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Abstract
The modulation-transfer function (MTF) is a fundamental

optical metric to measure the optical quality of an imaging sys-
tem. In the automotive industry it is used to qualify camera sys-
tems for driver assistance systems or for future autonomous driv-
ing (ADAS/AD). Each modern ADAS/AD system includes evalu-
ation algorithms for environment perception and decision mak-
ing that are based on artificial intelligence or machine learning
(AI/ML) methods and neural networks. The performance of these
AI algorithms is measured by established metrics like Average
Precision (AP) or precision-recall-curves. In this article we re-
search the robustness of the link between the optical quality metric
and the AI performance metric. A series of numerical experiments
were performed with an object detection algorithm (cars, pedes-
trians) evaluated on image databases with varying optical qual-
ity. We demonstrate with these that for strong optical aberrations
a distinct performance loss is apparent, but that for subtle optical
quality differences – as might arise during production tolerances
– this link does not exhibit a satisfactory correlation. This calls
into question how reliable the current industry practice is where
a produced camera is tested end-of-line (EOL) with the MTF, and
fixed MTF thresholds are used to qualify the performance of the
device-under-test.

Introduction
The MTF is an established metric in the field of optics to

quantify the ‘sharpness’of an optical system [1, 2], based on lin-
ear system theory. There are many different approaches to mea-
suring the MTF using different types of target test charts (Siemens
star, slanted edge, dead leaves or spilled coins, illuminated lines,
illuminated points) [3]. To be more precise, many of those meth-
ods measure the spatial frequency response (SFR), which is ba-
sically the same as the MTF but derived from non-harmonic tar-
get features (e.g. slanted edge instead of sinusoidally modulated
Siemens star). Often MTF and SFR are used synonymous, we use
MTF throughout this article.

It is (automotive) industry standard to test a new camera
both during production (lens-sensor alignment) as well as end-
of-line (EOL) against fixed MTF thresholds [4]. If a MTF value
of the device-under-test (DUT) is above the threshold the camera
is deemed ready to be delivered to the customer, not causing any
failures in the field, if the MTF value is below the threshold the
camera will be reworked or – as in the case of the automotive in-
dustry – destroyed, throwing away maximum added value. It is
worth stressing the relevance of this threshold, as this is where the
money is! Fig. 1 visualizes this correlation: the developer of the
system defines a function limit that the camera needs to achieve
under production tolerances (dashed blue line), using MTF as the
quality metric. This could be e.g. a certain MTF50 value, or a

minimum value at a given spatial frequency. A camera (DUT)
is produced and compared to this threshold: if the MTF value
is above the threshold, the camera is sold to the customer, with
the implicit expectation from automotive quality processes that
this system will not cause any accidents or harm in the field. If
the MTF value of the DUT is below the threshold it is scrapped,
wasting maximum value-add. Reworking the DUT is usually not
economically feasible in the automotive industry. Therefore the
crossing of function limits and production tolerances (red circle)
symbolizes the economic pressure of the whole project: the pro-
duction plant manager needs the production tolerances to be as
wide as possible, avoiding over-engineering and costs, whereas
the developer is conscious of the possibly devastating effect a
systematic error in the field would cause. Therefore, solidly de-
termining the relation between the test metric (here: MTF) and
the actual performance of the DUT in the field is key to economic
success.

Nonetheless, exactly this link is not established in a scien-
tifically thorough manner during the development of the camera
system. The key challenge for this process is the actual function
limits of algorithms based on Artificial Intelligence (AI), machine
learning (ML) and neural networks – for brevity subsumed as AI
algorithms in the following. Due to the superior performance of
AI algorithms in the field of Computer Vision (CV) no modern
camera-based ADAS/AD system comes without AI algorithms

Figure 1: MTF function limits vs. production tolerances. If the
limits are too wide, there is a danger of unsafe cameras causing
accidents in the field. If the limits are too tight the camera is over-
engineered, and good cameras are binned, destroying maximum
value-add. In that sense the crossing of the production tolerance
limit and the function limit (red circle) symbolizes the economic
success of the whole camera project.
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like Convolutional or Deep Neural Networks (CNN, DNN). But
these algorithms are black-boxes in that the output cannot be pre-
dicted in a deterministic manner. Rather, it is estimated with a
best-practice statistical approach, and with millions of kilometers
of test drives on proving grounds and public roads, and in simu-
lation. This situation is described in detail in [4]. Unfortunately,
as the function limits of AI algorithms cannot be determined in
a mathematical, provable way, the industry runs the danger of a
McNamara fallacy [5]: reaching a certain level of MTF becomes
the actual goal of the development, whereas the application per-
formance of the DUT in the field – a good traffic sign recognition,
a stable lane detection – takes a second place.

