temperature, precipitation,
and wind data, which can be used to train models to make local
and regional weather forecasts. Climate reanalysis data, which
combines historical observations with numerical models to pro-
vide a consistent, high-resolution view of the climate system over
the past several decades. Climate model output, such as from the
Coupled Model Intercomparison Project (CMIP), which can be
used to train models to make global and regional climate projec-
tions. To access the NCEI’s climate data, we used the Climate
Data Online (CDO) portal to search and download data. The data
can be programmatically accessed using the NCEI’s Application
Programming Interface (API).

Exploratory data analysis is a crucial step before utilizing
large datasets for model training. The Dataset named NCDC
storm events dataset is from United States Climate Data Center,
NCDC. As a part of data cleaning, we removed missing and cor-
rupted data, as well as checking for and resolving inconsistencies
or errors in the data. For Data normalization, we scaled the data so
that it has a mean of zero and a standard deviation of one, which
can help to stabilize the training process for deep learning models
and as a part of Data augmentation we created new data samples
by applying various transformations to the existing data, such as
rotating or shifting the data, which can help to increase the size
and diversity of the training data set.

The dataset used in this work is a time series dataset
from January 1950 to August 2019 providing critical in-
formation for flood observation. We have total of over 1
million samples in this dataset. We took 779,588 samples
for training data which covers from 1950 January to 2012
December and 268,701 samples for testing data which cov-
ers 2013 January to 2019 August. Some of the features
of the dataset are as follows: [”BEGIN YEARMONTH”,
”BEGIN DAY”, ”BEGIN TIME”, ”END YEARMONTH”,
”END DAY”, ”END TIME”, ”EPISODE ID”,

Figure 1: Correlation coefficient matrix of Feature Vectors

”EVENT ID”, ”STATE”, ”STATE FIPS”, ”YEAR”,
”MONTH NAME”, ”CZ TYPE”, ”CZ FIPS”, ”CZ NAME”,
”WFO”, ”BEGIN DATE TIME”, ”CZ TIMEZONE”,
”END DATE TIME”, ”INJURIES DIRECT”,
”INJURIES INDIRECT”, ”DEATHS DIRECT”,
”DEATHS INDIRECT”, ”DAMAGE PROPERTY”, ”DAM-
AGE CROPS”, ”SOURCE”, ”MAGNITUDE”, ”MAG-
NITUDE TYPE”, ”FLOOD CAUSE”, ”CATEGORY”,
”TOR F SCALE”, ”TOR LENGTH”, ”TOR WIDTH”,
”TOR OTHER WFO”,”TOR OTHER CZ STATE”,
”TOR OTHER CZ FIPS”, ”TOR OTHER CZ NAME”, ”BE-
GIN RANGE”, ”BEGIN AZIMUTH”, ”BEGIN LOCATION”,
”END RANGE”, ”END AZIMUTH”, ”END LOCATION”,
”BEGIN LAT”, ”BEGIN LON”, ”END LAT”, ”END LON”,
”EPISODE NARRATIVE”, ”EVENT NARRATIVE”,
”DATA SOURCE”]. After Data preprocessing and exploratory
analysis, we identified 50 feature vectors to the proposed LSTM
model. The proposed feature vectors are determined after finding
the correlations between each set of feature vectors as shown in
the fig. 1.

Methods
This paper investigates popular weather (time series-based)

forecasting machine learning methods such as SVM, PCA and
deep learning methods such as LSTM, for flood occurrence pre-
diction. This work formulates the flood occurrence prediction as
a classification problem.

Support Vector Machine (SVM)

Flood forecasting models have been achieving good results
with Support vector machine (SVM) [12]. Typical architecture
of SVM is shown in fig. 2. In this work, we chose radial ba-
sis function (RBF) kernel, and with grid search, we selected the
parameters as listed in table 1.

367-2
IS&T International Symposium on Electronic Imaging 2023

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2023



Figure 2: SVM model architecture

Long-short Term Memory-based Methods
Long Short-Term Memory network (LSTM) are a type of

recurrent networks (RNN), that can store information over long
periods of time in the dedicated memory cells. LSTM does not
experience the exploding/ vanishing gradient problems that usual
RNNs encounter. This allows them to learn long-term depen-
dencies between input and output features. Due to the afore-
mentioned characteristics, LSTMs perform exceptionally well in
extreme-weather event problems where the timescale is typically
long between the input and output.

Additionally, LSTMs have a demonstrated ability to model
complex nonlinear feature interactions across numerous dimen-
sions. Floods are extremely complex events and are caused by
diverse factors that do not necessarily affect its water flow rate
linearly. The said characteristics are thus crucial for accurate de-
sign of modern forecasting models. The model parameters for
LSTM-based models are listed in table 1.

