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Abstract
Deep learning has been successfully applied in many fields

to optimize decision making including self-driving cars, health-
care, machine translation, image recognition, among others. In
wireless communication, deep learning has been used in channel
estimation, signal classification, massive MIMOs, heterogeneous
networks, energy harvesting, device-to-device (D2D) communica-
tions, and so on. Machine learning (ML) and deep learning (DL)
neural networks to RF signal recognition are applied. Specifi-
cally, we built, trained, and tested two ML models, SVM and XG-
Boost, and two DL models, Convolutional Network (ConvNet),
and Residual Network (ResNet). We leverage the use of ConvNets
and ResNets to the complex-valued temporal radio signal domain.
We utilized the online dataset 2018.01A from DeepSig. This work
explores the scientific application of ML/DL in terms of dataset
processing, deep neural network construction, training, testing,
fine-tuning, and reporting the analyses and results. An in-depth
analysis of the mentioned models was performed for RF commu-
nication signals classification.

Introduction and Background
Deep learning has proved to surpass human capacity in some

areas such as gaming, image recognition, natural language pro-
cessing. Next-generation wireless networks have already em-
braced deep learning paradigms. Data-driven decision making,
instead of knowledge-driven or deterministic modeling, is nat-
urally more appropriate for wireless communication systems as
propagation medium or wireless channels are constantly chang-
ing due to mobility, interference and noises. Additionally, the
humongous amount of generated data (e.g. big data) should be
dynamically taken advantage of. There are many on-going re-
searches on deep learning for next-generation wireless networks.
The task of RF signal classification or symbol detection is a prime
candidate for deep learning as shown by [2]-[6]. In this project,
we adapted ML and DL to RF signal classification based on Over-
the-air Deep Learning Based Radio Signal Classification[2]. In
addition, we tried various neural network architectures (e.g. types,
number of layers, number of nodes per layer, activation functions)
and study their performances.

Traditional knowledge-driven RF signal classifica-
tion

Traditional methods of RF signal classification (e.g. 4G
LTE/LTE Advanced) are knowledge-driven using maximum like-
lihood and Bayesian estimation including Least Square (LS),
Minimum Mean Square Error (MMSE), Parametric Model (PM)
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and Iterative Channel Estimation (ICE). For 5G and future gener-
ations, more robust, dynamic and higher capacity RF signal mod-
ulations and classifications are demanded. Adapting and incorpo-
rating data-driven approaches using ML and DL neural networks
are currently in active pursuit.

Data-driven RF signal classification
Wireless propagation is complex and dynamic with various

channel impairments such as mobility, noises, interference, shad-
owing, multipath and under the effects of carrier frequency offset
and symbol rate. Consequently, accuracy of knowledge-driven
modeling of RF signal classification is limited. Alternatively,
data-driven modeling (e.g. ML and DL) would be a proper candi-
date. The prime difference between ML and DL is that ML uses
processed data (e.g. feature extractions) and DL uses more accu-
rate higher degrees of freedom models from raw data using end-
to-end feature learning. DL modeling has shown to outperform
ML modeling in many tasks as it can extract better features from
raw data than ML does with high-order statistical parameters.

In the current work, we used the real time-series radio data
captured over the air with the realistic simulation of the wireless
propogation environment, real propagation effects and new meth-
ods for signal classification. We also adapted ConvNet models
for RF based device fingerprinting in cognitive communication
networks [8] for the RF signal classification. We investigated the
system parameters as well as the effect of training parameters and
the Signal to Noise Ratio (SNR) on the performance and the ac-
curacy of the RF signal classifiers.

The main contributions of this work are the following:

1. Understanding the time-series radio signal data, checking
the modulation labels, associated Signal to Noise Ratios
(SNRs) and the primary impairments present in the wire-
less channel. Primary impairments present in any wireless
channel consist of Carrier frequency offset i.e. due to the
disparate local oscillators (LOs) and motion, Symbol rate
offset i.e. symbol clock offset and time dilation due to dis-
parate clock sources and motion, Delay Spread i.e. non im-
pulsive delay spread due to delayed reflection, diffraction
and diffusion of emissions on multiple paths and Thermal
noise which is the additive white Gaussian Noise present
due to receiver device sensitivity.

2. Implementing the feature extraction methods for RF signal
classification based on the latest over the air capture data.
Initially through expert feature extraction and then feeding
to ML algorithms mentioned in the above sections. This is
called Baseline Classification Approach. Secondly, provid-
ing with a windowed input of the raw radio time series r(t)
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to the mentioned DL models.
3. Adapting the general ConvNet models and the ones for RF

fingerprinting device classification to the RF signals classifi-
cation and checking the performance and accuracy by vary-
ing the configurations (varying SNRs and training dataset
sizes etc.).

4. Further evaluating the performance of ResNet in identify-
ing the signals based on their modulation types and varying
SNRs.

