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Abstract. Automation of driving leads to decrease in driver agency,
and there are concerns about motion sickness in automated
vehicles. The automated driving agencies are closely related to
virtual reality technology, which has been confirmed in relation to
simulator sickness. Such motion sickness has a similar mechanism
as sensory conflict. In this study, we investigated the use of deep
learning for predicting motion. We conducted experiments using
an actual vehicle and a stereoscopic image simulation. For each
experiment, we predicted the occurrences of motion sickness
by comparing the data from the stereoscopic simulation to an
experiment with actual vehicles. Based on the results of the
motion sickness prediction, we were able to extend the data on
a stereoscopic simulation in improving the accuracy of predicting
motion sickness in an actual vehicle. Through the performance of
stereoscopic visual simulation, it is considered possible to utilize the
data in deep learning. (© 2022 Society for Imaging Science and
Technology.
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1. INTRODUCTION
Autonomous driving technology is making great progress
through advanced sensing technology such as LIDAR and
advanced computing technology such as image analysis
using deep learning. Although fully automated driving has
yet to be achieved, driver assistance systems have made
it possible for drivers to drive without having to operate
most driving aspects in recent years. Automated driving
can be categorized into levels according to the degree of
automation [1, 2]. As various countries continue to establish
laws and regulations related to automated driving, vehicles
with level 3 performance have started to appear in the
market. As the level of automated driving progresses, the
necessity for drivers to operate the vehicle decreases, and at
level 5, the driver does not need to operate the vehicle at all.
One aspect of concern with driver engagement becom-
ing completely unnecessary is automated driving motion
sickness. One of the reasons why drivers do not tend to
get motion sickness is the effect of agency on such motion
sickness. We learned, for example, that susceptibility to
inducing motion sickness differs according to the type of
agency, and, in automobiles, passengers (those sitting in the

* IS&T Member.

Received July 1, 2022; accepted for publication Nov. 10, 2022; published
online Dec. 1, 2022. Associate Editor: Danli Wang.

1062-3701/2022/66(6)/060405/10/$25.00

J. Imaging Sci. Technol.

060405-1

passenger seat) are more likely to be affected than drivers [3].
Particularly, motion sickness can occur due to the decrease in
driver agency caused by automated driving. Hence, there are
chances that automated driving motion sickness may occur
[4]. As it is necessary for the driver to operate the vehicle,
up to level 5, in case of emergencies, paying attention to the
driver’s condition in addition to controlling the vehicle is
necessary.

Agency is also thought to play a part in simulator-based
motion sickness. Agency is related to presence [5], and we
know that this affects simulator-based motion sickness [6].
On the other hand, in technologies such as virtual reality
(VR), agency and immersion are positioned as important
elements; therefore, there are concerns about the occurrence
of simulator-based motion sickness and VR-based motion
sickness [7, 8].

One cause of motion sickness, including automated
driving motion sickness and simulator-based motion sick-
ness, is the sensory conflict [9]. The sensory conflict
theory states that motion sickness is caused by visual
or somatosensory information that is inconsistent with
expected information based on past experience. Automated
driving can also be viewed as a type of sensory conflict,
and the degree of conflict is thought to increase further
when the driver engages in activities other than driving the
vehicle. One difference between automated driving motion
sickness and simulator-based motion sickness is that in
simulator-based motion sickness, sensory information is
presented, whereas, in automated driving motion sickness,
somatosensory information is not presented. Therefore,
studies have been conducted on mitigation techniques, such
as matching visual and somatosensory information [10]
and limiting visual information [11] to reduce motion
sickness. Furthermore, in terms of in-vehicle behavior linked
to automated driving, VR-based experiments have also
been conducted to link the presentation of somatosensory
information with visual information [12].

Studies are being conducted to evaluate motion sickness
and predict the occurrence of the same. To use objective
indicators to evaluate motion sickness, many correlations
between objective indicators and motion sickness have been
investigated [13-15]. In recent years, such investigations
have used machine learning [16-18]. Although these studies
were able to assess heart rate (HR), electromyography
(EMG), and electroencephalography (EEG), it is difficult to
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attach a sensor to other indicators, thereby making it un-
realistic to implement machine learning. By using machine
learning however, it is possible to evaluate relationships based
on multiple and single objective indicators. When examining
human behavior, machine learning is able to predict a fixed
level of accuracy [19, 20], and if this is possible in the area
of motion sickness, it could contribute to resolving issues
related to the onsets of motion sickness.

