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Abstract. Automation of driving leads to decrease in driver agency,
and there are concerns about motion sickness in automated
vehicles. The automated driving agencies are closely related to
virtual reality technology, which has been confirmed in relation to
simulator sickness. Such motion sickness has a similar mechanism
as sensory conflict. In this study, we investigated the use of deep
learning for predicting motion. We conducted experiments using
an actual vehicle and a stereoscopic image simulation. For each
experiment, we predicted the occurrences of motion sickness
by comparing the data from the stereoscopic simulation to an
experiment with actual vehicles. Based on the results of the
motion sickness prediction, we were able to extend the data on
a stereoscopic simulation in improving the accuracy of predicting
motion sickness in an actual vehicle. Through the performance of
stereoscopic visual simulation, it is considered possible to utilize the
data in deep learning. c© 2022 Society for Imaging Science and
Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.6.060405]

1. INTRODUCTION
Autonomous driving technology is making great progress
through advanced sensing technology such as LIDAR and
advanced computing technology such as image analysis
using deep learning. Although fully automated driving has
yet to be achieved, driver assistance systems have made
it possible for drivers to drive without having to operate
most driving aspects in recent years. Automated driving
can be categorized into levels according to the degree of
automation [1, 2]. As various countries continue to establish
laws and regulations related to automated driving, vehicles
with level 3 performance have started to appear in the
market. As the level of automated driving progresses, the
necessity for drivers to operate the vehicle decreases, and at
level 5, the driver does not need to operate the vehicle at all.

One aspect of concern with driver engagement becom-
ing completely unnecessary is automated driving motion
sickness. One of the reasons why drivers do not tend to
get motion sickness is the effect of agency on such motion
sickness. We learned, for example, that susceptibility to
inducing motion sickness differs according to the type of
agency, and, in automobiles, passengers (those sitting in the
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passenger seat) aremore likely to be affected than drivers [3].
Particularly, motion sickness can occur due to the decrease in
driver agency caused by automated driving. Hence, there are
chances that automated driving motion sickness may occur
[4]. As it is necessary for the driver to operate the vehicle,
up to level 5, in case of emergencies, paying attention to the
driver’s condition in addition to controlling the vehicle is
necessary.

Agency is also thought to play a part in simulator-based
motion sickness. Agency is related to presence [5], and we
know that this affects simulator-based motion sickness [6].
On the other hand, in technologies such as virtual reality
(VR), agency and immersion are positioned as important
elements; therefore, there are concerns about the occurrence
of simulator-based motion sickness and VR-based motion
sickness [7, 8].

One cause of motion sickness, including automated
driving motion sickness and simulator-based motion sick-
ness, is the sensory conflict [9]. The sensory conflict
theory states that motion sickness is caused by visual
or somatosensory information that is inconsistent with
expected information based on past experience. Automated
driving can also be viewed as a type of sensory conflict,
and the degree of conflict is thought to increase further
when the driver engages in activities other than driving the
vehicle. One difference between automated driving motion
sickness and simulator-based motion sickness is that in
simulator-based motion sickness, sensory information is
presented, whereas, in automated driving motion sickness,
somatosensory information is not presented. Therefore,
studies have been conducted on mitigation techniques, such
as matching visual and somatosensory information [10]
and limiting visual information [11] to reduce motion
sickness. Furthermore, in terms of in-vehicle behavior linked
to automated driving, VR-based experiments have also
been conducted to link the presentation of somatosensory
information with visual information [12].

Studies are being conducted to evaluate motion sickness
and predict the occurrence of the same. To use objective
indicators to evaluate motion sickness, many correlations
between objective indicators and motion sickness have been
investigated [13–15]. In recent years, such investigations
have used machine learning [16–18]. Although these studies
were able to assess heart rate (HR), electromyography
(EMG), and electroencephalography (EEG), it is difficult to
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attach a sensor to other indicators, thereby making it un-
realistic to implement machine learning. By using machine
learning however, it is possible to evaluate relationships based
onmultiple and single objective indicators.When examining
human behavior, machine learning is able to predict a fixed
level of accuracy [19, 20], and if this is possible in the area
of motion sickness, it could contribute to resolving issues
related to the onsets of motion sickness.