Nonetheless, linking optical quality to AI performance is still
a niche academic research area, in that usually optics designer are
no AI/ML experts and vice versa. Still, there are a number of
activities. First, the fact that blurring significantly degrades object
detection performance has been established with the ImageNet-
C image data set, where the C stands for corruption [6]. Here
Gaussian-like blur was used to degrade sharpness, amongst many
other degradation, and the performance declines distinctly. We
have extended this work with our own research [7, 8].

Saad et al. [9] applied a measured vignetting intensity pro-
file to the KITTI image dataset and observed a spatially variant
reduction in car detection performance. Here, the spatial perfor-
mance distribution was distinctly correlated to the intensity of the
vignetting, where the performance degraded in darker corners of
the image. Pezzementi et al. applied a longer list of image degra-
dations (intensity and color noise, distortion, blur) to a data set
from the agriculture industry, where a camera was mounted on
heavy machinery to detect people working in the fields [10]. Sev-
eral different detection algorithms where used, and the robustness
of each algorithm to the different degradations was quantified us-
ing AP and precision-recall curves.

All these works demonstrate the influence of image quality
on the detection performance of AI algorithms. We believe with
this contribution we address a missing element in all those works
as we quantify the amount of optical degradation using the MTF
on simulated test charts. Thus, we can now correlate the amount
of degradation in the performance to the quantified optical perfor-
mance of the imaging system. We show that for large differences
in MTF values an AI algorithm performs worse as expected. But
for subtle differences as might be found for small production tol-
erances the AI performance is robust against these changes, call-
ing into question the current practice of equating MTF values end-
of-line with the AI performance, demonstrating a possibly danger-
ous McNamara fallacy.

This paper is structured as follows. After a brief theoretical
introduction to optical and AI performance metrics we present our
method how to link the optical quality to the performance of AI
algorithms. Here, we use object detection for the classes car and
pedestrian to demonstrate our results based on experiments on the
Berkeley Deep Drive data set [11].

Measuring optical quality and AI performance
In order to link the optical quality to the performance of the

AI algorithm both properties have to be quantified by metrics.
This section describes both metrics we used. First the optical
quality of the lens model we employed is described, as well as
a brief review of the lens model itself. Second, the selection of AI

algorithms are described together with the choice of metrics.

Optical model and degradation algorithms
The optical model has been used and described in detail be-

fore [12, 7, 8]. It comprises of a lens model and a degradation
algorithm to apply the lens effects to an image, similar in effect to
the Image Simulation tool in Zemax [13]. The lens model is based
on Zernike polynomials describing the optical wavefront aberra-
tion in the pupil plane for different field positions. The main idea
is to simulate wavefront aberrations in the pupil plane, and to de-
rive different point-spread functions (PSFs) over field from these
aberrations by Fourier transform [1]. The PSFs are then used to
degrade the image in image space. Additionally, the Zernike coef-
ficients can be used as model parameters to vary the optical qual-
ity, e.g. for a defocus study.

In this work, though, the lens model itself is not parameter-
ized. Instead, the degradation algorithm is varied. Using convo-
lution as a degradation algorithm – an established routine in both
academy and industry – is correct only when the PSF is constant,
as linear system theory requires both linearity and translation-
invariance for a convolution. As the PSF is spatially variant over
the field of view (FoV) of the lens the formally correct degrada-
tion algorithm is the superposition (SP) approach [1], where each
pixel is assigned a unique degradation kernel. In this case this
kernel accords to the PSF at that position. We have developed our
own degradation algorithm implementations both for convolution
in patches and for the superposition approach.

