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Abstract
Passive stereo vision systems are useful for estimating 3D

geometries from digital images similar to the human biological
system. In general, two cameras are situated at a known dis-
tance from each other and simultaneously capture images of the
same scene from different views. This paper presents a compara-
tive evaluation of 3D geometries of scenes estimated by three dis-
parity estimation algorithms, namely the hybrid stereo matching
algorithm (HCS), factor graph-based stereo matching algorithm
(FGS), and a multi-resolution FGS algorithm (MR-FGS). Com-
parative studies were conducted using our stereo imaging sys-
tem as well as hand-held, consumer-market digital cameras and
camera phones of a variety of makes/models. Based on our ex-
perimental results, the factor graph algorithm (FGS) and multi-
resolution factor graph algorithm (MR-FGS) result in a higher
level of 3D reconstruction accuracy than the HCS algorithm.
When compared with the FGS algorithm, MR-FGS provides a
significant improvement in the disparity contrast along the depth
boundaries and minimal depth discontinuities.

Introduction
The scene being imaged may consist of several elements or

objects. Because photographs and images are only 2D projec-
tions of 3D scenes, they cannot be used to estimate the scene 3D
geometry. In order to reconstruct the 3D geometry of a scene
non-invasively, two or more distinct scene-to-camera orientations
are required. An image can be used to estimate any point’s 3D
coordinate by triangulating the light rays that emerge from the
scene onto two or more cameras by modeling a point within scene
space as a virtual ray of light from the scene onto the sensor.
There are many computer vision applications that benefit from
non-invasive 3D reconstructions from multiple lower-dimensional
observations, such as robotic navigation [1], satellite image based
reconstructions [2], reconstructions using aerial imaging [3], esti-
mating depth distribution of water bodies [4].

Based on a taxonomy of methods [5], 3D acquisition meth-
ods are broadly categorized as active and passive methods. The
active reconstruction methods use controlled illuminations such
as structured illumination [6], photometric stereo [7], and shape
from shading techniques [8]. Unlike the active reconstruction al-
gorithms, which require spatial and temporal modulation of the
scene illumination, passive methods do not require any special-
ized scene illumination requirement. Active reconstruction tech-
niques, in general, are more accurate but also more expensive be-

cause of the unique lighting needs. With recent advancements in
the 3D reconstruction process, such as disparity estimation [9],
passive methods can be employed for a wide range of computer
vision problems, such as for autonomous navigation.

According to the quantity of images or views with distinct
scene-camera orientations needed, passive algorithms are further
divided into single and multi-viewpoint algorithms. The passive
stereo vision needs two images of a scene, each of which has a
distinct camera orientation and has significant overlap between
the images. 3D coordinates of scene points are estimated based
on the disparity of pixel coordinates of scene points mapped onto
stereo cameras. As a result, accurate stereo disparity estimates are
crucial for reconstructing the 3D geometry of a scene with high
accuracy.

Prior to this study, we developed three disparity estimation
algorithms with higher accuracy, namely the hybrid stereo match-
ing algorithm (HCS) [10], factor graph-based stereo matching
algorithm (FGS) [9], and multi-resolution FGS algorithm (MR-
FGS) [11]. This paper aims to demonstrate passive 3D recon-
struction using these new disparity estimation methods and assess
the quality of their 3D reconstructions.

The remainder of this paper will describe the passive stereo
vision system, briefly describe the previously developed dispar-
ity estimation algorithms, present 3D reconstruction results, and
conclude with our findings.

Passive Stereo Vision System
Uchida et al. [12] developed one of the early facial recog-

nition systems using a passive stereo vision model. The stereo
imaging system consisted of two stereo cameras (a total of 4 CCD
cameras), each with a narrow baseline to minimize occluded pix-
els within each stereo camera. A wider baseline between these
two stereo cameras was used to achieve a more accurate 3D re-
construction though such configuration leads to pixel occlusions.
The final 3D information was obtained using integrated 3D data
from left and right parallel cameras using a phase-based image
matching technique.

