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Abstract
The goal of our work is to design an automotive platform for

AD/ADAS data acquisition in view of subsequent application to
behaviour analysis of vulnerable road users. We present a novel
data capture platform mounted on a Mercedes GLC vehicle. The
car is equipped with an array of sensors and recording hardware
including multiple RGB cameras, Lidar, GPS and IMU. For fu-
ture research on human behaviour analysis in traffic scenes, we
compile two kinds of data recordings. Firstly, we design a range
of artificial test cases which we then record on a safety regulated
proving ground with stunt persons to capture rare events in traffic
scenes in a predictable and structured way. Secondly, we record
data on public streets of Vienna, Austria, showing unconstrained
pedestrian behaviour in an urban setting, while also considering
European General Data Protection Regulation (GDPR) require-
ments. We describe the overall framework including the planning
phase, data acquisition and ground truth annotation.

Introduction
Computer vision research in the automotive industry typi-

cally involves the design and development of systems and algo-
rithms that enable vehicles to perceive and understand their sur-
roundings. This can include tasks such as object detection and
classification, scene understanding, and motion planning. One ap-
proach to designing an automotive platform for computer vision
research is to use a vehicle equipped with sensors and cameras
that can provide a rich and diverse dataset for training and evaluat-
ing machine learning algorithms. This may include Lidar, Radar,
and/or camera sensors, as well as on-board computing resources
for running algorithms in real-time.

We target our research towards systems that have the poten-
tial to improve the safety of vulnerable road users. In a report
by the NHTSA (National Highway Traffic Safety Administration,
USA) [1], traffic accidents are recorded and analyzed. While the
number of injuries and fatalities decreases for most years, since
the year 2000, the proportion of fatalities outside the vehicle1 has
steadily increased from 20% in 2000 to 34% in 2020. This in-
dicates that more emphasis needs to be put on the protection of
non-occupants in traffic scenarios. While the outcome of an ac-
cident can be fatal, their statistical occurrence is minor. Accord-
ing to [2], vehicles typically run several billion kilometers per
accident, making data collection of rare events largely ineffective,
or even unfeasible. However, for the development of data-driven
machine learning models, as they are widely used in automotive
applications, there is a requirement for vast amounts of data for
training and testing such models. While data from public driving
datasets is abundantly available, the application of such datasets
is often hindered by the specifics of the dataset contents such as

1motorcyclists, pedestrians, bicyclists, and other non-occupants

the cameras used and situations recorded, increasing the domain
gap between the field of application and data for training and vali-
dation during development. To tightly control the parameters of a
dataset we therefore opt to create our own platform for data acqui-
sition. A key aspect of the design is to have a robust architecture
that can support the development and testing of various computer
vision algorithms. Overall, the design of an automotive platform
for computer vision research should aim to provide a flexible and
scalable solution that can support a wide range of research and
development activities in the field of autonomous vehicles. We
summarize the contributions of our work as follows:

• We present a holistic approach to a vision-based automotive
platform from sensor setup to data recording.

• We describe the hardware design and decisions for trade-
offs between flexibility and stability of the system.

• We tailor our requirements mainly towards computer vision
research, while also considering restrictions imposed by pri-
vacy and data protection laws.

In the remainder of the paper, we discuss the integral parts
of the developed platform for automotive computer vision re-
search. We start by introducing our sensor platform, consisting
of a mounting system, imaging sensor and electronics. We dis-
cuss their integration on the hardware level and their purpose. We
continue to elaborate on how we planned driving scenarios for
recording to not only record data in the wild but also be able to
construct repeatable test cases with defined interactions between
pedestrian and driver. Especially on public streets, data recording
is restricted by law. We therefore discuss the General Data Pro-
tection Regulation (GDPR) and how it affects our work. Lastly,
we describe the tools and workflow used to label the recorded data
for behaviour analysis of vulnerable road users.

Related Work
Recording and curation of data is a vital aspect of computer

vision research. Data is collected and published in many work
concerned with research in the field of autonomous vehicles, but
the platforms used to record data and the recording process itself
are often not addressed. In this work, we aim to improve on that
and present our approach to data recording and data curation for
research and observation of pedestrian behaviour from an ego-
vehicle. Only few datasets tailored to pedestrian behaviour anal-
ysis are currently publicly available, e.g. [3, 4, 5, 6]. While trans-
fer learning is a common technique in deep learning and com-
puter vision, [7] has shown that it has only limited application for
pedestrian behaviour analysis. When obtaining real data is diffi-
cult, synthetically generated data [8] can be an alternative. While
realistic simulation of visual appearance for actors in automotive
settings is possible [9], synthesizing realistic human behaviour is
extremely challenging.
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As a vital component of computer vision systems, the sen-
sor setup and used hardware components are only sometimes
described in the literature. In [10], the authors briefly review the
used sensors, their respective purpose and placement. While most
previous work puts its emphasis on the recorded data and algo-
rithms (e.g., [11]), components beyond sensors such as recording
hardware are typically not discussed. Contrary to a real-time ca-
pable system like the one presented in [12], our work puts its focus
on developing a recording platform.

The description of scenarios is an important part of auto-
motive development and testing. Depending on the recorded sit-
uation and usage of sensor data, differently detailed scenario de-
scriptions are required. In [13], the authors describe scenario-
based safety assessment for simulation purposes in a formal
framework. On a wider scope, in [14] the terms scene, situation
and scenario for automotive testing are substantiated. Under the
definition given in this work, we plan scenarios which are defined
by actions and events to reach a defined goal.