The SP approach is optically the only correct one, but it re-
quires a different PSF for every single pixel. There is a desire to
switch to less memory and runtime intensive algorithms to pro-
cess more images with the simulation. Often for such tasks the
so-called isoplanar patches algorithm is used [14], based on the
overlap-add criterion [15] and used e.g. in [16]:

g(x,y) =
K

∑
k=1

ψk(x,y) · ( f ∗hk)(x,y), (1)

where ψ(x,y) denotes the interpolation mask, f the input image
(object), hk the k-th kernel related to the mask and g the final
image.

The algorithm reduces the computation of the superposition
to the application of a simple convolution per block, which can
be accelerated. The algorithm can be used if the PSF changes
slowly and is therefore approximately constant in regions of size
K×L[16]. To avoid blocking artifacts the patches overlap and are
finally interpolated (usually bilinearly) [16, 14]. The parameter
block size thus decides how fine the gradations between the PSFs
are. More details on the degradation model can be found in [7].

We now compare the SP model with a convolution in
patches, where the patch-size is varied. All in all, four different
degradation variations are used: SP and patch sizes 80 px, 160 px
and 320 px. The differences between all four variations are sub-
tle, and we use these as a proxy to substitute actual production
tolerances.

Optical quality
The used lens is a Cooke triplet with distinct chromatic aber-

rations and astigmatism. These aberrations are stronger than typ-
ically encountered in current automotive camera systems, but are
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useful for the scientific purpose of developing a novel process to
link optical quality to AI performance, as it clearly discerns the
influences of these aberrations. We apply the lens model directly
on top of a data set of already recorded, real images using the
four different degradation algorithms discussed above. Thus, the
images actually include two sets of lenses: the lens with which
the images were recorded, and our Cooke triplet. The recording
camera was an iPhone 5, and has a high optical quality. The main
influence on the optics will be the Cooke triplet. Finally, we do
not consider object space depth, implicitly assuming that all rel-
evant objects are trans-hyperfocal, which for this data set and the
selected detection algorithms is an acceptable assumption. Also,
the auto-focus capabilites of the recording iPhone are ignored,
which influences the defocus values as well. Again, for a real au-
tomotive project all these properties have to be rendered correctly,
but for the purpose of this article these approximations are good
enough to demonstrate the validity of the process.

Figure 2: The slanted edge target used to evaluate the MTF per-
formance of the optical model over field. The MTF is evaluated
in three field positions indicated by the red squares: center, 0.5
(middle) and 0.7 (edge). The image is rasterized in the required
resolution from a vector graphics, and the optical model is used to
blur the resulting bitmap using different degradation algorithms.
The used target has a contrast ratio of 10:1.

In this article we measure the quality of our optical model
with the MTF only. There are many other optical quality met-
rics that could be used, like distortion and geometrical calibration,
signal-to-noise ratio (SNR) or dynamic range (DR)[17]. All these
will also have an influence on the application (AI) performance.
The process described in this article can be applied to all those
other metrics in a straight-forward manner as well, but we focus
on the MTF to segregate and isolate the effects.

We determine the MTF with the publicly available and es-
tablished sfrmat4-algorithm by Peter Burns [18], which imple-
ments the ISO12233 algorithm using a slanted edge target [19].
Our slanted edge target is shown in Fig. 2 and has resolution
1280× 720 pixels. For the purpose of this work three regions of
interest (ROI) were selected and marked in red squares in the fig-
ure: in the center, at a mid-field and at the edge of the horizontal
field of view. The target has a contrast of 10:1 and the evaluation
ROI is 45 by 40 pixels to fit the corresponding edge orientation.
The MTF is evaluated and plotted for both horizontal and vertical

orientation, taking the mean value over two values each for upper
and lower (left and right), i.e. four evaluations for each ROI.

AI algorithms and performance metrics
In this article, an object detector is used to localize and rec-

ognize persons and cars on an automotive data set. A state-of-the-
art neural network for object detection is used, which has been
trained on the MS COCO dataset [20] and is examined here on
the Berkeley Deep Drive dataset[11] without fine-tuning. The
analysis is limited to the validation set of the BDD100k detec-
tion dataset. The 10000 images all have the same size and were
extracted from videos taken by an iPhone5 camera in US cities.
On the dataset used, a total of 13425 people of different sizes are
marked. The people are also approximately equally distributed in
the horizontal direction. This facilitates later analysis. The labels
were converted to COCO annotation format for use in the python
COCO API for evaluation [20].