In stereo vision systems with two cameras, intensity differ-
ences and illumination variations are generally due to smaller dif-
ferences in focal lengths and zoom levels between the cameras.
Thus, the accuracy of the estimated disparities or stereo corre-
spondences are affected by differences in the pixel intensity dif-
ferences and illumination differences. Lee et al. [13] introduced
a new stereo vision setup, including a camera and a biprism to
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create two images with different viewpoints of a scene and recon-
struct a few lines of the scene. Recently, Liang et al. [14] used
this acquisition technology to reconstruct 3D information of the
textureless weld pool surface during many penetration phases.

Passive stereo vision systems are useful for estimating 3D
geometries from digital images similar to the human biological
system. In general, two cameras are situated at a known distance
from each other and simultaneously capture images of the same
scene from different views. While several stereo cameras are
commercially available such as Bumblebee XB3 and Bumblebee
2, Kinect 3D, MEGA-DCS, Ensenso N10, Capella, and Scorpion
3D Stinger, it is possible to build a passive stereo arrangement
using only two webcam cameras.

The general 3D reconstruction pipeline involves identifying
the optical characteristics of the cameras in the stereo setup us-
ing a camera calibration procedure (focal length, sensor distor-
tion characterized as intrinsic parameters), geometrical relation-
ship between the cameras (relative orientation and offset), corre-
spondences between the stereo images (disparity estimation) and
estimating the 3D coordinates of the entire scene imaged by the
stereo camera arrangement. A geometric model of image forma-
tion based on a pinhole camera design is commonly used to relate
the 2D pixel coordinates in the acquired images with the 3D object
coordinates in the scene. Thus, the model allows to characterize
any distortions in the geometrical mapping such as scaling and
skewness introduced by the camera optics and its imaging sensor.

In a stereo arrangement, the relative geometries of two pin-
hole models (one for each camera) are represented using extrinsic
characteristics of each camera, namely the relative position or
offset and orientation with respect to a chosen frame of reference
(reference coordinate system) in the scene. Specifically, the es-
sential matrix of a camera is useful for geometrically relating the
corresponding pixels in a stereo setup using a normalized pinhole
model (where the effects of the camera intrinsic parameters are
removed from the corresponding pixel coordinates). More specif-
ically, with one of the cameras as a reference, the essential matrix
is useful for estimating the relative orientation and offset charac-
teristics of the second camera with respect to the reference cam-
era. In an uncalibrated stereo setup, a fundamental matrix relates
the corresponding pixel coordinates using a non-normalized pin-
hole model. The essential matrix and relative camera orientations
are then estimated from the fundamental matrix. Finally, the 3D
scene coordinates are estimated using the pinhole model of im-
age formation using the estimated point correspondences and the
camera parameters (intrinsic and extrinsic) [15].

In general, the reconstruction process described earlier pro-
vides a sparse geometric description of the scene and may not be
sufficient for achieving a good visual representation of the scene.
Therefore, disparity maps estimated from rectified stereo images
are used for 3D reconstruction. In brief, rectification simplifies the
stereo correspondence problem by applying a single linear trans-
formation to the stereo image to make the image planes of both
the cameras parallel to each other [16]. After the rectification pro-
cess, the horizontal displacement between corresponding points
in the first and second images is obtained using stereo matching.
The horizontal separation of an object seen by first and second
images (similar to the left and right eyes) creates stereo dispar-
ity [17]. Based on the triangulation process in epipolar geometry
and the fact that the depth information is inversely proportional to

the disparity between two corresponding points, the depth infor-
mation is perceived by knowing the stereo disparity and distance
between two cameras.

Disparity Map Estimation Algorithms
Estimates of disparities among multiple views of a scene are

useful for building a dense 3D architecture of a scene. Stereo
matching algorithms can estimate a disparity map comprised of
dense pixel-level correspondences between two views in a stereo
pair. In the following subsections, we briefly present our previ-
ously developed disparity estimation techniques and subsequently
evaluate these techniques for building 3D geometries of scenes
using stereo cameras.