Researchers have attempted to estimate the occurrence
of cybersickness, which is a type of motion sickness
[21]. In the mixed reality (MR) environment, we obtained
different indicators concerning discomfort and general
physiology while puzzle assembly tasks were continuously
performed. Then, we estimated the discomfort based on the
physiological indicators using a deep learning model. The
results suggested that it was possible to predict the onset of
cybersickness to a certain extent. However, it is said that a
high number of samples is generally required for machine
learning, and it is difficult to secure a high number of samples
based on a test environment.

2. PURPOSE

In this study, we aimed to develop a system than predicts
the occurrence and early detection of motion sickness for
automated driving. However, due to the COVID crisis,
and based on similarities in mechanisms such as sensory
conflict, this study also aims to examine data expansion using
stereoscopic simulation.

3. METHODS

3.1 Driving an Actual Vehicle (Experiment 1)

3.1.1 Measures

As a subjective indicator, participants were asked to respond
every 10 s in regard to three levels of motion sickness (1:
No sickness, 2: Slight sickness, or 3: High sickness). In the
prediction of motion sickness in automobiles, it is considered
essential to predict it early and encourage rest, especially
regarding the motion sickness of the driver. For this reason,
we placed particular importance on detecting the slight
motion sickness stage or no sickness, so data acquisition
was set to three levels. As objective indicators, HOT-2000
(NeU) was used to acquire cerebral blood flow, pulse rate,
and acceleration, while electrodermal activity (EDA) was
acquired using biosignalsplux (10 Hz). Low-frequency (LF)
and high-frequency (HF) bands were also calculated based
on the pulse rate.

3.1.2 Stimuli

For the driving course, several driving patterns were set in
advance, and from these, several patterns wherein motion
sickness could easily occur were selected. The course
consisted of a combination of left and right turns and
emergency braking/emergency acceleration. The content of
the driving course is summarized in Table I. All the drivers
were trained to drive at the same pace.
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Table I. Driving course.

Time (sec) Driving patterns

0-15 Sharp cutbacks left and right

15-35 Turning 2.5 times to the left

35-55 Turning 2.5 fimes to the right

55-65 Stop by emergency brake/emergency acceleration x 3 times
65-95 Turn three times in a Figure 8 pattern

95-105 Sharp cutbacks left and right

105-125 Turning three times to the left

125-130 Stopping using the emergency brake

3.1.3 Procedure

Eleven adult drivers participated in the experiment. The
purpose of the experiment and what the participants had to
do in the experiment was explained and informed consent
was obtained from them. Participant was explained that 1
(Slight sickness) is a different state from 0 (No sickness), and
evaluation as 1 should be made when feeling even a little
sick. Then, various devices were attached for measurement
purposes, and the participants were asked to sit in the
passenger seat. To ensure stable measurement and posture,
they placed their left hands on a jig and lightly gripped
the door handle with their right hand as if holding it. The
discomfort level was checked before starting the experiment,
and the participants only had to verbally rate their discomfort
level every 10 s during the experiment. The sound to be
evaluated was confirmed and the experiment was started.
From the start of the drive, participants verbally rated their
discomfort according to a cue from an electronic metronome
every 10 s. When a participant suffered extreme motion
sickness, the experiment was stopped.

3.2 Simulation through Stereoscopic Imaging

(Experiment 2)

3.2.1 Measures

The indicators of Experiment 1 were acquired for the
simulation experiment. Specifically, as a subjective indicator,
participants were asked to respond every 10 s in regard
to three levels of motion sickness: (1: Nothing, 2: Slightly
Sickness, or 3: Highly Sickness). As objective indicators,
cerebral blood flow, pulse rate, acceleration, and EDA were
obtained (10 Hz). LF and HF bands were also calculated
based on the pulse rate.

