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Abstract
Semantic segmentation on 3D point clouds can guide infrastruc-
ture maintenance of complex environments, such as railroads. The
existing fully-supervised segmentation models rely on a large col-
lection of annotated data and often fail to generalize on dynamic
railroad environments when the infrastructure changes. To at-
tenuate these limitations, we propose a multi-prototype few-shot
point cloud segmentation method for railroad environments. Our
model leverages the geometric features of point clouds to learn
to represent each object class in multiple prototypes. We evalu-
ate our model on real-world data collected over railway tracks in
Belgium. The experimental results show that our model achieves
promising results on complex data distributions of railroad infras-
tructures.

Introduction
The railway is one of the major modes of transportation globally.
In 2020, the EU was seen 147 billion passenger kilometers of pas-
senger transport, 338 billion tonne-kilometers of freight transport,
and 19 million twenty-foot equivalent units of container transport.
Belgium, one of the member countries in the EU with consider-
able railway infrastructure, invested 320 million euros in 2019
for infrastructure maintenance1. These statistics exhibit the im-
portance of automated railway maintenance. Semantic segmen-
tation plays a vital role in scene understanding and monitoring
and can be applied to automated infrastructure monitoring for rail-
ways. Several Building Information Modeling (BIM) based mod-
els have been proposed to digitize the railway infrastructure for
segmentation. These models are highly characterized by indus-
try standards and interoperability. However, these models lack a
straightforward way to incorporate geometric information. Con-
versely, mobile laser scanners can record raw 3D point cloud data
to incorporate geometric information of the railway infrastructure
with high-speed trains. Based on the point cloud data, heuristic-
based [3, 15, 17], PCA-based [1], and SVM-based [6] methods
for railway segmentation have been developed.

In recent years, the advancement of deep learning has moti-
vated several fully-supervised semantic segmentation models for
railway tracks [9, 14]. However, these models heavily rely on a
large collection of annotated data for training. Moreover, the train
and test set data are drawn from the same space for these models.
Conversely, complex real-world environments such as railroads
are dynamic, and a new class of infrastructure may appear after
training. Collecting and annotating a large-scale dataset for rail-
roads is expensive, error-prone, and laborious. Fully-supervised
models often fail to generalize to an unseen class of infrastruc-
ture with limited annotations. To alleviate these issues, Few-shot
learning employs a few labeled examples to learn a model, which
is oblivious to unseen classes at test time [12, 8, 4, 10]. In this

1source: https://data.oecd.org/transport/passenger-transport.htm.

direction for 3D point clouds, several works [2, 7, 16] have been
proposed. These works employ carefully designed publicly avail-
able datasets to evaluate the models, which usually fail to reflect
the model’s ability to deal with complex real-world complex en-
vironments.

In this work, we develop a novel few-shot segmentation
method for railroad infrastructures that aims to segment an un-
labeled point cloud, called a query sample for a novel class, given
a few annotated samples, called support samples from the same
class. Our work is based on prototypical networks [8], which rep-
resents each class with a prototype by averaging the embeddings
of support samples. Following the work by Zhao N. et al. [16], we
define multiple prototypes for a single class to better capture the
complexity of the data distribution, raised due to the geometric
structures of correlated points. To capture the geometric structure
of correlated points, we employ DGCNN [13] as our backbone
network. In summary, our contributions are as follows,

1. We propose a few-shot segmentation model on 3D point
clouds for railway infrastructure. Our model leverages dy-
namic graph networks to capture the geometric information
from the 3D point clouds for complex structures.

2. We evaluate our model on the real-world dataset for railroad
segmentation, collected over various railway tracks in Bel-
gium.

Related Work
Fully-supervised models for railroad segmentation. Soilan et
al. employ two popular point cloud networks, PointNet [5], and
KP-Conv Net [11] for railroad segmentation to segment ground,
lining, wiring, and rails in two different railway tunnels. FarNet
[14] aggregates spatial attention to feature information using an
attention module to learn from the spherical projection of point
clouds.
Few-shot learning on point clouds. Chen X. et al. [2] proposes
a multi-view few-shot segmentation method that leverages multi-
view representations of point clouds to build compositional pro-
totypes for a single object class. Zhao N. et al. [16] proposes
an attention-aware mechanism for multi-level feature represen-
tations. Unlike single prototypes for each class in prototypical
networks [8], this work represents each class with multiple proto-
types to capture large variations of geometric structure within the
same class. In our work, we adapt this formulation in designing
prototypes for our object classes. Sharma and Kaul [7] propose
to utilize unlabelled point cloud data in a self-supervised way that
employs a cover tree for hierarchical partitioning of point

Methodology
Problem Formulation
We follow the standard notations to define our few-shot segmen-
tation problem over three sets, a training set Dtr = {pt

i ,y
t
i}

Ntr
i=1,
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Figure 1. Our architecture for few-shot point cloud segmentation on railroad environments. In this figure, we illustrate a 2 - way 5 - shot setting, i.e. n = 2, k = 5.

a support set Dsup = {ps
i ,y

s
i}

Nsup
i=1 , and a test set Dte = {pq

i }
Nte
i=1.