The Cascade Mask R-CNN algorithm was used for object de-
tection only, since instance segmentation labels are not available
for the BDD10k data set. The Deep Neural Network is present
in the Detectron2 model zoo [21] with pre-trained weights and
uses a Resnet-152 backbone [22] pre-trained on ImageNet [23].
The algorithms are not re-trained on the degraded data set for this
study, a process that is included in ongoing work.

We use Intersection-over-Union (IoU), mean average preci-
sion (mAP) and Precision-Recall-Curves to quantify the perfor-
mance of the detection network[24].

Linking optical quality and AI performance
To investigate the influence of the interpolation density on

the object detection, a three-step procedure is chosen: First, a PSF
data set is generated with the optical model, producing 920k PSFs
per color channel. These PSFs are input to the various degrada-
tion algorithms and applied to the unmodified image data set, re-
sulting in multiple image data sets that now contain the effects of
different PSF sampling density. Finally, the inference for object
recognition is performed for all image data sets modified in this
way. The different results per step are compared to each other [7].

As mentioned before, three different model approximations
of the superposition approach are discussed. The 1280×720 im-
ager is divided into isoplanar square blocks of size 802,1602 and
3202 as summarized in Tab. 1. The number of used color PSFs
range from 48 to 432, about a factor of 10, while the superposi-
tion uses a total of 2764800 PSFs. The total number of used PSFs
increases if the PSF grid needs to be filled with edge PSFs for a
given block size [7].

Metric SP ISO320 ISO160 ISO80
Block size − 3202 1602 802

# PSFs (luminance) 921600 16 48 144
# PSFs (color) 2764800 48 144 432

Table 1: Chosen algorithms for Cooke-Triplet optical model on
imager of size 1280×720 and three color channels [7].

Summarizing, the BDD100k validation data set is degraded
using the single optical model with the four different algorithms,
resulting in five data sets: baseline, SP, ISO320, ISO160 and ISO80.
In addition to degrading the image data set, the slanted edge target
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introduced before is degraded with these four algorithms as well,
allowing for a quantification of the optical quality of the degrada-
tion method. This additional quantification of the optical quality
is one central novelty of our approach, first presented in [7].

MTF as performance indicator?
Now it is possible to link the optical quality to the AI per-

formance. We can compare four different sets of degraded image
quality with four sets of AI performance. The detection algo-
rithm performs on these five data sets, yielding the AI algorithm
performance as AP and Precision-Recall-Curves. The baseline is
not included in the MTF visualizations, as it just yields the sinc-
function as the Fourier transform of the rectangular pixel of the
given size.

Optical quality results
We show three graphs depicting the MTF curves for all four

degradation algorithms, for the center of the image, for mid-field
and for the edge of the field. The optical quality degrades with
increasing field as expected from the lens setup, and the astigma-
tism becomes clearly visible (difference between dashed and solid
line). Recall that the MTF is principally evaluated in horizontal
and vertical direction, which on the horizontal axis of the field of
view accords to tangential and sagittal, respectively [13, 25].
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Figure 3: MTF curves from the slanted edge evaluation at the
center of the field. Dashed curves depict vertical and solid lines
horizontal evaluation.
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Figure 4: MTF curves from the slanted edge evaluation at the
middle of the field. Dashed curves depict vertical and solid lines
horizontal evaluation.
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Figure 5: MTF curves from the slanted edge evaluation at the
edge of the field. Dashed curves depict vertical and solid lines
horizontal evaluation.

Ideally, all degradation curves would be identical, as the op-
tical lens model is the same, and only the numerical application
is different. As a trend, though, the coarse simulation for ISO320
is always lower in quality in comparison to the other simulations.
Interestingly, both ISO80 and even ISO160 seem to be an adequate
approximation of the superposition algorithm, at least in terms of
the optical quality, as the MTF curves for those three algorithms
are in very close proximity. In the center this is especially clear,
as all curves are on top of each other except the one for ISO320.
Mid-field the ISO320 again differs distinctly, but interestingly the
vertical (dashed) curve for ISO160 also differs, a fact that is not
repeated at the edge of the field.