1. A hybrid of cross-correlation between stereo-
image pairs and scene segmentation (HCS)

In this study, we developed a new stereo-matching algorithm
using guided image filtering (GIF)-based cost aggregation [10].
The main contribution of this framework is a combination of prior
scene segmentation and cross-correlation between stereo images
to produce an initial disparity map [10]. In brief, a new hy-
brid stereo-matching algorithm (HCS) was proposed that incor-
porates a priori distribution of disparity estimates and a normal-
ized cross-correlation cost measure. The initial disparity map was
efficiently calculated by guiding the search locations in the Mid-
dlebury benchmark stereo images. The cost volume was aggre-
gated using edge-preserving guided filtering to improve accuracy.
The proposed method was compared with recent state-of-the-art
approaches, resulting in lower disparity errors in 8 out of the 15
tested stereo pairs among all evaluated non-learning methods. Al-
though a relatively higher disparity error was observed in stereo
images with large disparity, the overall performance of the pro-
posed approach was better, as indicated by the lower average dis-
parity error.

2. A novel factor graph-based optimization
technique for stereo correspondence estimation
(FGS)

The FGS disparity estimation algorithm utilized spatial de-
pendencies between image intensity and disparity estimates to
produce more accurate disparity estimates [9]. In brief, image
segments were formed by grouping scene elements from a refer-
ence image in each stereo pair and a priori disparity distributions
were established using a select set of disparities within each seg-
ment. The factor graph model associated each pixel within a seg-
ment with its corresponding a priori disparity distribution. The
spatial dependencies among disparity estimates were taken into
account to estimate a posteriori disparity for each pixel using a
larger and spatially variable neighborhood system. This resulted
in improved disparity estimates in areas with smoother texture and
reduced occlusion, as well as higher disparity contrast along depth
boundaries. The final disparity map was produced through post-
processing of the generated posterior disparity map.

The proposed factor graph methodology can be utilized to
arrive at the maximum a posteriori estimates from models or op-
timization issues that have a complex relationship between hid-
den variables. When factor graph-based inference problems re-
quire the computation of message convergence, using a priori
distributions with a shorter support and spatial dependencies can
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be helpful. A new factor-graph-based disparity estimation al-
gorithm was rigorously evaluated using Middlebury benchmark
stereo datasets. Factor-graph algorithms provide higher accuracy
disparity estimates compared to recent non-learning and learning-
based disparity estimation algorithms using the Middlebury eval-
uation dataset version 3.05.

3. Multi-Resolution Factor Graph Based Stereo
Correspondence Algorithm (MR-FGS)

The MR-FGS algorithm is a probabilistic graphical model
that uses spatial and multi-resolution dependencies among ran-
dom variables of the multi-resolution factor graph (MR-FGS)
[11]. With a potential for a variety of applications, previously
we demonstrated that the MR-FGS model improved accuracy
and contrast along depth boundaries over the earlier FGS model.
A comparison was made between the proposed multi-resolution
probabilistic factor graph model and the FGS results using the
Middlebury benchmark stereo datasets. We found that the multi-
resolution factor graph algorithm improved depth boundary con-
trast and provided more accurate disparity estimates. In compari-
son to the FGS algorithm, the MR-FGS algorithm eliminates the
need for computationally intensive left-right consistency checks
for the disparity estimates.

3D reconstruction experimental Results
In this section, we demonstrate the 3D reconstruction of

stereo image pairs utilizing the proposed novel disparity map
methods after conducting sparse and dense 3D reconstruction
methodologies. Using a custom-built stereo imaging system, we
captured stereo images and generated sparse and dense 3D re-
constructions. In addition, we used stereo images captured using
hand-held, consumer-market digital cameras, and camera phones
of a variety of makes/models available from [18] to demonstrate
the 3D reconstruction procedure.

1. Results of Real-World Stereo Images Captured
From Our Imaging System

We constructed a simple imaging system consisting of two
webcams (USB2.0 PC Camera, focal length 3.85mm 10x) placed
six inches apart. The focus of each camera was verified and ad-
justed as a pair. The illustration in Figure 1 depicts our simple
stereo camera setup.

Figure 1: A basic stereo imaging setup was created. The proto-
type is comprised of two USB webcam cameras with a 3.85mm
10x focal length, and were positioned six inches apart from each
other.

