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Abstract
This manuscript presents a new CNN-based visual localiza-

tion method that seeks a camera location of an input RGB image
with respect to a pre-collected RGB-D images database. To de-
termine an accurate camera pose, we employ a coarse-to-fine lo-
calization manner that firstly finds coarse location candidates via
image retrieval, then refines them using local 3D structure repre-
sented by each retrieved RGB-D image. We use a CNN feature
extractor and a relative pose estimator for coarse prediction that
do not sufficiently require a scene-specific training. Furthermore,
we propose a new pose refinement-verification module that simul-
taneously evaluates and refines camera poses using differentiable
renderer. Experimental results on public datasets show that our
proposed pipeline achieves accurate localization on both trained
and unknown scenes.

Introduction
Determining a camera of a given image is an essential abil-

ity for computer vision problems and often plays a vital role in
several applications, such as Structure from Motion (SfM) and
Simultaneous Localization and Mapping (SLAM). Visual local-
ization [1–5] solves the problem as a relocalization task that esti-
mates a 6DoF camera pose of a query image relatively to the given
scene represented by pre-collected knowledge (database) such
as 3D point cloud, e.g., solving Perspective-n-Point (PnP) prob-
lem associated with 2D-to-3D correspondences. Thanks to recent
progress in the machine learning area, several works encode such
database into a learned camera pose regressor often built as a con-
volutional neural network (CNN) model [6–15], which enables a
compact representation of the scene and a fast prediction in the
testing phase. However, the accuracy of these approaches often
is inferior to that of “hand-crafted” localization pipelines [16,17],
which constructs a crucial challenge for them. Furthermore, a
pose estimation module designed as a deeply-learnable compo-
nent is often specialized to the training scene, thus cannot be di-
verted to unknown scenes. This also prevents them from address-
ing to large-scaled scenes [18].

In this paper, we propose a learned visual localization
pipeline to tackle these problems. Our contributions are three-
fold; (1) Instead of designing an end-to-end pose regressor that di-
rectly predicts an absolute camera pose in the scene, we construct
a coarse-to-fine camera localization scheme that progressively up-
date camera location. For a given query, we firstly perform an im-
age retrieval among pose-known database images to find the rele-
vant location of the query and subsequent pose prediction module
estimate a 6DoF camera pose as a relative pose from the rele-
vant database image. Since the pose prediction module focuses
only on the local geometric relationship between the query and

Figure 1. Conceptual visualization of our differentiable-renderer-based

pose refinement module. For a given query, we firstly obtain the initial predic-

tion of query camera while referencing the relevant RGB-D database image

chosen as a candidate and render the view using its 3D structure. Rendered

synthetic image is then evaluated by the photometric distance from the orig-

inal query image and iteratively updated by back-propagation towards the

camera extrinsics.

retrieved images, it can be expanded to unknown scenes that are
not included in the training images; (2) We introduce “Top-N ver-
ification” strategy [3–5] into a deeply learned visual localization.
Instead of determining one single prediction for each query, our
localization pipeline stores several candidates of relevant location
in the scene and find the best of them using known scene structure.
Furthermore, we propose a new pose verification module (Fig. 1)
that simultaneously evaluates and refines cameras using a differ-
entiable renderer [19]. Our pose verification is simple enough to
be applied to any CNN–based camera pose prediction, yet be ef-
fective for constantly improving the accuracy; (3) We tested our
pipeline on two public datasets for visual localization task. Re-
sults show that our method achieves an accurate localization on
both known (trained) and unknown scenes.

Related Works
Visual localization has often been studied as a camera re-

construction task that solves PnP to determine a 6DoF camera in
a known 3D model, e.g., SfM model [2–5]. Image retrieval [1, 4]
is often used to determine a coarse location of the camera. One
familiar strategy here is to hold several similar candidates instead
of seeking the best one [3–5]. Taira et al. proposed camera pose
verification strategy [5] that finds the best location in candidates
by evaluating photometric consistency of the rendered 3D model.