Researchers have attempted to estimate the occurrence
of cybersickness, which is a type of motion sickness
[21]. In the mixed reality (MR) environment, we obtained
different indicators concerning discomfort and general
physiology while puzzle assembly tasks were continuously
performed. Then, we estimated the discomfort based on the
physiological indicators using a deep learning model. The
results suggested that it was possible to predict the onset of
cybersickness to a certain extent. However, it is said that a
high number of samples is generally required for machine
learning, and it is difficult to secure a high number of samples
based on a test environment.

2. PURPOSE
In this study, we aimed to develop a system than predicts
the occurrence and early detection of motion sickness for
automated driving. However, due to the COVID crisis,
and based on similarities in mechanisms such as sensory
conflict, this study also aims to examine data expansion using
stereoscopic simulation.

3. METHODS
3.1 Driving an Actual Vehicle (Experiment 1)
3.1.1 Measures
As a subjective indicator, participants were asked to respond
every 10 s in regard to three levels of motion sickness (1:
No sickness, 2: Slight sickness, or 3: High sickness). In the
prediction ofmotion sickness in automobiles, it is considered
essential to predict it early and encourage rest, especially
regarding the motion sickness of the driver. For this reason,
we placed particular importance on detecting the slight
motion sickness stage or no sickness, so data acquisition
was set to three levels. As objective indicators, HOT-2000
(NeU) was used to acquire cerebral blood flow, pulse rate,
and acceleration, while electrodermal activity (EDA) was
acquired using biosignalsplux (10 Hz). Low-frequency (LF)
and high-frequency (HF) bands were also calculated based
on the pulse rate.

3.1.2 Stimuli
For the driving course, several driving patterns were set in
advance, and from these, several patterns wherein motion
sickness could easily occur were selected. The course
consisted of a combination of left and right turns and
emergency braking/emergency acceleration. The content of
the driving course is summarized in Table I. All the drivers
were trained to drive at the same pace.

Table I. Driving course.

Time (sec) Driving patterns

0–15 Sharp cutbacks left and right
15–35 Turning 2.5 times to the left
35–55 Turning 2.5 times to the right
55–65 Stop by emergency brake/emergency acceleration× 3 times
65–95 Turn three times in a Figure 8 pattern
95–105 Sharp cutbacks left and right
105–125 Turning three times to the left
125–130 Stopping using the emergency brake

3.1.3 Procedure
Eleven adult drivers participated in the experiment. The
purpose of the experiment and what the participants had to
do in the experiment was explained and informed consent
was obtained from them. Participant was explained that 1
(Slight sickness) is a different state from 0 (No sickness), and
evaluation as 1 should be made when feeling even a little
sick. Then, various devices were attached for measurement
purposes, and the participants were asked to sit in the
passenger seat. To ensure stable measurement and posture,
they placed their left hands on a jig and lightly gripped
the door handle with their right hand as if holding it. The
discomfort level was checked before starting the experiment,
and the participants only had to verbally rate their discomfort
level every 10 s during the experiment. The sound to be
evaluated was confirmed and the experiment was started.
From the start of the drive, participants verbally rated their
discomfort according to a cue from an electronicmetronome
every 10 s. When a participant suffered extreme motion
sickness, the experiment was stopped.

3.2 Simulation through Stereoscopic Imaging
(Experiment 2)
3.2.1 Measures
The indicators of Experiment 1 were acquired for the
simulation experiment. Specifically, as a subjective indicator,
participants were asked to respond every 10 s in regard
to three levels of motion sickness: (1: Nothing, 2: Slightly
Sickness, or 3: Highly Sickness). As objective indicators,
cerebral blood flow, pulse rate, acceleration, and EDA were
obtained (10 Hz). LF and HF bands were also calculated
based on the pulse rate.