3.2.2 Stimuli

VR cameras were attached to the participants’ heads, and
the course run in Experiment 1 was captured (Figure 1). An
Insta360EVO capable of capturing 3DVR180 videos was used
as the VR camera. The video size was 3840 x 3840 px (one
eye: 3840 x 1920, 50 fps, 20 Mbpm) and the duration was
130s.
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Figure 1. VR camera atfached to the participant’s head.

HOT-2000

HTC VIVE PRO

biosginalsplux

Figure 2. Layout of the stereoscopic visual simulation experiment.

3.2.3 Procedure

A total of 54 adults participated in the experiment. The
purpose of the experiment and what the participants had to
do in the experiment was explained and informed consent
was obtained from them. Participant was explained that 1
(Slight sickness) is a different state from 0 (No sickness), and
evaluation as 1 should be made when feeling even a little
sick. Then, various measurement devices were attached, and
participants were asked to sit in the bucket seat to begin
the simulation (Figure 2). VIVE Pro VR headset (HTC) was
used for presenting the VR video stimuli. The discomfort
level was checked before starting the experiment, and the
participants only had to verbally rate their discomfort level
every 10 s during the experiment. From the start of the
video, participants verbally rated their discomfort based on
an electronic metronome cue every 10 s.
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Figure 3. Transition of motion sickness.
4. RESULTS

Within each indicator, there were many participant data
and time interval data with missing values, and these were
excluded from the analysis data. For this reason, the result
was analyzed for only 9 people in Experiment 1 and 52 in
Experiment 2.

4.1 Subjective Indicators
(1) Real vehicle experiment (Experiment 1)

In regard to the three levels of motion sickness, there
were 85 cases of 1 (No sickness), 31 cases of 2 (Slight
Sickness), and 1 case of 3 (High Sickness). The transition of
motion sickness for each time interval is shown in Figure 3
on Experiment 1. In the plots, the horizontal axis indicates
the time interval, and the vertical axis indicates the average
of motion sickness in all participants. Significant differences
were seen in one-way repeated measures ANOVA with time
interval (F(12,96) = 2.216, p = 0.017, and n?> = 0.109).
Shaffer post-hoc paired test with time factor was conducted
but there were no significant differences.

(2) Stereoscopic visual simulation

In regard to the three levels of motion sickness, there
were 456 cases of 1 (No sickness), 196 cases of 2 (Slight
Sickness), and 24 cases of 3 (High Sickness). The transition
for each time interval is shown in Fig. 3 on Experiment 2. In
the plots, the horizontal axis indicates the time interval, and
the vertical axis indicates the average of motion sickness in
all participants. Significant differences were seen in one-way
repeated measures ANOVA with time interval (F(12, 612) =
11.736, p < 0.001, and n? = 0.090). Shaffer post-hoc paired
test with time factor showed significant differences in Time
0-10 sec (T1)-T9, T10, T13, T2-T7, T8, T9, T10, T11, T12,
T13, T3-T7, T8, T9, T10, T13, T4-T9, T10, T13, T5-T10,
T13, T6-T10, and T13 (Table Al and Table A2).

4.2 Objective Indicators

To judge the correspondence with the subjective indicators,
we calculated the mean value of each indicator, using 10 s
as an interval. Additionally, the objective indicators used
were EDA, pulse rate, and LF/HF, and each participant was
normalized from —1 by MinMaxScaler to see the variation.
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Figure 4. Results of EDA.
4.2.1 EDA

(1) Real vehicle experiment (Experiment 1)

The mean values and standard error for each time
interval are shown in Figure 4 on Experiment 1. The
mean value before normalization was 9.16 (uS). Significant
differences were seen in one-way repeated measures ANOVA
with time interval (F(12,96) = 4.142,p < 0.001, n? =
0.259). Shaffer post-hoc paired test with time factor showed
a significant difference between T1 and T2.

