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Abstract

We describe a novel method for monocular view synthesis.
The goal of our work is to create a visually pleasing set of hori-
zontally spaced views based on a single input image. This can be
applied in view synthesis for virtual reality and glasses-free 3D
displays.

Existing methods are able to form realistic results on images
that show a clear distinction between a foreground object and the
background. We aim to create novel views in more general sce-
narios, including more complex scenes in which there is no clear
distinction. Our main contributions are in a computationally ef-
ficient method for realistic occlusion inpainting and blending, es-
pecially in complex scenes.

Our method can be effectively applied to any image, which
is shown both qualitatively and quantitatively on a large dataset.
Our method performs natural disocclusion inpainting and main-
tains the shape and edge quality of foreground objects.

Introduction

Augmented and virtual reality (AR/VR) head sets have be-
come very popular in recent years. They offer the user a 3D per-
ception of the scene by providing slightly different perspectives to
the left and the right eye. This is actually using the same princi-
ple as we humans do for real-world scenes observed with our two
eyes. Similarly, glasses-free 3D displays steer a separate view to
each eye, allocating a subset of the display pixels to each view.
Such displays are currently available commercially from compa-
nies like Leia, Looking Glass, Dimenco or Acer Spatial Labs.

Both for AR/VR head sets and glasses-free 3D displays,
more than two views are actually often generated. This allows
the viewer to move their head and (somewhat) look around an
object. This effect, called motion parallax, adds to a natural 3D
perception of the scene.

Meanwhile, when taking a picture, we want to be minimally
bothered by additional requirements to capture the scene in 3D.
Ideally, we would want to take a single 2D picture and then be
able to visualize it in 3D.

In this paper, we present a method to create a multi-view im-
age from a single 2D still picture. An example result is shown in
Figure 1. Our focus is not on an accurate metric 3D reconstruc-
tion of the scene, but rather on a naturally-looking multiple-view
set of images. As our target application is 3D visualization for a
human observer, the perceptual image quality is more important
than typical error metrics such as PSNR or MSE. While real-time
processing is not required for our application with still pictures, it
is important that our method can run efficiently on limited hard-
ware (e.g. a tablet or smartphone).

Our work is based on the SLIDE algorithm by Jampani et
al. [8]. We aim to generate multiple horizontally spaced views
from a single 2D picture without visually disturbing artifacts. As
our main application is visualization on glasses-free 3D displays,
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Figure 1. Image from Holopix50k [5] dataset with two horizontally spaced
novel views generated using our proposed algorithm.

we focus here on horizontally spaced views (although most of
the work could be applied to vertically spaced views as well).
Our main contributions over the current state-of-the-art are main-
taining edge quality, a more natural inpainting of disocclusions
around foreground objects and a robust method to handle disoc-
clusions at multiple depth levels.

The rest of this paper is structured as follows: First we dis-
cuss related work. Next, we describe the dataset used in our exper-
iments. Our algorithm is then presented in the following section,
and results will be shown. Finally, we draw some conclusions.

Related Work

Recently, multiple approaches have been proposed for view
synthesis from a 2D image. An algorithm 3D-Photo for rendering
novel views from a single RGB-D image was presented by Shih
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etal. [17]. They convert the RGB-D image into a layered depth
image (LDI) and apply inpainting of the background around fore-
ground objects to fill in occlusion areas. Jampani et al. presented
SLIDE, adding a soft layering approach to create more natural
effects around hair and allow matting effects [8].

Most approaches for novel view synthesis can be subdivided
in the following steps: first, a depth map is estimated for the 2D
image using monocular depth estimation; next, the 3D scene is
completed using occlusion inpainting and similar techniques; fi-
nally, novel views can be rendered from the completed image
using view synthesis. Optionally, some post-processing is per-
formed to enhance the generated views. Related work on each of
these topics will be further discussed in the following subsections.

Mildenhall et al. presented an alternative solution in their
breakthrough paper on neural radiance fields (NeRF) [11]. Us-
ing NeRF, a neural network is trained to generate novel views of
a scene from a set of input views of the scene. Very impressive
results have been obtained using this method, with a wide variety
of follow-up works. Typically, this approach is used to gener-
ate novel views with a wide baseline (wider than we aim here).
Moreover, neural radiance fields require a large number of input
images, and a neural network to be trained per scene, which is
computationally much more demanding than our objective here.