In this setup, pi ∈ R3×4096 denotes an input point cloud of 2x2
meters cropped from a larger area, and yi ∈ {0,1}1×4096 denotes
the corresponding mask for the input point cloud. N represents
the number of point cloud samples in each set, characterized by
subscript tr, sup, and te for the train, support, and test set, re-
spectively. The test classes, denoted by Cte ⊂ C are shared with
the support classes Csup but disjoint with train classes, Ctr, i.e.
Ctr ∩Cte = /0.

During training, a neural network fθ (.) parameterized by θ

is learned on Dtr for segmentation task. Once trained, the network
is inferred to segment a previously unseen class, c⊂Cte from Dte,
given a K annotated point cloud samples from Dsup. To replicate
this inference mechanism during training, we apply the episodic
training paradigm [12]. Assuming a C−way, K − shot few-shot
segmentation task, we construct each episode by sampling, a) a
support training set, DS

tr = {ps
t ,y

s
t (ci)}k

i=1 ⊂ Dtr for each class
ci ∈ Ctr, and (b) a query training set, DQ

tr = {pq
t ,y

q
t (ci)} ⊂ Dtr.

Here, pt
s, and pq

t denote the support and query point clouds with
ys

t and yt
q being the corresponding ground truths, respectively, for

a sampled class ci ⊂Ctr.

Embedding Network for Feature Extraction
Figure 1 presents our architecture for few-shot point cloud seg-
mentation on railroad environments. We employ dynamic graph
networks, specifically, DGCNN [13] to capture the contextual ge-
ometric information of correlated points. The edgeconv layers of
DGCNN exploits the point-wise correlations for local geometric
features. The MLP layer of the network produces global output
features that represent the semantic information. We apply a con-
catenation operation to fuse the local and global point cloud fea-
tures to construct the features for the support and query samples.
These features are represented in a manifold space, learned by a
distance function over the support prototypes and the query.

Class Prototypes and Distance Function
For a C−way, K−shot segmentation task, we average the support
features to obtain C foreground prototypes and one background
prototype. We exploit Euclidean distance and cosine distance as
the learnable distance function to measure the similarities of sup-
port prototypes and the query.

Training Objective
Given a support set, DS

tr and a query pq
t ∈ DQ

tr , the network
fθ (DS

tr, pq
t ) is trained to predict the label distribution, ŷq

t ∈
RM×(c+1) for pq

t , that aims to find the optimal parameters θ∗ as
for the model as follows,

θ
∗ = argmin

θ

E(DS
tr ,D

Q
tr )

[ nit

∑
i=0

J(yq
t , fθ (D

S
tr, pq

t )
]
, (1)

where Dtr is the training set and J is the loss function, iterated
over the nit iteration.

Experiments
Dataset and setup.
The dataset used in our work is collected by Infrabel2. We refer
to this dataset as the Infrabel-5 Railroad Segmentation dataset.
The data is collected over railway tracks all over Belgium. A Z+F
9012 lidar sensor is mounted on the front part of the train to record
the point cloud data. The data is manually annotated using the
Cloud Compare3 annotation tool. To our best knowledge, there
is no publicly available railroad point cloud dataset for segmenta-
tion. The Infrabel-5 Railroad Segmentation dataset contains eight

2Infrabel is a Belgian government-owned public limited company that
builds, owns, maintains, and upgrades the Belgian railway network, makes
its capacity available to railway operator companies, and handles train
traffic control.

3CloudCompare is a 3D point cloud processing software.
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Figure 2. Infrabel-5 Segmentation Dataset.

large-scale point clouds, each of approximately eight million raw
points in 3D space collected from eight railway tracks of different
cities. First, we preprocess the data by filtering out the outliers. It
results in comparatively smaller point clouds, approximately four
million points per railway track. We present our data in figure 2.

The Infrabel-5 Railroad Segmentation dataset contains pri-
marily five categories; cable, cable holder, ground, vegetation,
and pole. The additional clutter category contains all the points
not classified as one of the defined classes. The dataset represents
highly imbalanced data, presenting the real-world complex data
scenario. To adapt this dataset into our few-shot setting, we first
split the dataset into two sets; a training set and a test set, where
the training set does not contain the classes from the test set. We
define three class-wise settings for experimental evaluations of
our model in Table 1. In each setting, we consider different com-
binations of train-test (Ctr-Cte) classes.