3.2.2 Stimuli
VR cameras were attached to the participants’ heads, and
the course run in Experiment 1 was captured (Figure 1). An
Insta360EVOcapable of capturing 3DVR180 videoswas used
as the VR camera. The video size was 3840× 3840 px (one
eye: 3840× 1920, 50 fps, 20 Mbpm) and the duration was
130 s.
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Figure 1. VR camera attached to the participant’s head.

Figure 2. Layout of the stereoscopic visual simulation experiment.

3.2.3 Procedure
A total of 54 adults participated in the experiment. The
purpose of the experiment and what the participants had to
do in the experiment was explained and informed consent
was obtained from them. Participant was explained that 1
(Slight sickness) is a different state from 0 (No sickness), and
evaluation as 1 should be made when feeling even a little
sick. Then, various measurement devices were attached, and
participants were asked to sit in the bucket seat to begin
the simulation (Figure 2). VIVE Pro VR headset (HTC) was
used for presenting the VR video stimuli. The discomfort
level was checked before starting the experiment, and the
participants only had to verbally rate their discomfort level
every 10 s during the experiment. From the start of the
video, participants verbally rated their discomfort based on
an electronic metronome cue every 10 s.

Figure 3. Transition of motion sickness.

4. RESULTS
Within each indicator, there were many participant data
and time interval data with missing values, and these were
excluded from the analysis data. For this reason, the result
was analyzed for only 9 people in Experiment 1 and 52 in
Experiment 2.

4.1 Subjective Indicators
(1) Real vehicle experiment (Experiment 1)

In regard to the three levels of motion sickness, there
were 85 cases of 1 (No sickness), 31 cases of 2 (Slight
Sickness), and 1 case of 3 (High Sickness). The transition of
motion sickness for each time interval is shown in Figure 3
on Experiment 1. In the plots, the horizontal axis indicates
the time interval, and the vertical axis indicates the average
of motion sickness in all participants. Significant differences
were seen in one-way repeated measures ANOVA with time
interval (F(12, 96) = 2.216, p = 0.017, and η2

= 0.109).
Shaffer post-hoc paired test with time factor was conducted
but there were no significant differences.

(2) Stereoscopic visual simulation
In regard to the three levels of motion sickness, there

were 456 cases of 1 (No sickness), 196 cases of 2 (Slight
Sickness), and 24 cases of 3 (High Sickness). The transition
for each time interval is shown in Fig. 3 on Experiment 2. In
the plots, the horizontal axis indicates the time interval, and
the vertical axis indicates the average of motion sickness in
all participants. Significant differences were seen in one-way
repeated measures ANOVA with time interval (F(12, 612)=
11.736, p< 0.001, and η2

= 0.090). Shaffer post-hoc paired
test with time factor showed significant differences in Time
0-10 sec (T1)–T9, T10, T13, T2–T7, T8, T9, T10, T11, T12,
T13, T3–T7, T8, T9, T10, T13, T4–T9, T10, T13, T5–T10,
T13, T6–T10, and T13 (Table A1 and Table A2).

4.2 Objective Indicators
To judge the correspondence with the subjective indicators,
we calculated the mean value of each indicator, using 10 s
as an interval. Additionally, the objective indicators used
were EDA, pulse rate, and LF/HF, and each participant was
normalized from−1 by MinMaxScaler to see the variation.
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Figure 4. Results of EDA.

4.2.1 EDA
(1) Real vehicle experiment (Experiment 1)

The mean values and standard error for each time
interval are shown in Figure 4 on Experiment 1. The
mean value before normalization was 9.16 (µS). Significant
differences were seen in one-way repeatedmeasures ANOVA
with time interval (F(12, 96) = 4.142, p < 0.001, η2

=

0.259). Shaffer post-hoc paired test with time factor showed
a significant difference between T1 and T2.

(2) Stereoscopic visual simulation
The mean values and standard error for each time

interval are shown in Fig. 4 on Experiment 2. Themean value
before normalization was 8.14 (µS). Significant differences
were seen in one-way repeated measures ANOVA with
time interval (F(12, 96) = 3.604, p < .001, and η2

=

0.039). Shaffer post-hoc paired test with time factor showed
significant differences between T1–T2, T3, T4, and T11
(Table A3 and Table A4).