In the next subsections, we will describe some relevant ap-
proaches to depth estimation and image completion.

Depth Estimation

Monocular depth estimation techniques aim to estimate
dense depth [1, 18, 24] based on a single RGB image. Whereas
a wide range of algorithms was developed using various heuris-
tics (focus, edge analysis, typical organisation of scenes, etc.),
most recent methods apply deep learning to train depth estima-
tion from large datasets. Many methods directly utilize a sin-
gle image [3, 9, 16] or estimate an intermediate 3D representa-
tion such as point clouds [19, 21]. Some other methods combine
an RGB image with, for example, sparse depth maps or normal
maps [10, 15] to estimate dense depth maps. These methods are
trained on large scale datasets generated from RGB-D cameras,
thus they can only reproduce the raw depth scan. For our pur-
pose, we need to generate a dense depth map for a general im-
age in a computationally efficient way. The Midas algorithm pro-
posed by Ranftl et al. [16] is currently most suited for our goals.
They used a multiscale ResNeXt architecture that was pretrained
on ImageNet. A new loss function was applied for training, us-
ing a scale- and shift-invariant term based on absolute depth error
and a regularization term to push depth discontinuities to be sharp
and coincide with object edges. The main contribution of this
work was their use of a broad collection of datasets for training
and testing, rather than a single dataset. Ranftl et al. trained their
algorithm on a collection of widely varying datasets and supple-
mented those with another large dataset based on frames from
(stereoscopic) 3D movies.

Image Completion

Recent deep learning techniques can realistically complete
a set of masked regions in an image. These methods are based
on the advent of Generative Adversarial Networks (GAN) [4].
Pathak et al. [13] introduce an adversarial loss in addition to
the reconstruction loss to address that inpainting is multimodal.
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lizuka et al. [7] formed improvements by introducing both global
and local discriminators for deriving the adversarial losses. More
recently, Yu et al. [22] presented a contextual attention mechanism
in a generative inpainting framework, which further improves the
inpainting quality. Nazeri et al. [12] observed that the structure
of an image is represented in the edge map. They achieve pho-
torealistic results by first completing the edges before completing
the actual pixels. Zhao et al. [25] use aspects from style transfer
research [2, 6] to introduce co-modulated GANs. Their method
can generate realistic results on larger mask sizes.

Dataset

Our method is focused on creating horizontally spaced
views. Therefore, we evaluate our method on stereo datasets. The
Holopix50k [5] dataset comprises 49,368 image pairs contributed
by users of the Holopix™ mobile social platform. It covers a
wide range of scenes. This large variety of diverse scenarios is
very representative for the variation in digital still pictures, and
can significantly improve the generalization of deep models.

Our approach
Our method broadly follows the SLIDE method [8]. It can
be subdivided in the following steps:

1. Based on a single RGB image, we first perform depth esti-
mation using the Midas algorithm [16].

2. Secondly, we form a full-resolution inpainting mask that
highlights the areas we need to inpaint in order to later fill
disocclusions. Our inpainting mask takes multi-level disoc-
clusions into account. We dilate the depth map and deter-
mine blending values to prevent striping and dilation arti-
facts.

3. Next, we perform inpainting. We modified the LaMa in-
painting method from Zhao et al. [25] to inpaint RGB-D
images and split the training inpainting masks into disocclu-
sion masks and large random masks to improve inpainting
quality.

4. Finally, we render both the regular foreground RGB-D im-
age and the inpainted background RGB-D image using a
forward warping method. The output image is obtained by
filling the disocclusion holes in the foreground image using
the rendered background image.

The following subsections will describe our method in more de-
tail.

Depth estimation

Initially, we estimate a depth map of the input image using
the Midas monocular depth estimation method by Ranftl et al.
[16]. Their method is applicable to a wide range of images at a
high resolution. However, near the edges of foreground objects,
their method cannot form a crisp, stepwise transition from the
background to the foreground depth. Some transitional depth val-
ues are visible near the edges of objects, as shown in Figure 2.