(2) Stereoscopic visual simulation

The mean values and standard error for each time
interval are shown in Fig. 4 on Experiment 2. The mean value
before normalization was 8.14 (uS). Significant differences
were seen in one-way repeated measures ANOVA with
time interval (F(12,96) = 3.604, p < .001, and »> =
0.039). Shaffer post-hoc paired test with time factor showed
significant differences between T1-T2, T3, T4, and T11
(Table A3 and Table A4).

4.2.2 Pulse Rate
(1) Real vehicle experiment (Experiment 1)

The mean values and standard error for each time
interval are shown in Figure 5 on Experiment 1. The mean
value before normalization was 101.47 (bpm). Significant
differences were seen in one-way repeated measures ANOVA
with time interval (F(12,96) = 3.969, p < 0.001, and
n? = 0.250). Shaffer post-hoc paired test with time factor
showed significant differences between T3 and T7.

(2) Stereoscopic visual simulation

The mean values and standard error for each time
interval are shown in Fig. 5 on Experiment 2. The mean
value before normalization was 83.71 (bpm). Significant
differences were seen in one-way repeated measures ANOVA
with time interval (F(12,96) = 4.311, p < 0.001, and
n? = 0.036). Shaffer post-hoc paired test with time factor
showed significant differences between T1-T3, T2-T3, T4,
T3-T6, and T4-T6 (Table A5 and Table A6).

4.2.3 LF/HF
(1) Real vehicle experiment (Experiment 1)
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Figure 6. Result of LF/HF.

The mean values and standard error for each time
interval are shown in Figure 6 on Experiment 1. The mean
value before normalization was 2.85. Significant differences
were not seen in one-way repeated measures ANOVA
with time interval (F(12,96) = 1.595, p = 0.106, and
n* =0.052).

(2) Stereoscopic visual simulation

The mean values and standard error for each time
interval are shown in Fig. 6 on Experiment 2. The mean value
before normalization was 3.06. Significant differences were
not seen in one-way repeated measures ANOVA with time
interval (F (12, 96) = 1.258, p = 0.240, and n*> = 0.011).

5. PREDICTION OF MOTION SICKNESS USING DEEP
LEARNING

5.1 Model

For the model to predict motion sickness, a deep learning
model based on one-dimensional convolutional neural
network (IDCNN) was used. The prediction was performed
using a recurrent neural network (RNN); however, as
the 1IDCNN model had higher precision, we reported
the IDCNN model results. The model had three layers-
convolution, pooling, and dropout-and two fully connected
layers. In the first fully connected layer, we input the
predicted value for motion sickness in the previous interval.
Leaky ReLU was used as the activation function, and Softmax
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Figure 7. Image of the model used for predicting motion sickness.

Table II. Confusion matrix of Experiment 1.

Table ll. Confusion matrix of Experiment 2.

MS PREDICTION MS PREDICTION
level 0: Nothing 1: Sickness level 0: Nothing 1: Sickness
Cross validation | TRUE 0 17 0 Cross validation 1 TRUE 0 103 18
1 4 11 1 8 43
9 0 20 5 9 0 93 17
1 2 5 ] 10 51
0 25 1 0 104 9
3 1 1 4 3 1 10 48
0 19 3 0 m 5
! 1 5 4 ! 1 30 25

was used as the output layer. The categorical cross-entropy
loss function and Adam optimization algorithm were used.
An image of the model is shown in Figure 7.

5.2 Datasets

Data with missing values were excluded, so datasets were for
9 people in Experiment 1 and 52 in Experiment 2 and the
data were divided every 10 s to predict motion sickness levels.
For objective indicators, EDA, pulse rate, and LF/HF were
used. Each indicator was normalized in the MinMaxScaler as
—1-1 for each participant. When predicting motion sickness,
as there were few cases of 3 (High Sickness), it was considered
to be 0 (No sickness) as 1 (No Sickness), and 1 (Sickness) as
2 (Slight Sickness) and 3 (High Sickness). So that the data of
Experiment 1 is based on 85 cases of 0, 32 cases of 1, and the
data of Experiment 2 is based on 456 cases of 0, 220 cases of
1.