Recently, several works attempted to replace the entire [6–9]
or parts [10–15] of localization pipeline with deeply learned mod-
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Figure 2. The overview of our camera localization pipeline. (a) For an input of RGB query image, we firstly seek N relevant database images via image retrieval

and predict a coarse query camera candidate with respect to each of database cameras via a pair-wise relative pose regressor. (b) The predicted candidates

are then refined by back-propagating the photometric loss of rendered views. We finally select the most similar (refined) candidate as the final localization result.

ules. Kendall et al. proposed to convert the whole process of lo-
calization to a learned CNN pose regressor that directly predicts
absolute poses [6, 7]. Several works [10–13] achieved visual lo-
calization by predicting a relative camera pose with respect to the
neighbor training image. Following these approaches, we care-
fully employ camera pose verification strategy to CNN–based vi-
sual localization, and extend it to also refine candidates to get a
more accurate camera pose.

Differentiable renderer. Kato et al. proposed a differen-
tiable scheme for mesh rendering [19] that enables to propagate
residuals of the rendered view towards meshes, texture, and cam-
era. This can also be used to train backbone CNN models for
specific tasks represented by 3D appearances, such as object pose
estimation. Alternatively, NeRF [20] learns a deep network en-
coding the density field and radiances of the scene. Since the net-
work consisting of fully connections is differentiable in nature, it
can also be used as a differentiable layer to render the nobel view.
iNeRF [21] utilizes a pre-trained NeRF model to find a camera of
a newly seen image, by back-propagating the photometric error
of rendered view towards camera parameters. Our proposed pose
refinement scheme seeks a camera pose in a similar manner as in
iNeRF, but ours directly uses the known scene structure and does
not require any pre-training on the scene.

Learned Visual Localization using Differen-
tiable Renderer

Fig. 2 shows the overview of our retrieval–based visual lo-
calization scheme. We assume a database of RGB–D images with
known camera poses and each image is represented as an im-
age feature using a trained CNN feature extractor. For a queried
RGB image, we firstly perform image retrieval to find similar
database images representing the potential candidates of the lo-
cation. For each pair of query and selected database image, a
learned CNN pose regressor also predicts a relative camera pose,
which is turned into a coarse camera candidate of the query. Our

retrieval and pose estimation modules are based on an existing
CNN localization pipeline [10], but ours remains multiple candi-
dates to improve the final prediction, whereas most of relevant
methods determine one specific camera pose for the input im-
age. For each of coarse predictions, we additionally apply a pose
refinement and verification strategy [5] that evaluates the photo-
metric error between the original and synthetic images which is
generated with respect to the relative camera pose and the given
depth maps of database images. Our pose refinement is designed
as a differentiable module, thus is suitable as a post-processing
for CNN–based localization methods. We finally select the most
similar camera pose in the refined candidates as a final location
output.

Image retrieval and relative pose estimation
Because of its compactness and simplicity, we employ an

existing localization scheme named as RelocNet [10] as the ba-
sis of our retrieval and pose estimation stage. This stage consists
of CNN feature extractor and direct pose regressor that extracts
features representing images for retrieval and predicts a relative
pose between the input image pair. We use up to conv3 layer
of ResNet18 [22] as the feature extractor, while adding average
pooling layer to obtain a 256-dimensional feature vector used for
image retrieval. The extracted feature is also used as an input of
subsequent relative pose regressor. From the concatenated two
features from paired images, we obtain a 6-dimensional pose vec-
tor through several linear layers, which represents camera pose in
a se(3) space [10]. As in [10], we trained both parts in a end-to-
end manner using training image pairs while evaluating the frus-
tum overlapping between cameras and pose error with respect to
the ground-truth camera.

In the testing phase, we store image features for all database
images and match them to the features extracted from the query
image. For the most similar 10 database images, we also perform
subsequent pose estimation module. The obtained relative pose
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between query and each database image is treated as the coarse
camera candidate and refined in the latter refinement-verification
stage.