4.2.2 Pulse Rate
(1) Real vehicle experiment (Experiment 1)

The mean values and standard error for each time
interval are shown in Figure 5 on Experiment 1. The mean
value before normalization was 101.47 (bpm). Significant
differences were seen in one-way repeatedmeasures ANOVA
with time interval (F(12, 96) = 3.969, p < 0.001, and
η2
= 0.250). Shaffer post-hoc paired test with time factor

showed significant differences between T3 and T7.
(2) Stereoscopic visual simulation
The mean values and standard error for each time

interval are shown in Fig. 5 on Experiment 2. The mean
value before normalization was 83.71 (bpm). Significant
differences were seen in one-way repeatedmeasures ANOVA
with time interval (F(12, 96) = 4.311, p < 0.001, and
η2
= 0.036). Shaffer post-hoc paired test with time factor

showed significant differences between T1–T3, T2–T3, T4,
T3–T6, and T4–T6 (Table A5 and Table A6).

4.2.3 LF/HF
(1) Real vehicle experiment (Experiment 1)

Figure 5. Results of Pulse Rate.

Figure 6. Result of LF/HF.

The mean values and standard error for each time
interval are shown in Figure 6 on Experiment 1. The mean
value before normalization was 2.85. Significant differences
were not seen in one-way repeated measures ANOVA
with time interval (F(12, 96) = 1.595, p = 0.106, and
η2
= 0.052).
(2) Stereoscopic visual simulation
The mean values and standard error for each time

interval are shown in Fig. 6 on Experiment 2. Themean value
before normalization was 3.06. Significant differences were
not seen in one-way repeated measures ANOVA with time
interval (F(12, 96)= 1.258, p= 0.240, and η2

= 0.011).

5. PREDICTIONOFMOTION SICKNESS USING DEEP
LEARNING

5.1 Model
For the model to predict motion sickness, a deep learning
model based on one-dimensional convolutional neural
network (1DCNN) was used. The prediction was performed
using a recurrent neural network (RNN); however, as
the 1DCNN model had higher precision, we reported
the 1DCNN model results. The model had three layers–
convolution, pooling, and dropout–and two fully connected
layers. In the first fully connected layer, we input the
predicted value for motion sickness in the previous interval.
Leaky ReLUwas used as the activation function, and Softmax
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Figure 7. Image of the model used for predicting motion sickness.

Table II. Confusion matrix of Experiment 1.

MS PREDICTION
level 0: Nothing 1: Sickness

Cross validation
1

TRUE 0 17 0
1 4 11

2
0 20 5
1 2 5

3
0 25 1
1 1 4

4
0 19 3
1 5 4

was used as the output layer. The categorical cross-entropy
loss function and Adam optimization algorithm were used.
An image of the model is shown in Figure 7.

5.2 Datasets
Data with missing values were excluded, so datasets were for
9 people in Experiment 1 and 52 in Experiment 2 and the
data were divided every 10 s to predictmotion sickness levels.
For objective indicators, EDA, pulse rate, and LF/HF were
used. Each indicator was normalized in theMinMaxScaler as
−1–1 for each participant.When predictingmotion sickness,
as there were few cases of 3 (High Sickness), it was considered
to be 0 (No sickness) as 1 (No Sickness), and 1 (Sickness) as
2 (Slight Sickness) and 3 (High Sickness). So that the data of
Experiment 1 is based on 85 cases of 0, 32 cases of 1, and the
data of Experiment 2 is based on 456 cases of 0, 220 cases of
1.

5.3 Real Vehicle Experiment (Experiment 1)
For accuracy verification, the average value of the results in
four-fold cross-validation randomly in person and time was
used. A summary of the confusionmatrix of the four sessions
is shown in Table II. The mean accuracy of the four sessions
was 0.833, with the F1-score for ‘‘Nothing’’ being 0.883 and
F1-score for ‘‘Sickness’’ being 0.684.

Table III. Confusion matrix of Experiment 2.