5.3 Real Vehicle Experiment (Experiment 1)

For accuracy verification, the average value of the results in
four-fold cross-validation randomly in person and time was
used. A summary of the confusion matrix of the four sessions
is shown in Table II. The mean accuracy of the four sessions
was 0.833, with the F1-score for “Nothing” being 0.883 and
F1-score for “Sickness” being 0.684.
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5.4 Stereoscopic Visual Simulation

For accuracy verification, the average value of the results in
the four-fold cross-validation randomly in person and time
was used. A summary of the confusion matrix of the four
sessions is shown in Table ITI. The mean accuracy for the four
sessions was 0.844, with the F1-score for “Nothing” being
0.885 and F1-score for “Sickness” being 0.745.

5.5 Stereoscopic Visual Simulation and Real Vehicle
Experiments (Experiment 1 and 2)

To validate the effect of expanding the training data from
Experiment 2, a four-fold cross-validation was performed
on Experiment 1 data. The data from the stereoscopic video
experiment was also added to the training data (Figure 8).
A summary of the confusion matrix for the four sessions is
shown in Table IV. The mean accuracy for the four sessions
was 0.866, with the F1-score for “Nothing” being 0.896 and
F1-score for “Sickness” being 0.754.

6. DISCUSSION

6.1 Subjective Indicators

It is known that the user experience changes with viewing
time in VR [22]. Thus, the effect of time and somatosensory
information was analyzed by comparing Experiment 1 and
Experiment 2. The results of the actual vehicle experiment
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Figure 8. Image of stereoscopic visual simulation’s extended learning
dofasefs.

Table IV. Stereoscopic visual simulation extension confusion matrix.

MS PREDICTION
level 0: Nothing 1: Sickness
(ross validation 1 TRUE 0 13 4
1 ] 14
0 20 5
2
1 1 6
0 24 2
3 1 2 3
0 20 2
4
1 0 9

demonstrated a tendency for motion sickness to increase,
with a peak at the 110-s interval. The results of the
stereoscopic visual experiment demonstrated a tendency for
motion sickness to increase, with a peak at the 100- and
130-s intervals. Where each experiment demonstrated an
increasing trend, the fact that the position of the peak differs
is thought to be due to the fact that the degree of sensory
conflict differs in the various cases of vehicle sickness and
simulation sickness. Particularly, it is affected by the presence
or absence of somatosensory information being presented.

6.2 Objective Indicators

Compared to the real vehicle experiment, each indicator
in the stereoscopic visual experiment tended to vary by
only a small degree. In the results of ANOVA for the real
vehicle experiment, a large effect size was seen for EDA and
HR, whereas a small effect size was seen for LF/HF bands.
Furthermore, in the results of ANOVA for the stereoscopic
visual experiment, a small degree of change was seen for all
participants. This suggests that the response of the objective
index was greater for the real vehicle than for the stereoscopic
visuals.

If we compare the peak positions for the objective and
subjective indicators, we can see that the peak position does
not match for any participants. This suggests that evaluating
the response to specific objective indicators and subjective
indicators is difficult.

J. Imaging Sci. Technol.

060405-6

6.3 Predicting Motion Sickness

The cross-validation accuracy of the real vehicle test was
0.833, and the cross-validation accuracy of the stereoscopic
visual experiment was 0.844. When the learning data
used in the stereoscopic visual experiment was extended,
the cross-validation accuracy was 0.866. In a previous
study, predicting the motion sickness levels through a
self-organizing neural fuzzy inference network (SONFIN)
using EEG signals, an overall accuracy of about 82% through
experiments was achieved [23]. When predicting motion
sickness levels through a three-dimensional convolutional
neural network (3DCNN) using 3D image information,
the correlation between a simulator sickness questionnaire
(SSQ) [24] and prediction score was 0.845 [25]. When
predicting the VR sickness levels through a Deep Long
Short Term Memory Model (LSTM) using posture instability
signal, the correlation between a SSQ and prediction score
was 0.89 [26]. These results suggest that the accuracy for
predicting motion sickness within the respective tests could
be predicted with constant accuracy. Therefore, it is thought
that the objective indicators obtained in this study can
contribute to predicting motion sickness to some extent.
Additionally, by adding the stereoscopic visual simulation
data to the real vehicle experiment, it was confirmed that the
accuracy for predicting motion sickness in the real vehicle
experiment could be improved. Thus, even when data is
obtained under different environments, the data capture
common responses within the scope of sensory conflict.