In a production environment single numerical values would
be derived from these curves. These would indicate that the
ISO320 ’lens’ has a lower performance, with a MTF50 value of
0.131 cy/px in comparison to 0.174 cy/px for the others, or an
MTF value of 22% @ 0.2 cy/px in comparison to 40% for the
others. For any automotive quality processes these would clearly
be very different lenses, and the values are indeed so different
that it is easy to image the ISO320 ’lens’ being a ’fail’, and the
others all a ’pass’. The interesting questions now is: how do these
’lenses’ perform on an actual task, like person detection?

AI performance results

(a) Example detection. (b) (c) (d)

Figure 6: Example detection of a person with a small size a) The
whole image, b) – d) crop of a single person at the right edge,
with b) original, c) SP and d) ISO320. The original instance im-
age b) has a confidence score = 93.4%, c) SP: 90.2%, d) ISO320:
91.3% [7].

An example detection of a person shown in Fig. 6 visualizes
the task and the effect different degradation algorithms have on
the image quality. The whole image is shown as well as three
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crops of a single person, for the original (baseline) version, as
well as for the SP and the ISO320 algorithm. The effect of the
degradation is distinct, the person looks much blurrier. Nonethe-
less, there is hardly a visual difference between the two different
degradation algorithms, even though the MTF at the edge of the
field indicates differently. In accordance with the visual impres-
sion, the confidence scores of the person detection are almost the
same for SP and ISO320 at 90.2% and 91.3%, respectively, a slight
drop from 93.4% for the original.

Consequently, we observe in the precision-recall evaluation
in Fig. 7 a clear drop in AI performance going from the original
to the degraded images for both person (a) and car (b) detection.
But the detection algorithm demonstrates the same performance
for all four different degradation algorithms, as all four precision-
recall-curves are on top of each other. Also, the average precision
(AP, inset legend) confirms this result with a drop of approx. 6.5%
from original to degraded for the person detection in (a), and again
a constant detection performance at about 55.0% for all degrada-
tion algorithms. The graph for car detection in (b) yields similar
results, though the drop in AP from original to degraded is now
only 2%. While this could indicate a robustness of car detection
in comparison to person detection, we assume this to be object
size dependent, which is also currently under investigation.

Summary and outlook
We presented a numerical simulation method to link opti-

cal quality of an imaging system to the performance of an AI
algorithm working on those images. A baseline data set – here
the Berkeley Deep Drive (BDD) – was degraded in four different
ways, using a self-developed physical-realistic optical lens model.
On this group of five different data sets (original plus four degra-
dations) the same AI algorithm was run, a person and car detec-
tion based on Cascade Mask R-CNN from the Detectron2 model
zoo. We use the degradation algorithms not only on the BDD data
set, but also on an slanted edge target that allows for a quantitative
evaluation of the MTF performance. Now the optical quality – in
terms of the MTF – can be linked to the AI performance – given
here by Average Precision and Precision-Recall-Curves.

The results show a good correlation between the unmodified
and the degraded BDD data sets: the degradation leads to a dis-
tinct reduction in AI performance for person and car detection. On
the other hand, while the optical performance of the four degra-
dations exhibits clear differences, the AI performance is constant
for all four. Because the MTF values differ so much, and yet the
AI performance is constant, this questions the established prac-
tice of the automotive industry of simply selecting a fixed MTF
threshold during end-of-line testing. Clearly, every algorithm has
its own requirements that need to be determined individually. Our
novel process of linking optical quality to AI performance can
help with this determination using physical-realistic simulations.

There were several constraints in this study. The AI algo-
rithm was trained on COCO, not on the BDD. Further, no re-
training was performed that took the degraded image data sets
into account, to gauge how much of the performance loss could
be recovered. This leads to the larger question how low certain op-
tical metrics can go while keeping – or recovering – the AI perfor-
mance with clever training on blurred images. Finally, we showed
the result for one select AI algorithm and two classes only. Appar-
ently, it would be of interest to study other detection algorithms
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Figure 7: Precision vs. Recall and Average Precision (AP) for
Cascade Mask R-CNN pedestrian and car detection, evaluated
for all degradation algorithms. Baseline refers to the unmodified
database.

and classes of algorithms, and to test which group of algorithm
is sensitive to which class of optical degradations. This is left for
future work.
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