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Abstract
Remote inspection of unknown and hostile environments can

be performed by military/police personnel via the deployment of
sensors and SLAM-based 3D reconstruction techniques. How-
ever, the generated point clouds cannot be transmitted to coordi-
nators in real time, because of their large volume sizes. A common
data-reduction solution is to convert 3D point cloud models into
2D floor plans. In this paper, we propose an end-to-end network
for automated floor plan generation from noisy point clouds to es-
timate the main building structures (doors, windows and walls).
First, the noisy 3D point cloud is column-filtered to remove irrele-
vant or noisy points. Second, we project the remaining points onto
a grid map. Finally, an end-to-end neural network is trained to
generate an accurate line-based floor plan from the grid map. Ex-
perimental results reveal that the proposed method generates floor
plans that accurately represent the main structures of a building.
On average, the estimated floor plans reach a 0.66 F1 score for the
building-layout evaluation, which outperforms the state-of-the-
art methods. Furthermore, using floor plans reduces the model
size by thousands of times on average, which enables real-time
communication about the building structure.

Introduction
Floor-plan generation is an essential topic in many fields,

especially in remote inspections of unknown and hostile envi-
ronments. For an interior inspection, defense/police person-
nel often need to enter unknown hostile buildings without any
map, while being coordinated by a remotely located comman-
der via radio communication only. To enhance the commander’s
global situational awareness, on-body sensors and the SLAM sys-
tem [2, 9, 3, 4] are used to generate a 3D building model in real
time. However, the radio channel bandwidth (0.1-1.0 Mbps) is in-
sufficient to transmit the reconstructed point clouds (45-100 MB)
to the commander. A common solution is to convert the point
cloud into a 2D floor plan.

Current research [10, 6, 8, 12, 13] performs floor plan gen-
eration from noise-free 3D point clouds that are obtained by ac-
tive sensors (LiDAR and ToF cameras). However, in our project,
the choice is constrained to passive sensors (monocular and stereo
cameras) only to avoid inspecting personnel being exposed. Since
passive sensors are not able to compute depth data accurately, the
resulting stereo-based point clouds are very noisy. The depth inac-
curacy is caused by the small baseline of a stereo camera or poor
indoor illumination. Therefore, an advanced method is required
for robust floor plan generation from noisy point clouds.

In this paper, we introduce a DL-based floor plan genera-
tion method that generates accurate 2D floor plans for stereo-
based point clouds. Stereo images are first sent to a SLAM base-
line which generates raw point clouds. Afterwards, we apply a

Figure 1. Floor plans generated by the proposed deep learning network.

Top row: Point cloud models. Middle row: grid maps. Bottom row: Generated

floor plans.

column filter to pre-process the noisy point. Then an orthogo-
nally projected grid map is supplied to a trained network for floor
plan generation. Our contributions are threefold. First, the pro-
posed method based on the trained network creates floor plans
that clearly and accurately depict the main structures of a building
(walls, doors and windows). Second, we create a dataset contain-
ing a labeled grid map that describes various building structures.
Third, the generated floor plans reduce the data size by thousands
of times on average which enables 3D data transmission via radio
communication.

Related work
In 3D research, floor plan is a good replacement for the point

cloud model, since it can represent the main structure of a build-
ing, but it requires a much smaller data size. Most researchers
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Figure 2. Overview of the proposed DL-based floor plan generation. A modified L-CNN network is adopted as a baseline. A stacked hourglass network is

utilized for primary feature extraction. Then, junction and line candidates are generated by the junction-proposal module and the line-sample module, respectively.