These transitional depth values near the edges of objects
cause visual artifacts when rendering novel views using forward
or backward mapping. Jampani et al. [8] describe the formation
of stretched triangles near the edges of foreground objects after
backward mapping. When using forward mapping, a striping ar-
tifact is created. The transitional depth values are each mapped to

IS&T International Symgosium on Electronic Imaging 2023

D Imaging and Applications 2023



Figure 2. Top left: depth map generated by Midas. Top right: dilated depth
map. Bottom left and right: top images zoomed in on the area indicated by
the red rectangle.

Figure 3.
striping. Left: full image. Right: zoomed in part of the image indicated by the
red rectangle.

Example rendering without disocclusion inpainting to highlight

a slightly further position, spread across the disoccluded area. Ad-
ditionally, the edge of the foreground object is damaged as some
of the pixels near the edge have been mapped away from the rest
of the object. An example of this striping artifact is illustrated in
Figure 3.

SLIDE [8] avoids these artifacts by using a combination of
the image segmentation network by Qin et al. [14] and their soft
foreground visibility. However, this approach only works in a
scene where a single subject is portrayed and if there is a clear
two-layer distinction between the background and the foreground
object. In most images, the scene is more cluttered, and it is im-
possible to form a clear (binary) separation into a foreground and
background layer. Secondly, when depth estimation and image
segmentation are separated into two independent networks, addi-
tional artifacts may occur when they are drastically different, as
depicted in Figure 4.

We propose to avoid the striping artifacts by dilating the
depth map. Firstly, we determine the local minimum and max-
imum of the transitional depth values. We set the value of each
of the transitional depth values to the maximum. Secondly, we
determine a blending value based on the original, minimum and
maximum depth values. Finally, the blending value is used to
transition between the rendered foreground and background layer
of the image. Through the blending operation, we remove the
dilation artifacts visible after rendering.

Our approach does not rely on an explicit separation between
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Figure 4.
estimation in the bottom left and depth estimation in the bottom right.

Image from Qin et al. [14] with the corresponding foreground

a foreground and background as it can be applied to any depth
transition in the depth map. To limit the computational demand
of this method, it is only applied to pixels where the gradient of
the depth map indicates a significant transition.

Inpainting mask

We need to inpaint areas that will potentially be disoccluded
when the viewpoint is changed. SLIDE [8] determines an inpaint-
ing mask by calculating for each pixel whether pixels in the lo-
cal neighborhood change more in depth than position. Since this
is highly computationally expensive, they initially downscale the
image. After upscaling the generated mask, the resulting inpaint-
ing mask is far broader than the required inpainted region and
has a blocked-out edge. This reduces the quality of the inpainted
background layer. This approach also assumes a clear, singular
transition from a background layer to a foreground object. As
mentioned previously, most images have a more cluttered scene
in which there are often multiple transitions close to each other.
This two-layer rendering approach, therefore, causes multi-layer
disocclusion artifacts.

For our purpose, we are generating horizontally spaced
views, and we can therefore focus on horizontal depth transitions
in the dilated depth map. We iterate over the dilated depth map,
and whenever a sudden increase/decrease is reached, the pixels on
the higher side of this transition are masked. An example of the
different masks is shown in Figure 5.

This allows us to keep track of a reference depth value to
avoid multi-level disocclusion artifacts. This reference depth
value can be used to verify if the inpainted area corresponds with
the expected depth in that region. If the inpainted background
depth is further than the expected reference depth, there is likely
a multi-level-disocclusion artifact. When this is the case, that part
of the background layer is not used for the disocclusion inpaint-
ing. Instead, we use simple reflection inpainting to fill these re-
maining holes.
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Figure 5. Top: depth map generated using Midas [16]. Bottom-left: mask
generated as described in SLIDE by Jampani et al. [8]. Bottom-right: our

inpainting mask.