Preliminaries
Dataset details and pre-processing

Dataset that we used for the current work includes both syn-
thetic simulated channel effects and over-the-air recordings of 24
digital and analog modulation types. Data are stored in Hierar-
chical Dsta Format (hdf5) as complex floating point values [1],
with 2 million examples, each 1024 samples long. Further details
about the data that are extracted after processing further are as
below:

1. X dataset consists of the Complex floating point values, with
2 million examples, each 1024 samples long with each sam-
ple having in-phase (I) and Q-phase (Q) components.

2. Y dataset consists of the same 2 million signal examples
with 24 length and indicated by ’1’ at the index (order spec-
ified by file classes.txt) corresponding to the modulation
type.

3. Z dataset consists of the Signal to Noise Ratio (SNR) in dB
for the same 2 million signal examples. This column usually
will have low SNRs ranging from -20 dB to +30 dB Es/N0.

Hence, the I/ Q time domain plot of the signals with a chunk of
256 out of 1024 complex-valued samples are as shown in Figure
1.

Expert feature extraction: Baseline classification
approach

Before feeding the data into the ML models i.e. SVM and
XGBoost for this work, we extracted statistical modulation fea-
tures. These include higher order statistics (HoSs) and cyclo-
stationary moments (HoMs) [9] for the digital modulation tech-
niques. These are the standard and widely used features to com-
pactly sense and detect the signals with dense periodic compo-
nents that are created by the structure of the carrier, symbol tim-
ing, and symbol structure for certain modulations. Expected val-
ues of peaks from the auto-correlation and spectral correlation
functions usually successfully aid in robust signal classification
even with completely unknown and random data. We further
calculated mean and standard deviation of the signal segments.
These are calculated even for analog modulations where symbol
timings doesn’t produce the compact HoSs and HoMs. For ease
of data handling due to such a huge dataset, we store and man-
age them as numpy array files called .npy. Cumulants are cal-
culated from the moments. We hence, could extract 27 of such
features that most closely distinguish signals to be passed as in-
put to SVM and ensembling method of gradient boosting called
XGBoost when mapping our features to a class label for the de-
cision criterion. XGBoost clearly outperformed SVM as it com-
bines the collection of classifiers for performance improvement.
These models have been directly trained on the OTA dataset. In

the section, therefore, we chose to display only XGBoost while
comparing the correct classification probablility or rates (plotted
usually vs SNR (dB)) for signal classification problems.

We also proceeded, initially with dataset which consists of
11 classes that are all relatively low information density and are
commonly seen in impaired environments. These 11 signals rep-
resent a relatively simple classification task at high SNR in most
cases. Secondly, we performed analyses with the dataset that con-
tains all the 24 modulations and are difficult for the classification
task. These include a higher order modulations (QAM256 and
APSK256 etc.) that are used in the real world in very high-SNR,
low-fading channel environments.

Decision criterion for the models in the current
work

Short-time classification is challenging but is unavoidable
when decision processes cannot wait to acquire more data to in-
crease certainty. This is quite usual in many real world systems
when dealing with short observations (such as when rapidly scan-
ning a receiver) or short signal bursts in the environment. Un-
der these effects, with low SNR examples (from 20 dB to +30
dB Es/N0 ), achieving near 100% classification rates on the full
dataset is not usual. Hence, it can be seen as a good benchmark
for comparisons.

DL classification approach
For DL based approaches, ConvNet and ResNet, we con-

sidered the complex valued input (actual raw data) as an input
dimension of 2 real valued inputs and use r(t) as a set of 2xN
vectors into a narrow 2D Convolutional Network where the or-
thogonal synchronously sampled In-Phase and Quadrature (I &
Q) samples make up this 2-wide dimension.

ConvNet Model:
For the ConvNet, we adapted VCGNet architecture to 1D

CNN and improved upon the network for the 11 modulations ini-
tially. The features into this CNN are the raw I/ Q samples of each
RF signal example and they are normalized to unit variance. As
discussed in earlier sections, we don’t perform any expert feature
extraction here and incorporate end-to-end learning. The structure
of the model evaluated on the simple set of modulation classes de-
tails are as below:

1 _______________________________________________

2 Layer (type) Output Shape
Param #

3 ===============================================

4 reshape_1 (Reshape) (None , 2, 128, 1)
0

5 _______________________________________________

6 zero_padding2d_1 (None , 2, 132, 1)
0

7 _______________________________________________

8 conv1 (Conv2D) (None , 2, 130, 256)
1024

9 _______________________________________________

10 dropout_1 (Dropout) (None , 2, 130, 256)
0
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Figure 1. I/ Q time domain examples of 24 modulations for the over the air capture at SNR=10dB with number of samples=256

11 _______________________________________________

12 zero_padding2d_2 (None , 2, 134, 256)
0

13 _______________________________________________

14 conv2 (Conv2D) (None , 1, 132, 80)
122960

15 _______________________________________________

16 dropout_2 (Dropout) (None , 1, 132, 80)
0

17 _______________________________________________

18 flatten_1 (Flatten) (None , 10560)
0

19 _______________________________________________

20 dense1 (Dense) (None , 256)
2703616

21 _______________________________________________

22 dropout_3 (Dropout) (None , 256)
0

23 _______________________________________________

24 dense2 (Dense) (None , 11)
2827

25 _______________________________________________

26 activation_1 (Activation) (None , 11)
0

27 _______________________________________________

28 reshape_2 (Reshape) (None , 11)
0

29 ===============================================

30 Total params: 2,830,427
31 Trainable params: 2,830,427
32 Non -trainable params: 0
33 _______________________________________________