Principal Component Analysis (PCA): LSTM-PCA
The principal component analysis (PCA) [13] is a classical

approach of feature extraction. Based on the data preprocess-
ing and correlation coefficient analysis in data preprocessing sec-
tion , PCA is applied to prune the indices of multiple correlating
features (characteristics) to a few independent principal compo-
nents. LSTM is further utilized for flood occurrence classifica-
tion. LSTM-PCA architecture is represented in fig. 3.

Since there are high nonlinearity and hidden climate-related
components in the NCDC data, the feedforward neural networks
are unable to learn the complicate features of time series better
than the neural networks with feedback connections. Thus, in or-
der to strengthen the effectiveness of model, this work proposes
a hybrid LSTM-PCA model to predict flood occurrence. The ar-
chitecture in fig. 3 consists of three steps: (1) climate data pre-
processing, (2) reducing dimensionality of influencing (highly
correlated as in fig. 1) factors, (3) flood occurrence prediction
by using the hybrid model. In step 1, the outliers are identified
in the time-series and smoothed by using the weighted average
method, respectively. For step 2, the PCA method is used to elim-
inate the unimportant features of influencing variables, as many
of these variables are largely correlated with each other and thus
leads to multicollinearity problems when training the model. The
results of 1 and 2 steps determine the input variables of LSTM
network in step 3.

Figure 3: LSTM-PCA model architecture

Performance Metrics
To evaluate the performance of different models in this work,

we utilized accuracy and root mean squared error (RMSE). Accu-
racy refers to the number of correctly classified (True positives
(TP) and True Negatives (TN)) overall predictions made by the
model, and is defined mathematically in equation 1:

Accuracy =
T P+T N

(T P+T N +FP+FN)
(1)

RMSE is calculated as the squared root of MSE, where MSE is
the average value of the sum of squared differences between true
yi and predicted ŷi values. Mathematically, RMSE is shown in
equation 2:

RMSE =

√√√√ 1
N

N

∑
1
(yi− ŷi)2 (2)

Evaluation Results and Discussion
In this section, the experimental results of the classifiers are

discussed. Table 2 presents the classification results of the NCDC
data set using the following classifiers: SVM, LSTM, and LSTM-
PCA. The performance of each classifier is evaluated based on
the ability of correctly classifying the time-series climate data in
the test dataset for flood occurrence. The values for each model
are calculated over 10 random samples generated by the 10-fold
cross-validation.

The optimal structure of LSTM-based networks are selected
by analyzing the hyperparameters sensitivities including the time
steps of input variables, the number of hidden layers and the neu-
rons in hidden layers. For the LSTM-PCA model, the inputs con-

IS&T International Symposium on Electronic Imaging 2023
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2023 367-3



Table 1: Model parameters.
Models Hyperparameters

LSTM-based Total training epochs: 100
LSTM Hidden state dimensions: 128

Number of cycles: 32
Learning rate: 0.001

SVM Mostly set to defaults
Penalty Coefficient: 1.0

Kernel Function Coefficient: 1/n
where n is the number of features

Table 2: Average RMSE and accuracy comparison of models per-
formance.

Models Test Accuracy RMSE
SVM 72.98 78.82
LSTM 92.54 74.96

LSTM-PCA 96.49 66.05

sist of the storms event and flood observation series after smooth-
ing outliers using the weighted average method and the princi-
pal components of influencing factors. In the LSTM prediction
model, the storm events + flood observations series without out-
liers and all the influencing features are inputted into model to
train the unknown parameters of LSTM network.

The highest accuracy is obtained by the LSTM-PCA with the
lowest RMSE. Figs. 4 and 5 present the precision-recall variations
and model loss curve for the performant LSTM-PCA model.

Figure 4: Precision and Recall Variations

Conclusion
The LSTM-based approaches achieve the highest classifica-

tion performance of flood occurrence on the NCDC dataset with
climate data and storm events. When comparing the performance
of machine learning and deep learning models, LSTM-PCA out-
performs LSTM by 4% imporvement in accuracy with decrease
in RMSE by 12%. LSTM-PCA accuracy further improves by
32% and RMSE decreases by 16% as compared to SVM ma-
chine learning model. The models evaluated in this paper exhibit

Figure 5: LSTM model loss

classification accuracies that are between 72%-97%. LSTM-PCA
model has the highest performance.

In this work, we have investigated and compared different
machine learning methods to analyze their performance in real
and high- dimensional weather datasets. The experimental results
show that the hybrid LSTM-PCA model combining with the PCA
preprocessing technique produce rich input variables with stable
variance and lower dimensionality.
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