Afterwards, a line-verification network classifies line candidates into positive and negative lines. Finally, we modify the function of the total loss calculation to

improve the positive line sensitivity of the network.

utilize lines and planes as primary blocks to construct floor plans.
A common way in the literature is to apply the RANSAC algo-
rithm [14] to fit plane candidates in a point cloud [16, 15, 13].
However, this computation is expensive and the algorithm is in-
fluenced by outliers. Research in [7] draws horizontal and verti-
cal line candidates for each wall pixel. Then lines are filtered by
counting the overlapping area between the line candidates and the
projected wall points. This method provides clean and accurate
floor plans, but it is limited by the Manhattan world assumption
using vertical and horizontal lines only. Luperto [11] detects line
features in a 2D grid map by combining the Canny edge detec-
tion and the directional Hough transform [5]. Cai [6] estimates
the boundary of a building by calculating the confidence score
that one unit region is part of the external boundaries. However,
for all of the aforementioned methods, a noise-free point cloud is
required as the input.

Recently, deep learning techniques have become capable to
solve the floor plan generation problem [10] [8] [12]. Most re-
searchers train specialized end-to-end networks to convert point
cloud models into floor plans. However, these deep learning
methods are trained with clean point clouds generated by active-
sensor SLAM systems. In our case, incorrect depth information
from a stereo sensor can lead to a very noisy 3D point cloud.
Unfortunately, the above-mentioned methods show poor perfor-
mance on point clouds obtained by passive stereo or monocular
sensors, because of the noisy characteristics. L-CNN is an end-
to-end network that takes an RGB image as the input and shows
good performance on wireframe parsing [1]. However, the cur-
rent L-CNN provides insufficient results, since it is not designed
for floor plan generation. Therefore, we adopt L-CNN as a base-
line and re-train it with modifications. The next section introduces
a robust floor plan generation from noisy point clouds.

Method
First, we present an overview of the proposed system. Fig-

ure 2 depicts the proposed DL-based generation method. The raw
point cloud is originally obtained by a stereo-based RTAB-Map
system. In the proposed method, first, a column-filtering com-
ponent is applied to pre-process the noisy point cloud. The pre-
processed point cloud is then orthogonally projected onto a black-
and-white 2D grid map with a grid size of 10×10 cm. In this grid
map, we assign a white pixel to a grid cell, in case at least one
point appears in this grid. The obtained grid map is the input for
the floor plan generation network.

As shown in Fig. 2 (middle), the L-CNN network contains
four components. An RGB image is first fed into a stacked
hourglass network for the primary feature extraction. Then a
junction-proposal module estimates the junction map that indi-
cates the location of candidate junctions (end points of line seg-
ments). Every two junctions are able to constitute a line candi-
date, but the amount of positive lines (existing lines) and negative
lines (not existing lines) is highly unbalanced. Imbalanced data
causes the trained network to be biased towards the majority class
only. Therefore, L-CNN utilizes a line-sample module to solve
the above-mentioned issue. Finally, a line-verification network
takes the estimated line candidates and primary feature maps as
inputs to implement the positive and negative line classification.
As shown at the left of Fig. 2, the input grid map in our case dif-
fers from the RGB image. A grid map contains less information
compared to an RGB image. Therefore, we modify the network
and re-train it using a grid-map dataset.

Besides the changed input data, we have found that the de-
fault loss function of the L-CNN network is not suited for floor
plan generation. The loss of the junction map receives the high-
est weight in the default loss function, while other losses share the
same weight. In our scenario, the impact of missing line segments
is more important than the extraction of noisy lines. It is possi-
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Figure 3. Six examples of qualitative evaluation and comparison. Column A: Raw stereo-based point clouds. Column B: Black-white grid maps after column

filtering. Column C: Manually labeled ground-truth floor plan. Column D: floor plans estimated by the Hough method. Column E: floor plans estimated by the

Cai method. Column F: floor plans estimated by the proposed method.

ble to remove noisy lines by applying post-processing techniques.
However, missing lines lead to an incomplete global floor plan,
which can influence the decision of the commander. Therefore, it
is not fair to assign the same weight for the losses of positive and
negative lines. In order to improve the network sensitivity to pos-
itive lines, we modify the loss function as follows. Because of the
higher importance of the positive lines, we assign a higher weight
factor WH to the use of positive lines. Moreover, the higher loss
weight also applies to the junction map because they are essential
for the construction of the building. The new loss function is de-
fined as the sum of several loss components, where the loss com-
ponents for junction L j and positive lines Lp are assigned higher
weights, so that:

LTotal =WH(L j +Lp)+WL(Ln +Ll). (1)

Parameters Ln and Ll represent the loss components for negative
lines and line map, respectively. We assign a higher weight WH=8

to parameters that are significant for the floor plan extraction. The
lower weight WL=1 is applied for less important parameters. In
order for the network to generate lines in noisy grid maps, we re-
train the network using our labelled grid-map dataset. This dataset
is needed because passive-sensor data for floor plan generation is
not publicly available. The details of this dataset are explained in
the next section.

Experiments

We have created a stereo-based grid map dataset for train-
ing and evaluation. The data generation procedure is explained in
Subsection A. For evaluation, the proposed network is compared
to two state-of-the-art methods: Hough [5] and Cai [6]. Subsec-
tion B and Subsection C describe the qualitative and quantitative
results, respectively. Furthermore, the model-size reduction is dis-
cussed in Subsection D.

IS&T International Symposium on Electronic Imaging 2023
3D Imaging and Applications 2023 105-3



A. Dataset generation
We have scanned 16 buildings with various structures, in-

cluding houses and university buildings using the stereo ZED
Mini camera (Stereolabs Inc., San Francisco, USA). Table 1 lists
the properties of the 16 different buildings inside the dataset. As
shown in Table 1, the first eight buildings are of the house type.
We scan Buildings B1 and B4 twice with the internal lights on and
off. In other house-type buildings, we had to scan without inter-
nal lights, due to the absense of electricity. We have noticed that
there is a drift in the generated point cloud model due to the poor
illumination conditions. Therefore, we have adjusted several pa-
rameters of the SLAM baseline, to obtain point cloud models with
lower drift. All university-type buildings (B9 to B16) are scanned
with internal lights on. These buildings have no windows, and the
interior of the building is too dark for the visual SLAM algorithm
when the lights are turned off. Furthermore, when generating the
filtered grid map, we apply grid sizes of 5 cm and 10 cm except
for Building B16, since the building size of B16 is too large. As a
result, we have 47 grid maps for 16 buildings in total. All scanned
data is sent to the SLAM baseline, in order to generate a filtered
black-white grid map.

The ground truth of the floor plan is manually labeled. Fur-
thermore, data augmentation techniques are applied to enlarge the
dataset and improve the network generalization capability. We
have applied vertical and horizontal flipping, rotation every 45 de-
grees, blurring, adjusting the aspect ratio, and scaling in the x-axis
and y-axis. Afterwards, we have split the dataset into training
(90%), validation (10%) and test set (10%). We have deliberately
placed all the grid maps of Building B9 and B13 into the test
set to ensure that there are unseen building structures in the test
set. Moreover, all blurred grid maps in the test set are discarded,
since the augmentation by blurring is applied purely to improve
the network generalization capability during training. The result-
ing dataset contains 20,072 training and 1,994 testing grid-map
images.

B. Qualitative evaluation
Figure 3 shows examples of the qualitative comparison for

six buildings reconstructed with the stereo SLAM baseline. We
compare the performance of the proposed method with two state-
of-the-art methods. Cai assumes in his work [6] that the main
structures of the buildings are perpendicular or parallel to the x-
axis or y-axis. To make a fair comparison, we rotate the input grid
map, as a pre-processing step for the method in [6]. In Fig. 3,
the orange lines in Columns D, E, and F present the estimated
floor plan. It can be observed that the Hough transform performs
worst. It fails to detect lines in example E5. With a pre-processed
input, it can be noticed that the method from [6] can only detect
a few lines. By comparing Columns C and F, we observe that the
results of the proposed method almost coincide with the ground
truth. However, we have also found a few limitations. First, a
nonuniform thickness of structures results in a missing line which
can be seen in Example E6. Second, Example E3 shows that the
network cannot distinguish noise caused by objects (e.g., furni-
ture, people).