7. SUMMARY

In this study, we attempted to predict motion sickness
in automated driving based on data extensions through
a stereoscopic visual simulation. We conducted a real
vehicle experiment and a stereoscopic visual simulation
and predicted the presence or absence of motion sickness
using deep learning. We confirmed that it was possible to
predict motion sickness in a real vehicle with a consistent
level of accuracy. Moreover, we were able to extend the
learning data using stereoscopic visual simulation, and it
was suggested that this may improve accuracy in predicting
motion sickness in actual vehicles. This suggests that in
environments where it is difficult to conduct experiments
with real objects, data acquisition through stereoscopic
image simulations can be utilized for deep learning and
other data applications. Moreover, as different tendencies
were observed in individual indicators, such as objective
and subjective indicators, it is necessary to be careful when
handling the data.
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APPENDIX
Table A1. Post-hoc test results of Subjective indicators of Real vehicle experiment (Experiment 1).
p-value
0-10sec  10-20 20-30 30-40 40-50 50-60 60-70 70-80  80-90  90-100  100-110  110-120 120130
T n 13 T4 15 T6 7 18 19 110 L 12 113
t-valve T - 0347 0347 0081 0347 0081 0081 0081 0035  0.035 0.051 0.081 0.169
12 1.000 - 1000 0169 1.000 0169 0169 0169  0.081 0.081 0.104 0.169 0.347
13 1.000 0.000 - 0.169 1.000 0169 0169 0169  0.081 0.081 0.104 0.169 0.347
T4 2.000 1512 1512 - 0.169  1.000 1.000 1.000 0347 0347 0.169 1.000 0.347
15 1.000 0.000 0000 1.512 - 0.169 0169 0169  0.081 0.081 0.104 0.169 0.347
T6 2.000 1512 1512 0000 1.512 - 1.000 1.000 0594  0.347 0.169 1.000 0.347
7 2.000 1.512 1512 0.000 1512 0.000 - 1.000  0.347 0.594 0.347 1.000 0.347
T8 2.000 1512 1512 0000 1.512  0.000 0.000 - 0347  0.5% 0.347 1.000 0.347
L) 2.530 2000 2000 1.000 2000 0.555  1.000  1.000 - 1.000 0.594 0.347 0.169
0 2530 2000 2000 1.000 2000 1.000 0555  0.555  0.000 - 0.347 0.347 0.169
T 2.294 1.835 1.835 1.512 1.835 1.512 1.000 1.000  0.555 1.000 - 0.169 0.081
T2 2000 1512 1512 0000 1.512 0000 0000 0.000 1.000 1.000 1.512 - 0.347

T3 1.512 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1512 1.512 2.000 1.000 -

Table A2. Post-hoc test results of Subjective indicators of Stereoscopic visual experiment (Experiment 2).

-value
0-10sec  10-20 20-30 30-40 40-50  50-60 60—p70 70-80  80-90  90-100  100-110  110-120  120-130
1l 12 13 T4 15 T6 7 T8 9 TI0 m T2 T3
f-vale T - 0485 0569  0.057  0.051 0.019  0.001 0.001 0.000 0.000 0.001 0.002 0.000
12 0.704 - 0.044 0004 0002 0.002 0000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.574 2.062 - 0103 0058  0.051 0.000  0.000  0.000 0.000 0.001 0.002 0.000
T4 1.948 3.045  1.660 - 0.569 0371 0.006  0.006  0.000 0.000 0.028 0.019 0.000
5 1.996 3267 1939 0574 - 0.569  0.006  0.011 0.002 0.000 0.044 0.018 0.000
T6 2431 3.335 1996 0903  0.574 - 0.019 0070 0.017 0.000 0.159 0.255 0.000
7 3.477 5419 4173 2844 2850 2414 - 0742 0532 0.031 0.622 0.444 0.059
T8 3.451 5196 3965 2850 2635 1.849 0331 - 0.261 0.019 0.785 0.532 0.019
It} 4.428 5878 4592 375 32607 2470 0629 1137 - 0.083 0.322 0.168 0.135
T0 5.405 5838 5250 4428 4229 4382 2217 2431 1.767 - 0.017 0.015 1.000
1k 3.438 4592 3477 2268 20602 1428 049 0275  1.000 2470 - 0.709 0.006
T2 3.47 4.761 32607 2414 2442 1151 0772 0629  1.400 250N 0.375 - 0.002