Inpainting

The inpainting mask, determined in the previous section, in-
dicates areas that will potentially be disoccluded when the view-
point is changed. To fill these disocclusion holes, we first form
a background image by inpainting these areas. Jampani et al.
[8] indicate in their SLIDE paper that training the inpainting net-
work on disocclusion masks instead of only randomly generated
masks improves the inpainting quality for this case. However,
more crowded scenes and multi-level disocclusions can cause
large masked regions to appear. We train the network on a com-
bination of random inpainting masks and disocclusion masks as
opposed to only disocclusion masks. Most of the general inpaint-
ing can be learned from random inpainting masks. In this way,
the network can also handle larger masks that may occur around
multi-level disocclusions. Additionally, we replace DeepFillv2
with the LaMa inpainting network by Zhao et al. [25] as this is
more suited for high resolution and large-mask inpainting. Simi-
larly to SLIDE [8] we modify the network for RGB-D inpainting.

Rendering

We have chosen to implement our rendering method using
forward mapping instead of backward mapping as used in SLIDE.
Initially, the foreground and background RGB-D images are both
rendered separately for the novel viewpoint. Secondly, we fill the
disocclusion holes in the foreground rendering with the informa-
tion from the background rendering in the same position. Next,
the blending values determined in the depth estimation are used
to remove the dilation artifacts and create a smooth transition be-
tween the foreground and background rendering.

Finally, reflection inpainting is used to fill the holes left near
the borders of the image, since neither the foreground nor the
background layer will be mapped to these areas. Since these re-
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maining holes are relatively small and near the edge of the image,
we choose to use simple reflection inpainting in these remaining
areas.

Experimental Results

In the previous sections, we described our method for novel
view synthesis from a single 2D input image. We compare our
method to the SLIDE view synthesis method by Jampani et al.
[8], to the SynSin method by Wiles et al. [20] and to the 3D-Photo
method by Shih et al. [17] using the following four evaluation
metrics:

. Mean squared error (MSE);

. Peak signal-to-noise ratio (PSNR);

. Structural similarity index measure (SSIM);

. Learned perceptual image patch similarity (LPIPS) [23].

AW —

We apply these metrics to the Holopix50k [5] dataset. Figure 6
shows a result for the different methods. The results are summa-
rized in Table 1.

Method MSE, PSNRt SSIMt LPIPS[23]]
SynSin 1639.46 16.88 0.458 0.374
3D-Photo 955.43 19.42 0.566 0.152
SLIDE 949.54 19.46 0.568 0.121
Ours 938.50 19.59 0.571 0.111

Table 1. Evaluation of our method compared to the SLIDE view
synthesis method by Jampani et al. [8], the SynSin method by
Wiles et al. [20] and to the 3D-Photo method by Shih et al. [17]
on the Holopix50k [5] dataset.

We notice SynSin [20] has the worst evaluation. This is
because this network is limited to images of lower resolution
(256 x 256). Secondly, the internal depth estimation formed by
their method is not as accurate as Midas causing objects in the
final rendering not to be aligned with the ground truth.

The 3D-Photo method by Shih et al. [17] can form realistic
disoclusion completions but also causes severe deformations as
highlighted in Figure 6. It is also worth noting that this method is
significantly slower than the other three.

In comparison to the state-of-the-art SLIDE method [8], our
method reduces more striping/stretching artifacts, especially in
crowded or complex scenes. Our improvements to the inpaint-
ing mask and network also lead to more realistic completions sur-
rounding foreground objects. An example is illustrated in Figure
7.

Even more importantly than the quantitative comparisons in
Table 1, we also evaluated our approach qualitatively on a Leia
LumePad glasses-free multi-view 3D tablet and confirmed that
our approach produces natural and visually pleasing results.

Conclusion

We have presented a novel method for view synthesis cre-
ating visually pleasing multi-view images. Our method creates
horizontally spaced images. We improve upon the state-of-the-art
method by reducing striping, stretching and multi-level disocclu-
sion artifacts. We maintain edge quality and form smooth disoc-
clusion inpainting results using a matting approach. Both quan-
titative and qualitative evaluations show that our method outper-
forms state-of-the-art methods, especially for complex images.
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Figure 7. Visual comparison of a rendering using the following meth-
ods: (top-left) SLIDE [8], (bottom-left) ours. Top- and bottom right show the
zoomed in part of the images indicated by the red rectangle.
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