Class-wise settings for experimental evaluations of our model.
Setting Ctr Cte
1 cable holder, cable,

pole
ground, vegetation

2 ground, vegetation,
pole

cable holder, cable

3 cable holder, pole,
vegetation

ground, cable

To fit the data into our limited GPU memory, we apply a
sliding voxel. The voxel is of size 2× 2 meters in the XY plan.
The Z dimension remains constant over a large area of railway
tracks and is considered to be the maximum height of a point in
the large area represented in 3D. We slide this voxel to extract the
points from a large area of point clouds into a 2×2 meters of the

ground plan. Then, we randomly sample 4096 points from each
of the 2×2 voxels.
Implementation Details. Figure 1 presents the segmentation net-
work with the support and query point cloud samples. Based
on DGCNN, each edge-convolution layer of our network is fol-
lowed by batch normalization and a leaky ReLU. We leverage
the publicly available point cloud segmentation dataset, s3DIS to
train our network following an episodic training paradigm. In this
phase, we employ Adam optimizer with a learning rate of 1e-3.
We apply L2 regularization, with a value 1e-4.

The trained network is then considered for the downstream
few-shot segmentation task on the Infrabel-5 Railroad Segmenta-
tion dataset. In training, we design each episode by sampling K
annotated point clouds of 2x2 meters from DS

tr for the network
to predict the label distribution of a query sampled from DQ

tr .
We apply Adam optimizer with a learning rate of 1e-3. How-
ever, we reduce the learning rate by 0.5 in each 5K iterations.
Moreover, we employ an L2 regularizer with a value of 1e-4. The
trained network is then evaluated on a query point cloud pq

i ∈ Dte,
given K support examples from DD

sup. In both training phases, we
choose cross-entropy loss as the objective function, J in eq. 1.
The training is carried out in an Nvidia Tesla V-100 GPU with 32
GB graphics memory. We train the network for 30K iterations.
Evaluation Metric. We employ mean Intersection over Union
(mIoU) to evaluate our model performance. We average mIoU
over all the test classes to report the final performance of the
model.

Results

Quantitative Result. Table 2 and 3 present the experimental re-
sults of our model on 1-way 5-shot and 1-way 1-shot settings,
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Figure 3. A qualitative analysis of our segmentation in 1−way 5− shot setting. We depict four different classes, ground, cable, cableholder, and vegetation with

grey, blue, orange, and green color, respectively. The red depicts the background class in each case.

respectively. We employ two distance functions, euclidean dis-
tance, and cosine distance to measure the similarity between the
support prototypes and the query. From the results, we see that
cosine distance produces a better segmentation result, 1-3% for
the last two class-wise settings. Furthermore, the 1-way 5-shot
setting achieves 7.5% better mIoU in the last two class-wise set-
tings while 9.5% better mIoU in the first class-wise settings. The
results manifest that the segmenting vegetation from the ground
results in comparatively a lower mIoU than the segmenting ca-
bles and grounds. It is due to the complex but connected geomet-
ric structure of ground and vegetation, where finding an optimal
segmentation plan from limited annotated data is a complex prob-
lem. This problem may also arise due to the considerable amount
of ground data points compared to vegetation in our imbalanced
dataset.

Segmentation results on 1-way 5-shot setting in with three dif-
ferent class-wise settings. The evaluation is reported in mIoU.

Setting cosine distance euclidean distance
1 67.66 66.71
2 79.69 78.49
3 92.86 90.54

Segmentation results on 1-way 1-shot setting in with three dif-
ferent class-wise settings. The evaluation is reported in mIoU.

Setting cosine distance euclidean distance
1 56.67 56.82
2 72.19 69.25
3 85.50 82.20

Qualitative Result. We depict a visual segmentation for 1−way
5− shot for railroad segmentation in figure 3. We present a sup-
port point cloud (columns 1,4), the query point cloud (columns
2,5), and the prediction over the query point cloud (columns 3,6)
in each row for four classes, namely, ground (first row, left), cable
(second row, left), cableholder (first row, right), and vegetation

(second row, right), respectively. These classes are represented
in grey, blue, orange, and green respectively, whereas the back-
ground class is depicted in red. From the figure, we can observe
that the segmentation is accurate for the disconnected background
classes. For example, ground and cables with each other as the
background class (first and second row, left) give an accurate seg-
mentation. On the other hand, connected classes such as the veg-
etation with the ground as the background class generates some
false positives. From this visualization, it is clear that the seg-
mentation result is highly dependent on the setting of the classes.

Conclusion
In this work, we have proposed a few-shot segmentation model for
complex railroad environments. Our model leverages the dynamic
graph networks, specifically DGCNN, to extract global and local
geometric features. We further derive multiple prototypes from
the support features for each object class to accurately model the
complex data distribution. In future work, we plan to investigate
various existing embedding networks to compare the performance
of our model in railroad segmentation. We are also interested in
exploring multi-view prototypes.
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