T3 5.683 6908 5915 469 4804  4.081 1935 2431 1519 0.000 2.850 3.335 -
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Table A3. Post-hoc test results of EDA of Real vehicle experiment (Experiment 1).

-value

0-10sec  10-20 20-30 30-40  40-50  50-60 60—p70 70-80  80-90  90-100  100-110  110-120  120-130
T 12 13 T4 15 T6 7 8 19 T10 m T2 T3
fvalee Tl - 0.000 0.002 0006 0.048 0.071 0.006 0.017 0.028 0.044 0.029 0.025 0.009
12 5.829 - 0155 0042 0046 0044 0609 0278  0.201 0.126 0.133 0.371 0.514
13 4.431 1.569 - 0.027 0049 0.055 0753  0.591 0.447 0.267 0.301 0.727 0.975
T4 3.602 2414 2710 - 0109 0109 0146  0.634 0919 0.684 0.764 0.640 0.381
15 2.336 2.364 2314 1.806 - 0.368 0.038 0.172 0.330 0.673 0.539 0.219 0.122
T6 2.078 2393 1241 1.803  0.954 - 0.027  0.071 0.179 0.370 0.241 0.091 0.069
T 3.700 0533 0325  1.609 2481 2.692 - 0.057  0.037 0.029 0.086 0.405 0.682
T8 2.993 1.164 0559 0495 1499 2086 2227 - 0.376 0.088 0.262 0.860 0.404
19 2.682 1.392 0.800  0.105 1.037 1474 2498 0.938 - 0.057 0.398 0.437 0.082
T10 2.391 1708 1193 0422 0437 0951 2663 1946 221 - 0.666 0.079 0.005
Tl 2.646 1672 1105 0310 0642 1266 1960  1.208  0.893 0.448 - 0.108 0.025
T12 2.759 0948 0362 048 1335 1922 0878 0182 0819 2.012 1.811 - 0.457

T13 3.425 0.683 0.032 0926 1727 2097 0.425 0.881 1.991 3.809 2.764 0.782 -
Table A4. Post-hoc test results of EDA of Stereoscopic visual experiment (Experiment 2).
p-value

0-10secc 10-20 20-30 30-40 40-50 50-60 60-70 70-80  80-90 ~ 90-100  100-110  110-120  120-130
Tl 12 13 T4 15 T6 7 8 19 TI0 m T2 T3
f-value Tl - 0.000 0000 0000 0005 0006 0007 0007 0.01 0.006 0.000 0.002 0.003
12 6.517 - 0135 0222 0068 0142 0358 0400 0423 0.589 0.658 0.978 0.875
13 4792 1.519 - 0.668 0154 0313 0697 0735 0739 0.961 0.310 0.636 0.538
T4 4.250 1238 0432 - 0039 0312 0838 0859  0.844 0.895 0.183 0.482 0.403
5 2972 1867 1447 2123 - 0705 0347 0349  0.443 0.305 0.025 0.136 0.122
Té 2.849 1495 1.019  1.02 0.380 - 0.303 0420 0.519 0.348 0.022 0.148 0.141
T 2.834 0928 0392 0205 0951 1.041 - 0.974 0971 0.639 0.040 0.263 0.246
8 2.81 0.850  0.341 0178 0947 0813  0.033 - 0.907 0.533 0.026 0.221 0.213
It} 2.637 0809 0335 0197 0774 0649 0037 0118 - 0.338 0.010 0.166 0.176
TI0 2.861 0545 0050 0133 103 0948 0472 0.628  0.967 - 0.015 0.268 0.237
TI 3.808 0446 1027 1353 2316 2375 2111 2293  2.688 2.528 - 0.028 0.592
T2 3.252 0028 0477 0708 1.517 1471 1.133 1.240  1.407 1.120 2210 - 0.545

T3 3.198 0159 0620 0844 1576 1498 1175 1263 1373 1.197 0.539 0.609 -
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Table A5. Post-hoc test results of Pulse rate of Real vehicle experiment (Experiment 1).