Pose refinement and verification using differen-
tiable rendering

To refine the coarse prediction from the pose regressor, we
exploit an idea of pose verification strategy [5] that utilizes the ap-
pearance of the scene seen from the candidate cameras. Assuming
a fine 3D (colored) point cloud representing the whole scene, [5]
renders candidate cameras by projecting 3D points onto the im-
age and evaluates them by the photometric distance between the
synthetic view and original input image. However, their approach
requires a large known 3D model, thus costs a large computa-
tional resources and memory footprint. Also, their final output
highly depends on the quality of the coarse prediction for candi-
dates. Therefore, we propose a new pose refinement–verification
strategy that simultaneously evaluates the camera candidates and
also refine them to get more accurate camera poses. We employ
a recent differentiable rendering module [19] that enables us to
update cameras by the back-propagation operation. Furthermore,
we renders each camera using only the local scene structure rep-
resented by the depth map of the retrieved database image, which
leads a relatively small-scaled 3D model.

For each of camera candidates obtained via image retrieval
and coarse prediction, we iteratively refine the camera while eval-
uating the appearance of the local scene. In each step we render
the camera using a local 3D point cloud back-projected from the
depth map of the candidate database image. Assuming i-th pixels
in the original query image Iq(i) and the rendered image Ir(i), we
compute the photometric loss Lphotometric as:

Lphotometric =
∑i∈P(Ir)

∥∥Ir(i)− Iq(i)
∥∥

|P(Ir)|
(1)

where P(Ir) is the set of valid pixels in the rendered image. We
then back-propagate the loss towards the camera pose and update
it with a learning rate 0.003. We empirically set the iteration num-
ber as 200 times to sufficiently reaches to convergence. Finally,
from the 10 refined candidates, we select the best one that leaves
the lowest photometric loss.

Experiments
In this section, we test our localization pipeline on public

datasets for visual localization. We firstly test our whole localiza-
tion pipeline on 7scenes dataset [23], which is a popular bench-
marking of visual localization task. We next conduct ablation
studies to show that each of components in our pipeline produces
complementary performance gains. We also perform visual local-
ization on 12scenes dataset [24], while using the model trained
on 7scenes. Even on the different scenes captured by different de-
vices, our pre-trained model achieves comparable results to state-
of-the-arts.

Implementation. We implement our retrieval-estimation
module on PyTorch. For our camera pose refinement and veri-
fication module, we utilize a differentiable renderer implemented
by PyTorch3D toolkit. For the rasterization setting, we set the
blur radius as 0.0, faces per pixel as 1. And we set the environ-
ment light as ambient lights. For the shader, we choose the Hard
Phong shader.

Visual localization on 7scenes dataset. 7scenes [23] con-
sists of 7 indoor scenes captured as several RGB–D sequences
with known camera poses, providing 26,000 training images and
17,000 images for testing. We evaluate our method using RGB
test images, while using RGB–D training images as the database
for each scene.

We firstly train our model using image pairs extracted from
training images. We gather 80,000 training image pairs as the
distances of pairs are lower than 2.0m, 70°. Training is performed
in the same manner as in [10], whereas we set the learning rate at
10−4 and the weight decay at 10−5.

Tab. 1 shows the localization accuracy of our proposed
pipeline and other representative methods on 7scenes. Compared
to methods predicting absolute camera poses [7–9], our coarse-to-
fine localization pipeline consisting of coarse image retrieval and
fine relative pose estimation provides constant performance gains.
Our method also employs Top-N verification strategy that keeps
multiple candidates for each query, resulting in better perfor-
mance than other relative pose regressor–based methods [10–12]
including RelocNet [10], which is the baseline of our pipeline.
The effect is especially shown on the scenes Chess and Heads,
which includes much repetitive and texture-less regions and ours
can localize images more than double times accurate compared
to the baseline. Whereas CamNet [13] shows the best perfor-
mance in all scenes by introducing their own retrieval module that
re-selects image pairs, note that our pose refinement–verification
module can be applied to any localization methods which can ob-
tain multiple pose candidates1. Also notice that whereas we do
not train our model for each scene specifically, our whole pipeline
still shows well localization results on most scenes, except for
Stairs, which captures highly repetitive structure and specular ma-
terials.