MS PREDICTION
level 0: Nothing 1: Sickness

Cross validation 1 TRUE 0 103 18
1 8 43

2
0 93 17
1 10 51

3
0 104 9
1 10 48

4
0 111 5
1 30 25

5.4 Stereoscopic Visual Simulation
For accuracy verification, the average value of the results in
the four-fold cross-validation randomly in person and time
was used. A summary of the confusion matrix of the four
sessions is shown in Table III. Themean accuracy for the four
sessions was 0.844, with the F1-score for ‘‘Nothing’’ being
0.885 and F1-score for ‘‘Sickness’’ being 0.745.

5.5 Stereoscopic Visual Simulation and Real Vehicle
Experiments (Experiment 1 and 2)
To validate the effect of expanding the training data from
Experiment 2, a four-fold cross-validation was performed
on Experiment 1 data. The data from the stereoscopic video
experiment was also added to the training data (Figure 8).
A summary of the confusion matrix for the four sessions is
shown in Table IV. The mean accuracy for the four sessions
was 0.866, with the F1-score for ‘‘Nothing’’ being 0.896 and
F1-score for ‘‘Sickness’’ being 0.754.

6. DISCUSSION
6.1 Subjective Indicators
It is known that the user experience changes with viewing
time in VR [22]. Thus, the effect of time and somatosensory
information was analyzed by comparing Experiment 1 and
Experiment 2. The results of the actual vehicle experiment
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Figure 8. Image of stereoscopic visual simulation’s extended learning
datasets.

Table IV. Stereoscopic visual simulation extension confusion matrix.

MS PREDICTION
level 0: Nothing 1: Sickness

Cross validation 1 TRUE 0 13 4
1 1 14

2
0 20 5
1 1 6

3
0 24 2
1 2 3

4
0 20 2
1 0 9

demonstrated a tendency for motion sickness to increase,
with a peak at the 110-s interval. The results of the
stereoscopic visual experiment demonstrated a tendency for
motion sickness to increase, with a peak at the 100- and
130-s intervals. Where each experiment demonstrated an
increasing trend, the fact that the position of the peak differs
is thought to be due to the fact that the degree of sensory
conflict differs in the various cases of vehicle sickness and
simulation sickness. Particularly, it is affected by the presence
or absence of somatosensory information being presented.

6.2 Objective Indicators
Compared to the real vehicle experiment, each indicator
in the stereoscopic visual experiment tended to vary by
only a small degree. In the results of ANOVA for the real
vehicle experiment, a large effect size was seen for EDA and
HR, whereas a small effect size was seen for LF/HF bands.
Furthermore, in the results of ANOVA for the stereoscopic
visual experiment, a small degree of change was seen for all
participants. This suggests that the response of the objective
indexwas greater for the real vehicle than for the stereoscopic
visuals.

If we compare the peak positions for the objective and
subjective indicators, we can see that the peak position does
not match for any participants. This suggests that evaluating
the response to specific objective indicators and subjective
indicators is difficult.

6.3 Predicting Motion Sickness
The cross-validation accuracy of the real vehicle test was
0.833, and the cross-validation accuracy of the stereoscopic
visual experiment was 0.844. When the learning data
used in the stereoscopic visual experiment was extended,
the cross-validation accuracy was 0.866. In a previous
study, predicting the motion sickness levels through a
self-organizing neural fuzzy inference network (SONFIN)
using EEG signals, an overall accuracy of about 82% through
experiments was achieved [23]. When predicting motion
sickness levels through a three-dimensional convolutional
neural network (3DCNN) using 3D image information,
the correlation between a simulator sickness questionnaire
(SSQ) [24] and prediction score was 0.845 [25]. When
predicting the VR sickness levels through a Deep Long
Short TermMemoryModel (LSTM) using posture instability
signal, the correlation between a SSQ and prediction score
was 0.89 [26]. These results suggest that the accuracy for
predicting motion sickness within the respective tests could
be predicted with constant accuracy. Therefore, it is thought
that the objective indicators obtained in this study can
contribute to predicting motion sickness to some extent.
Additionally, by adding the stereoscopic visual simulation
data to the real vehicle experiment, it was confirmed that the
accuracy for predicting motion sickness in the real vehicle
experiment could be improved. Thus, even when data is
obtained under different environments, the data capture
common responses within the scope of sensory conflict.