Stereo images captured using our stereo imaging system are
shown in Figure 2, image (a) captured by the left camera and im-
age (b) captured by the right camera simultaneously. After using
the proposed disparity estimation algorithms, (c) initial disparity
map was obtained using HCS algorithm [10] without cost aggre-
gation step, (b) HCS after cost aggregation [10], (d) FGS algo-

rithm [9], and (f) MR-FGS algorithm [11].
Figures 3 (a) to (d) display illustrations of dense 3D recon-

structions obtained from the initial disparity maps and the dispar-
ity maps of HCS [10], FGS [9], and MR-FGS algorithm [11].

2. Results of Real-World Stereo Images Captured
From Other Imaging Systems

Aside from the stereo images captured with our simple stereo
imaging setup, we also used consumer-market digital cameras and
camera phones of a variety of brands and models to produce real-
world stereo images [18].

Figures 4 and 5 show disparity estimations and sparse/dense
3D reconstruction results of the hand print stereo images. Figures
6 and 7 show disparity estimation and 3D reconstruction results
of the church stereo images.

As illustrated by the 3D reconstructions, the accuracy of the
3D point-cloud estimated from the stereo image pairs was signif-
icantly higher for the FGS and MR-FGS algorithms when com-
pared to the HCS algorithm. In particular, there were fewer depth
discontinuities and reduced depth jumps along object boundaries
when reconstructions were based on MR-FGS disparity maps.

Conclusions
We compared 3D scene geometries estimated using three re-

cent disparity estimation algorithms, namely the Hybrid Stereo
Matching Algorithm (HCS) [10], the Factor Graph-based Stereo
Matching Algorithm (FGS) [9], and the Multi-Resolution Factor
Graph-based Stereo Matching Algorithm (MR-FGS) [11]. Com-
parisons were made using images captured with our stereo setup
as well as using various consumer-grade cameras and camera
phones, as documented in [18]. Our experiment results show that
both the FGS [9] and MR-FGS [11] algorithms produce more ac-
curate 3D reconstructions compared to the HCS [10] algorithm.
The MR-FGS algorithm [11] showed significant improvement in
the quality of 3D reconstruction as evidenced by enhanced dispar-
ity contrast along depth boundaries and reduced depth discontinu-
ities (spurious depth jumps) when compared to the FGS algorithm
[9].
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(a) (b) (c) (d) (e) (f)

Figure 2: Disparity between the stereo images of an office view. (a) left image (b) right image, (c) initial disparity map, computed using
the proposed approach in [10] without cost-aggregation and post-processing steps (d) HCS algorithm [10] , (e) FGS algorithm [9], and
(f) MR-FGS algorithm [11].

(a) (b) (c) (d)
Figure 3: 3D view of an office scene reconstructed based on stereo disparity maps estimated using (a) an initial disparity map (b) HCS
disparity map, (c) FGS disparity map, and (d) the MR-FGS disparity map.

(a) (b) (c) (d) (e) (f)
Figure 4: Disparity results of the hand print stereo images. (a) left image (b) right image, (c) initial disparity map computed using the
proposed approach in [10] without cost-aggregation and post-processing steps (d) HCS algorithm [10] , (e) FGS algorithm [9], and (f) the
MR-FGS algorithm [11].

(a) (b) (c) (d)
Figure 5: 3D views of the hand print reconstructed based on stereo disparity maps estimated using (a) an initial disparity map (b) HCS
disparity map, (c) FGS disparity map, and (d) MR-FGS disparity map.

(a) (b) (c) (d) (e) (f)
Figure 6: Disparity estimates of the church stereo images (a) left image and (b) right image; (c) an initial disparity map, computed using
the proposed approach in [10] without cost-aggregation and post-processing steps considering occluded regions (d) HCS algorithm [10]
, (e) FGS algorithm [9], and (f) the MR-FGS algorithm [11]
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(a) (b) (c) (d)
Figure 7: 3D reconstruction of the church stereo images based on the disparity maps estimated using (a) an initial disparity map (b) HCS
disparity map, (c) FGS disparity map, and (d) the MR-FGS disparity map [11].
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