Tab. 2 provides evaluation for several variants of our method
that subtract components in the full pipeline. A variant that
omits coarse pose prediction module and outputs the camera of
the Top-1 retrieved database image (left-most) suggests that im-
age retrieval step itself is often unstable so that the most sim-
ilar image can actually be an erroneous candidate that has few
view-overlapping with query. Results show ours achieves a pro-
gressive improvement, by adopting each of components includ-
ing coarse relative pose regressor (Coarse pred.), differentiable
renderer-based pose refinement (Refine), and Top-10 verification
(Top-10).

Qualitative examples. Fig. 3 shows typical examples in
7scenes on which our localization pipeline can successfully find
the query 6DoF camera poses. Our RelocNet-based image re-
trieval (b) firstly finds the relevant database image that partly
shares view with query image, and subsequent coarse pose pre-
diction (c) estimates the initial camera pose as the relative mo-
tion from the relevant database image. As in examples for Fire,
Heads, RedKitchen, and Stairs, since the relevant database im-
age captures less shared views with query, the predicted view (c)
often obtains gaps when compared to the original query view.
Our differentiable-renderer-based pose refinement module eval-
uates differences between the original and rendered query view,
consequently gets the compensated view (d) that shows less gaps

1We do not provide results of our method combined with CamNet just
because their full implementation is unavailable.
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Table 1. Camera localization performance on 7scenes [23]. Each column shows the median translational and rotational errors
reported in each original paper except for Ours. We highlight the best and second best results by red and blue letters, respectively.

Absolute Pose Regression Relative Pose Regression
Scene PoseNet2 [7] MapNet [8] Atloc [9] NN-Net [12] RelocNet [10] AnchorNet [11] CamNet [13] Ours
Chess 0.13m, 4.48° 0.08m, 3.25° 0.10m, 4.07° 0.13m, 6.46° 0.12m, 4.14° 0.06m, 3.89° 0.04m, 1.73° 0.04m, 1.61°
Fire 0.27m, 11.3° 0.27m, 11.69° 0.25m, 11.4° 0.26m, 12.72° 0.26m, 10.4° 0.15m, 10.3° 0.03m, 1.74° 0.13m, 3.32°
Heads 0.17m, 13.0° 0.18m, 13.25° 0.16m, 11.8° 0.14m, 12.34° 0.14m, 10.5° 0.08m, 10.9° 0.05m, 1.98° 0.06m, 3.65°
Office 0.19m, 5.55° 0.17m, 5.15° 0.17m, 5.34° 0.21m, 7.35° 0.18m, 5.32° 0.09m, 5.15° 0.04m, 1.62° 0.07m, 1.82°
Pumpkin 0.26m, 4.75° 0.22m, 4.02° 0.21m, 4.37° 0.24m, 6.35° 0.26m, 4.17° 0.10m, 2.97° 0.04m, 1.64° 0.08m, 2.10°
RedKitchen 0.23m, 5.35° 0.23m, 4.93° 0.23m, 5.42° 0.24m, 8.03° 0.23m, 5.08° 0.08m, 4.68° 0.04m, 1.63° 0.08m, 1.99°
Stairs 0.35m, 12.4° 0.30m, 12.08° 0.26m, 10.5° 0.27m, 11.82° 0.28m, 7.53° 0.10m, 9.26° 0.04m, 1.51° 0.34m, 9.81°
Average 0.23m, 8.12° 0.21m, 7.77° 0.20m, 7.56° 0.21m, 9.30° 0.21m, 6.73° 0.09m, 6.74° 0.04m, 1.69° 0.12m, 3.47°

Table 2. Ablation studies. Each column represents a variant
of our method and reports the average of median localization
error on 7scenes [23].