7. SUMMARY
In this study, we attempted to predict motion sickness
in automated driving based on data extensions through
a stereoscopic visual simulation. We conducted a real
vehicle experiment and a stereoscopic visual simulation
and predicted the presence or absence of motion sickness
using deep learning. We confirmed that it was possible to
predict motion sickness in a real vehicle with a consistent
level of accuracy. Moreover, we were able to extend the
learning data using stereoscopic visual simulation, and it
was suggested that this may improve accuracy in predicting
motion sickness in actual vehicles. This suggests that in
environments where it is difficult to conduct experiments
with real objects, data acquisition through stereoscopic
image simulations can be utilized for deep learning and
other data applications. Moreover, as different tendencies
were observed in individual indicators, such as objective
and subjective indicators, it is necessary to be careful when
handling the data.
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APPENDIX

Table A1. Post-hoc test results of Subjective indicators of Real vehicle experiment (Experiment 1).

p -value
O–1O sec 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

t -value T1 – 0.347 0.347 0.081 0.347 0.081 0.081 0.081 0.035 0.035 0.051 0.081 0.169

T2 1.000 – 1.000 0.169 1.000 0.169 0.169 0.169 0.081 0.081 0.104 0.169 0.347

T3 1.000 0.000 – 0.169 1.000 0.169 0.169 0.169 0.081 0.081 0.104 0.169 0.347

T4 2.000 1.512 1.512 – 0.169 1.000 1.000 1.000 0.347 0.347 0.169 1.000 0.347

T5 1.000 0.000 0.000 1.512 – 0.169 0.169 0.169 0.081 0.081 0.104 0.169 0.347

T6 2.000 1.512 1.512 0.000 1.512 – 1.000 1.000 0.594 0.347 0.169 1.000 0.347

T7 2.000 1.512 1.512 0.000 1.512 0.000 – 1.000 0.347 0.594 0.347 1.000 0.347

T8 2.000 1.512 1.512 0.000 1.512 0.000 0.000 – 0.347 0.594 0.347 1.000 0.347

T9 2.530 2.000 2.000 1.000 2.000 0.555 1.000 1.000 – 1.000 0.594 0.347 0.169

T10 2.530 2.000 2.000 1.000 2.000 1.000 0.555 0.555 0.000 – 0.347 0.347 0.169

T11 2.294 1.835 1.835 1.512 1.835 1.512 1.000 1.000 0.555 1.000 – 0.169 0.081

T12 2.000 1.512 1.512 0.000 1.512 0.000 0.000 0.000 1.000 1.000 1.512 – 0.347

T13 1.512 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.512 1.512 2.000 1.000 –

Table A2. Post-hoc test results of Subjective indicators of Stereoscopic visual experiment (Experiment 2).

p -value
O–1O sec 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

t -value T1 – 0.485 0.569 0.057 0.051 0.019 0.001 0.001 0.000 0.000 0.001 0.002 0.000

T2 0.704 – 0.044 0.004 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T3 0.574 2.062 – 0.103 0.058 0.051 0.000 0.000 0.000 0.000 0.001 0.002 0.000