ResNet Model:
With the improvement in network algorithms and architec-

tures since AlexNet, the effective training of the deeper networks
using more and wider layers has been made possible. In the
ConvNet, a smaller ConvNet with several layers was improved
over the state-of-art CovNets as mentioned in previous subsec-
tion. The skip or bypass connections are common in ResNets. For
current work, we tested starting from 2 to 6 residual stacks and

it shows improvement in classification accuracy over ConvNets.
The longer structure of ResNet is omitted. It also trains in lesser
number of epochs as compared to ConvNets. However, both the
models are trained over 100 epochs, but we used Keras model
checkpoints [10] to observe the trend in accuracy or its saturation
point. We also observed that for 1024 samples on the 2 million
dataset, Self normalizing Neural Networks [11] in the fully con-
nected layers, and using Scaled Exponential Linear Unit (SELU)
activations for the last 2 FCs with Alpha dropout provide improve-
ment over conventional ReLU with dropout configurations. The
model evaluated on the complete set of modulation classes 24 for
L=4 residual stacks details are as below (This is when the network
was trained on subset of data i.e. 75000 signal examples. It im-
proved certainly when increased the training set size from 60000
examples to 75000). We also faced issue when training with 2
million examples pertaining to the storage issue and not enough
memory to run on SHAMU GPU. Hence, we limited to 75000 ex-
amples set. Table 1 lists the ConvNet and ResNet specifications
for training.The results for the discussed approached and models
are discussed in the results section.

Table1: Models Configuration

Models Layers/ Stacks Trainable Parame-
ters

ResNet 5 Stacks, 2 FC lay-
ers, Output Softmax

4,344,984

ConvNet 7Conv+MaxPool
Layers, 2 FC layers,
Output Softmax

2,830,427

Experimental Results
We conducted sensing performance analysis based on the

models discussed and the details of the computing resources are
as below:

1. We leveraged UTSA SHAMU cluster [12]: compute and
GPU nodes for all our training and analysis.

2. ConvNet and ResNet on GPU runs in minutes to an hour as
compared to several hours on CPU (varies with training set
size from actual dataset).

We trained on synthetic dataset of 1 million dataset initially and
then evaluated on OTA dataset of 2 million examples, each 1024
samples long. We can observe a decent performance after fine

IS&T International Symposium on Electronic Imaging 2023
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2023 366-3



tuning the models using transfer learning and observed that accu-
racy for ResNet is higher than the ConvNet and Baseline methods.
It falls in the range of what authors claim in the paper that it is be-
tween 64% and 80% (shown in Figure 2). The one reason we
see it at the lower end of the range was because there were some
modulations (out of 24 classes) missing from the dataset when we
started using them for analyses from their website.

Figure 2. Performance comparison ML (XGBoost) Vs DL

For ConvNet, we trained initially on 11 modulation classes
data and at SNR of 10dB, it performs pretty decently in recog-
nizing the signals but along with some multiple classifications as
in Figure 3 The ConvNet model after improving upon this was

Figure 3. 11 modulation AWGN dataset ConvNet at SNR = 10dB

trained on synthetic 1 million example data and the result of clas-
sification evaluation shows that it is only performing better at
higher SNRs and poorly at lower SNRs. 4 and 5.

Figure 4. 24 modulation confusion matrix for ConvNet trained and tested

on real time capture at SNR = 10dB

Figure 5. 24 modulation confusion matrix for ConvNet trained and tested

on real time capture at SNR = 10dB

Further fine tuning of the ResNet model (with L=6 resid-
ual stacks) and increasing the training dataset to complete OTA
data and evaluating on the fresh synthesis of the radioML data
shows an improvement in the classification probabilities. These
are shown based on the SNRs in the form of confusion matrices
as in Figure 6. We observed around 88% accuracy in this scenario.

Conclusion and Future work
The ResNet approach achieves the state-of-art classification

performance on the complex 24 modulation dataset thus making
use of the network depth effectively. When comparing the perfor-
mance of machine learning and deep learning models, the order
is: ResNet > ConvNet > XGBoost > SVM. We observed that the
performance depends on various parameters for signals such as
impairments, training dataset size, propagation effects, observa-
tion window and modulation types. Hence, these need to be con-
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Figure 6. 24 modulation confusion matrix for ResNet trained and tested on

real time capture at SNR = 10dB

sidered while designing DL based model solution for RF signals.
Due to the expanding presence of wireless technology and the
continuously increasing spectrum, deep learning being applied to
RF signals is becoming more useful in Cognitive Radio Networks
(CRNs). In future, we intend to investigate the potential of Recur-
rent Neural Networks (RNN) for these kind of applications.
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