Variants Ours
Coarse Pred. ✓ ✓ ✓

Refine ✓ ✓
Top-10 ✓

Average
0.363m,
12.050°

0.219m,
7.153°

0.141m,
4.206°

0.117m,
3.471°

from the original view.
In Fig. 4, we also show failure cases in 7scenes that present

limitations of our pose refinement module. The first example on
Fire represents the dependency of our pose refinement module on
the bottleneck of coarse pose prediction. Because of few land-
marks in the query and sparsity of database, image retrieval (b)
selects a far distant database image, and thus coarse prediction
module (c) wrongly initializes the query pose. Consequently, our
pose refinement (d) cannot converge even after 200 epochs refine-
ment. The second example on Stairs shows the effect of typical
scene nature on differentiable renderer. The query (a) includes
specular regions that do not appear in database image (b), which
highly affects the photometric evaluation in the refinement mod-
ule. As a potential future work, adapting feature-based loss [15]
instead of photometric loss could mitigate such issue derived from
the scene and material nature.

Visual localization on unknown scenes. We additionally
evaluate our trained model on unknown scenes that are not in-
cluded in the training set. We choose 12scenes dataset [24] be-
cause many state-of-the-arts reported results on the dataset, while
trained on its own scenes. Tab. 3 shows the performance of our
model trained on 7scenes. Even the feature extractor is trained
on different dataset, ours still can achieve comparable results to
state-of-the-arts.

Conclusion
This paper presents a visual localization pipeline that is

based on a learned image retrieval and relative pose regressor. In-
stead of determining one single camera by a learned regressor,
we keep several camera candidates during the pipeline and verify
them to find the most similar camera. Our pipeline employs a new
camera pose refinement–verification module that not only evalu-
ates but also refines the candidate with respect to the appearance
of local 3D structure seen from the candidate camera. The mod-
ule based on a differentiable renderer does not require any pre-

Table 3. Camera localization median error on 12scenes [24].
For PoseNet and ESAC, we report results provided by [25].

Trained on 12sc. Trained on 7sc.
Scene PoseNet [6] PnLP [26] ESAC [18] Ours
kitchen1 0.29m, 15.48° 0.09m, 4.1° 0.01m, 0.44° 0.06m, 1.04°
living1 0.29m, 15.31° 0.08m, 2.9° 0.01m, 0.43° 0.03m, 0.80°
kitchen2 0.21m, 18.18° 0.10m, 3.7° 0.01m, 0.46° 0.01m, 0.72°
living2 0.31m, 23.58° 0.10m, 4.7° 0.01m, 0.40° 0.02m, 0.71°
bed 0.57m, 17.85° 0.12m, 5.7° 0.01m, 0.46° 0.04m, 0.83°
luke 0.35m, 20.07° 0.14m, 5.5° 0.01m, 0.59° 0.07m, 1.11°
5a 0.57m, 14.55° 0.09m, 3.6° 0.01m, 0.59° 0.10m, 0.99°
5b 0.47m, 15.49° 0.10m, 4.7° 0.02m, 0.59° 0.02m, 0.68°
lounge 0.29m, 18.42° 0.10m, 3.5° 0.02m, 0.61° 0.03m, 1.18°
manolis 0.22m, 17.45° 0.09m, 3.7° 0.01m, 0.53° 0.02m, 0.96°
gates362 0.27m, 16.71° 0.10m, 4.7° 0.01m, 0.46° 0.06m, 0.68°
gates381 0.37m, 20.52° 0.11m, 4.4° 0.01m, 0.67° 0.10m, 1.23°
Average 0.35m, 17.80° 0.10m, 4.27° 0.01m, 0.52° 0.05m, 0.91°

training since it directly uses the depth map of database images,
and suit as a post-processing of learned relative pose regressors.
Experiments on a public dataset for visual localization task show
that ours can bring a clear improvement compared to baselines,
while each component produces a complementary performance
gains. We also show that the proposed method can work well on
unknown scenes which is not included in the training set. We be-
lieve this work raises one potential approach for generalization of
recent learned pose regressors.
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(a) Query (b) Retrieved image (c) View of Est. pose (d) View after Refine. and Verf.
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query image, (b) retrieved database image relevant to query, (c) rendered view after our coarse pose estimation, and (d) the final rendered view after our pose
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original query image for reference.
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