T4 1.948 3.045 1.660 – 0.569 0.371 0.006 0.006 0.000 0.000 0.028 0.019 0.000

T5 1.996 3.267 1.939 0.574 – 0.569 0.006 0.011 0.002 0.000 0.044 0.018 0.000

T6 2.431 3.335 1.996 0.903 0.574 – 0.019 0.070 0.017 0.000 0.159 0.255 0.000

T7 3.477 5.419 4.173 2.844 2.850 2.414 – 0.742 0.532 0.031 0.622 0.444 0.059

T8 3.451 5.196 3.965 2.850 2.635 1.849 0.331 – 0.261 0.019 0.785 0.532 0.019

T9 4.428 5.878 4.592 3.756 3.267 2.470 0.629 1.137 – 0.083 0.322 0.168 0.135

T10 5.405 5.838 5.250 4.428 4.229 4.382 2.217 2.431 1.767 – 0.017 0.015 1.000

T11 3.438 4.592 3.472 2.268 2.062 1.428 0.496 0.275 1.000 2.470 – 0.709 0.006

T12 3.247 4.761 3.267 2.414 2.442 1.151 0.772 0.629 1.400 2.521 0.375 – 0.002

T13 5.683 6.908 5.915 4.696 4.804 4.081 1.935 2.431 1.519 0.000 2.850 3.335 –
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Table A3. Post-hoc test results of EDA of Real vehicle experiment (Experiment 1).

p -value
O-1O sec 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

t -value T1 – 0.000 0.002 0.006 0.048 0.071 0.006 0.017 0.028 0.044 0.029 0.025 0.009

T2 5.829 – 0.155 0.042 0.046 0.044 0.609 0.278 0.201 0.126 0.133 0.371 0.514

T3 4.431 1.569 – 0.027 0.049 0.055 0.753 0.591 0.447 0.267 0.301 0.727 0.975

T4 3.662 2.414 2.710 – 0.109 0.109 0.146 0.634 0.919 0.684 0.764 0.640 0.381

T5 2.336 2.364 2.314 1.806 – 0.368 0.038 0.172 0.330 0.673 0.539 0.219 0.122

T6 2.078 2.393 2.241 1.803 0.954 – 0.027 0.071 0.179 0.370 0.241 0.091 0.069

T7 3.700 0.533 0.325 1.609 2.481 2.692 – 0.057 0.037 0.029 0.086 0.405 0.682

T8 2.993 1.164 0.559 0.495 1.499 2.086 2.227 – 0.376 0.088 0.262 0.860 0.404

T9 2.682 1.392 0.800 0.105 1.037 1.474 2.498 0.938 – 0.057 0.398 0.437 0.082

T10 2.391 1.708 1.193 0.422 0.437 0.951 2.663 1.946 2.221 – 0.666 0.079 0.005

T11 2.646 1.672 1.105 0.310 0.642 1.266 1.960 1.208 0.893 0.448 – 0.108 0.025

T12 2.759 0.948 0.362 0.486 1.335 1.922 0.878 0.182 0.819 2.012 1.811 – 0.457

T13 3.425 0.683 0.032 0.926 1.727 2.097 0.425 0.881 1.991 3.809 2.764 0.782 –

Table A4. Post-hoc test results of EDA of Stereoscopic visual experiment (Experiment 2).

p -value
O–1O secc 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

t -value T1 – 0.000 0.000 0.000 0.005 0.006 0.007 0.007 0.011 0.006 0.000 0.002 0.003

T2 6.517 – 0.135 0.222 0.068 0.142 0.358 0.400 0.423 0.589 0.658 0.978 0.875

T3 4.792 1.519 – 0.668 0.154 0.313 0.697 0.735 0.739 0.961 0.310 0.636 0.538

T4 4.250 1.238 0.432 – 0.039 0.312 0.838 0.859 0.844 0.895 0.183 0.482 0.403

T5 2.972 1.867 1.447 2.123 – 0.705 0.347 0.349 0.443 0.305 0.025 0.136 0.122

T6 2.849 1.495 1.019 1.021 0.380 – 0.303 0.420 0.519 0.348 0.022 0.148 0.141

T7 2.834 0.928 0.392 0.205 0.951 1.041 – 0.974 0.971 0.639 0.040 0.263 0.246

T8 2.811 0.850 0.341 0.178 0.947 0.813 0.033 – 0.907 0.533 0.026 0.221 0.213

T9 2.637 0.809 0.335 0.197 0.774 0.649 0.037 0.118 – 0.338 0.010 0.166 0.176

T10 2.861 0.545 0.050 0.133 1.036 0.948 0.472 0.628 0.967 – 0.015 0.268 0.237

T11 3.808 0.446 1.027 1.353 2.316 2.375 2.111 2.293 2.688 2.528 – 0.028 0.592

T12 3.252 0.028 0.477 0.708 1.517 1.471 1.133 1.240 1.407 1.120 2.270 – 0.545

T13 3.198 0.159 0.620 0.844 1.576 1.498 1.175 1.263 1.373 1.197 0.539 0.609 –
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Table A5. Post-hoc test results of Pulse rate of Real vehicle experiment (Experiment 1).