-value
0-10sec  10-20 20-30 30-40 40-50  50-60 60570 70-80  80-90  90-100  100-110  110-120  120-130
1l 12 13 T4 15 T6 7 8 79 T0 m T2 T3
t-valee T - 0.033 0006 008 0542 0672 0560 0479  0.726 0.709 0.588 0.291 0.322
12 2.569 - 0374 0379 0134 0046 0013  0.151 0.126 0.146 0.01 0.154 0.152
13 3.665 0.90 - 0.038 0003  0.001 0.000 0003  0.009 0.021 0.006 0.006 0.003
T4 1.966 0932  2.488 - 0.047  0.001 0155 0308 0272 0.275 0.01 0.778 0.534
15 0.636 1.668  4.201 2.347 - 0.005 0819 0600 0792 0.830 0.105 0.466 0.360
T6 0.439 2366 4755 4790  3.843 - 0.263  0.054  0.257 0.217 0.753 0.095 0.045
T 0.608 3208 5848 1568 023  1.205 - 0.642 0998 0.986 0.299 0.312 0.322
8 0.743 1588 4117  1.088 0547 2255  0.483 - 0.410 0.571 0.070 0.532 0.581
T 0.363 1.711 3.404 1.181 0.273 1.221 0.003 0870 - 0.949 0.092 0.387 0.352
TI0 0.387 1609 2865 1.172 0222 1340 0.018 0590  0.066 - 0.013 0.439 0.447
m 0.564 2433 3712 2435 1.830 0326 1IN 2088  1.912 3179 - 0.104 0.068
T2 1.130 1575 3711 0.292 0765 1.892 1079  0.654 0916 0.814 1.836 - 0.852
T3 1.055 1584 4173 0650 0971 2.381 1.055 0575  0.989 0.800 2111 0.193 -
Table A6. Post-hoc test results of Pulse rate of Stereoscopic visual experiment (Experiment 2).
p-value
0-10sec  10-20 20-30 30-40 40-50 50-60 60-70 70-80  80-90  90-100 100-110  110-120  120-130
T 12 T3 T4 15 T6 7 8 T T0 m T2 T3
t-valve I - 0.965 0000 0002 0052 0368 0273 0026 0212 0.216 0.223 0.209 0.821
12 0.045 - 0.000 0000  0.021 025 0200 0012 014 0.185 0.176 0.166 0.827
13 4.671 6.856 - 0.331 0.093 0000 0.002 0.01 0.005 0.010 0.008 0.015 0.001
T4 3.356 4729 0982 - 0.143 0000 0005 0.5 0016 0.019 0.017 0.047 0.002
5 1.991 2.381 1712 1489 - 0.002 0103 085  0.228 0.207 0.251 0.351 0.049
T6 0.909 1149 3947 4284 3190 - 0.633  0.067 0472 0.506 0.582 0.586 0.429
T 1.107 1298 3325 2965  1.661 0.480 - 0.078  0.711 0.760 0.804 0.758 0.255
8 2.302 2.621 2.097 1430  0.184 1.873 1.798 - 0.100 0.195 0.206 0.329 0.013
79 1.264 149 2939 2496 1.221 0724 0373  1.675 - 0.904 0.908 0.985 0.088
TI0 1.254 1344 2663 2430 1279 0670 0307 1313  0.122 - 0.982 0.930 0.113
T 1.235 1373 2742 2459 1.161 0.555  0.249 1282  0.116 0.023 - 0.877 0.079
T2 1.271 1404 2529 2038 094 0548 0310 098  0.019 0.089 0.156 - 0.025
T3 0.228 0219 3662 3306 2015 0797 1152 2563 1739 1.615 1.791 2.304 -
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