C. Quantitative evaluation
Table 2 depicts the quantitative comparison using three met-

rics adopted from [8], [12] and [10].

Buildings Lights grid size Baseline
condition (cm) parameter

B1 off,on 5,10 #

B2 off 5,10 !

B3 off 5,10 !

B4 off,on 5,10 #

B5 off 5,10 !

B6 off 5,10 !

B7 off 5,10 !

B8 off 5,10 !

B9 on 5,10 #

B10 on 5,10 #

B11 on 5,10 #

B12 on 5,10 #

B13 on 5,10 #

B14 on 5,10 #

B15 on 5,10 #

B16 on 10 #

Table 1. The generation strategies for the grid map of Build-
ings B1-B16 in our dataset. Buildings B1-B8 are house-type
constructions, while the rest are university-type buildings.

Metric 1. Precision/recall of end points: A point is consid-
ered true positive if the distance to the nearest point in the ground
truth is lower than 10 pixels. Similarly, false positive means
that there are no ground-truth points near the target point within
10 pixels. Conversely, false negative counts contain the amount
of ground-truth points without estimated points within 10 pixels.

Metric 2. Precision/recall of lines: A line is considered
to be true positive if the largest distance between the two start
points or the two end points of two line segments is smaller than
10 pixels compared to the nearest ground-truth line.

Metric 3. F1 score of global layout: To compute this met-
ric, we first generate a global layout of line maps by the rasterizing
line technique [17]. Parameter T Pl presents the amount of over-
lapping pixels between the ground truth and the estimated line
map. Likewise, FPl and FNl count the number of the residual
pixels of lines in the estimated and the ground-truth layout (line)
map, respectively. The F1 score is defined by:

F1 =
2 ·T Pl

(FPl +FNl +2 ·T Pl)
. (2)

However, single-pixel accuracy is difficult to obtain with Metric 3,
because noisy indoor structures are on average 6 pixels thick in the
grid map. Therefore, similar to research in [8] [10] [7], a relax-
ation strategy is applied to the estimated layout map by marking
5 pixels around each line.

Table 2 depicts the quantitative results. It can be noticed that
our results reach the highest score under each metric. For Met-
ric 1, the proposed DL-based method reaches 0.98 precision and
0.95 recall scores. It proves that the trained network is able to ac-
curately estimate the location of end points. However, the residual
noisy lines and missing lines decrease the score of Metric 2 and 3.
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Metric 1 Metric 2 Metric 3
Methods Precision Recall Precision Recall F1 score
Hough 0.71 0.26 0.10 0.02 0.13
Method [7] 0.67 0.25 0.17 0.05 0.02
DL-based 0.98 0.95 0.45 0.45 0.66

Table 2. Quantitative evaluation results of several floor plan creation methods. We have selected three metrics and calculate the
average scores for the test dataset. Metric 1 evaluates the junction (end points) positions. Metric 2 focuses on the evaluation
of each connected junction pair (estimated line object). Metric 3 compares the heat map of lines between the estimated building
layout and the ground truth. The highest scores are in bold.

D. Size reduction of the model
The average size of our raw point cloud model is 76.7 MB,

while the average size of a generated floor plan is only 1.1 KB.
The proposed method is able to reduce the model size by several
thousands times on average.

Conclusions
In this paper, we introduce a DL-based floor plan genera-

tion method that enables the conversion of very noisy point clouds
into a 2D floor plan, where the main building structures become
clearly visible. Moreover, the resulting models are small in data
size and can be transmitted via radio communication. The main
scientific contribution is in the combination of a vertical column-
filtering technique with the improved L-CNN network, where the
new loss function is introduced to account for the high amount of
point cloud noise. Experimental results show that the proposed
method outperforms the state-of-art method and reaches 0.66 F1
score for the building-layout evaluation. In the future, we con-
sider involving semantic information to avoid noisy lines that gen-
erate from object-type point clouds. Moreover, prepossessing is
required for grid maps that have structures with nonuniform thick-
ness. This prepossessing should be able to solve the current prob-
lem of missing lines.
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