p -value
O–1O sec 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

t -value T1 – 0.033 0.006 0.085 0.542 0.672 0.560 0.479 0.726 0.709 0.588 0.291 0.322

T2 2.569 – 0.374 0.379 0.134 0.046 0.013 0.151 0.126 0.146 0.041 0.154 0.152

T3 3.665 0.941 – 0.038 0.003 0.001 0.000 0.003 0.009 0.021 0.006 0.006 0.003

T4 1.966 0.932 2.488 – 0.047 0.001 0.155 0.308 0.272 0.275 0.041 0.778 0.534

T5 0.636 1.668 4.201 2.347 – 0.005 0.819 0.600 0.792 0.830 0.105 0.466 0.360

T6 0.439 2.366 4.755 4.790 3.843 – 0.263 0.054 0.257 0.217 0.753 0.095 0.045

T7 0.608 3.208 5.848 1.568 0.237 1.205 – 0.642 0.998 0.986 0.299 0.312 0.322

T8 0.743 1.588 4.117 1.088 0.547 2.255 0.483 – 0.410 0.571 0.070 0.532 0.581

T9 0.363 1.711 3.404 1.181 0.273 1.221 0.003 0.870 – 0.949 0.092 0.387 0.352

T10 0.387 1.609 2.865 1.172 0.222 1.340 0.018 0.590 0.066 – 0.013 0.439 0.447

T11 0.564 2.433 3.712 2.435 1.830 0.326 1.111 2.088 1.912 3.179 – 0.104 0.068

T12 1.130 1.575 3.711 0.292 0.765 1.892 1.079 0.654 0.916 0.814 1.836 – 0.852

T13 1.055 1.584 4.173 0.650 0.971 2.381 1.055 0.575 0.989 0.800 2.111 0.193 –

Table A6. Post-hoc test results of Pulse rate of Stereoscopic visual experiment (Experiment 2).

p -value
O–1O sec 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100 100–110 110–120 120–130

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

t -value T1 – 0.965 0.000 0.002 0.052 0.368 0.273 0.026 0.212 0.216 0.223 0.209 0.821

T2 0.045 – 0.000 0.000 0.021 0.256 0.200 0.012 0.141 0.185 O.176 0.166 0.827

T3 4.671 6.856 – 0.331 0.093 0.000 0.002 0.041 0.005 0.010 0.008 0.015 0.001

T4 3.356 4.729 0.982 – 0.143 0.000 0.005 0.159 0.016 0.019 0.017 0.047 0.002

T5 1.991 2.381 1.712 1.489 – 0.002 0.103 0.855 0.228 0.207 0.251 0.351 0.049

T6 0.909 1.149 3.947 4.284 3.190 – 0.633 0.067 0.472 0.506 0.582 0.586 0.429

T7 1.107 1.298 3.325 2.965 1.661 0.480 – 0.078 0.711 0.760 0.804 0.758 0.255

T8 2.302 2.621 2.097 1.430 0.184 1.873 1.798 – 0.100 0.195 0.206 0.329 0.013

T9 1.264 1.496 2.939 2.496 1.221 0.724 0.373 1.675 – 0.904 0.908 0.985 0.088

T10 1.254 1.344 2.663 2.430 1.279 0.670 0.307 1.313 0.122 – 0.982 0.930 0.113

T11 1.235 1.373 2.742 2.459 1.161 0.555 0.249 1.282 0.116 0.023 – 0.877 0.079

T12 1.271 1.404 2.529 2.038 0.941 0.548 0.310 0.986 0.019 0.089 0.156 – 0.025

T13 0.228 0.219 3.662 3.306 2.015 0.797 1.152 2.563 1.739 1.615 1.791 2.304 –
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