In the context of image and video annotation, computer vi-
sion labeling is the process of adding metadata to an image or
video in order to provide additional information about its content.
This is often done using specialized software tools that use artifi-
cial intelligence and machine learning algorithms to automatically
analyze the content of an image or video and generate labels that
describe its key features. For the annotation of images, a range of
tools exists, e.g., [15, 16, 17]). A comprehensive list of tools is
presented in [18, 19]. However, while video frames could be an-
notated as separate frames, the incorporation of temporal depen-
dency in the annotation tool enables more efficient annotation.
For the purpose of behaviour analysis and object tracking, we
aim to generate spatio-temporal annotations, i.e., bounding boxes
linked between frames. Only few free and open source tools are
available for this [20, 21, 22, 23] and even fewer allow for semi-
automatic labeling by single object tracking [24, 19] which is re-
quired to annotate objects over time efficiently.

Method
In this section, we discuss our steps to building the automo-

tive platform for data recording. We go into detail on design deci-
sions, hardware choices and the electrical design of components.
We continue to elaborate on how and where the recorded data is
stored, and what precautions are necessary to store data safely.
We pay particular attention to capture scenarios of interest and
to minimize the waste of resources. Furthermore, we present our
setup of different scenarios that were recorded on public streets
and on test tracks. Lastly, we go into detail about the annotation
of video data, and present our approach to annotating vulnerable
road users in videos efficiently.

Sensor Platform
For data acquisition, an off-the-shelf car was equipped with

additional hardware. The car model used is a Mercedes GLC, with
an additional mounting rail that was constructed and attached to
the front of the vehicle as shown in Figure 1. While other systems
(e.g., [11, 10]) mount their sensors on top of (and around) the ve-
hicle, this particular design was chosen to mimic the positioning
of headlight systems and to allow for easy mechanical access to
sensors during prototyping. The intention is to have a prototyp-
ical setup for a later integration of sensor components inside the

Figure 1: Sensors are mounted for the purpose of prototyping on
an easily accessible rail in front of the car.

headlamps. For reasons of traffic safety, the rail was equipped
with additional turn signals, the number plate and reflectors.

In total, we use five imaging sensors oriented towards the
front and sides of the vehicle as visualized in Figure 2. The side-
facing sensors allow for a 180° vision cone in front of the vehicle.
Especially vulnerable road users approaching from the sides are
recognizable early with these sensors. Further we have mounted
a camera with a Red Clear Clear Blue (RCCB) filter for low-light
scenarios, a high definition camera with narrow field of view to
detect objects at range and and a thermal camera oriented towards
the front. Besides these cameras, we use a Lidar sensor for 3d
perception. In addition to the imaging sensors, an inertial mea-
surement system is mounted on the vehicle.

The used sensors require different measures of protection.
While the side-facing cameras and the Lidar are water proof, the
front-facing RGB, RCCB and thermal cameras need special hous-
ings for protection from water. In principle, the RCCB and high
definition RGB camera could also be placed behind the wind-
shield of the car, the housing of the thermal camera has the ad-
ditional requirement of not blocking any thermal waves.

For the electrical connection of different sensors, different
interfaces are used. An overview of the sensors, components and
their connections is shown in Figure 3. A widely used interface in
the automotive industry is Gigabit Multimedia Serial Link version
2 (GMSL2). To feed the GMSL2 sensor signal to the recording
PC, we first deserialize the sensor signal and convert to USB or
Ethernet. Depending on the sensor component, we either use the
B-PLUS MDILink (Measurement Data Interface)2 or GMSL2-
to-USB deserializers. The used sensor components and some of
their properties are listed in Figure 2. As Lidar we use the Lu-
minar3 H3 Lidar, which supports Ethernet connectivity natively.
Likewise, the front-facing high definition RGB camera (Basler4

ac2040-35gc) supports an Ethernet stream for data. The two side-
facing cameras are Leopard Imaging LI-IMX490 sensors, which
provide a GSML2 interface and connect to the MDILink. The
other sensors like the thermal camera (Infiray Xsafe II M6S) and
the RCCB camera (Leopard Imaging LI-IMX424-GMSL2) are
connected via GMSL2-to-USB deserializers.

All these sensor inputs are combined on an embedded PC in
the vehicle’s rear trunk. A specialized software framework, pro-
vided by Lake Fusion Technologies GmbH5, is responsible for

2https://www.b-plus.com/en/products/
automotive/vehicle-data-harvesting/
data-interfaces-and-converters/mdilink-gmsl2

3https://www.luminartech.com/
4https://www.baslerweb.com/
5https://lf-t.net/
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Figure 2: Visualization of the field of views of used imaging sen-
sors. The side-facing cameras (top image) form a 180° detection
area in front and to the sides of the vehicle. The other sensors
(bottom image) are oriented towards the front.

data serialization to the disks. The system further integrates an
inertial measurement unit (IMU) mounted on the test vehicle. The
IMU consists of a three axis gyroscope, a three axis accelerom-
eter, a three axis magnetometer and a temperature sensor as well
as a global navigation satellite system receiver. Synchronization
of the sensor signals is done via timestamps. Some of the sensors
integrate their own timeserver and in these cases the sensor itself
adds a timestamp, for other sensors, the recording software adds
a timestamp. For synchronization of the different time servers the
precision time protocol (PTP) is used and the GPS time of the
IMU is set as reference. The recording software provides a web
based user interface (UI) using OpenHAB6. The UI is shown in
Figure 4. It displays the current status of the system and allows
starting/stopping of the recording as well as tagging of the data
during recording. Additionally it provides the functionality for
configuration of the sensors.

6https://www.openhab.org/

Figure 3: The recording system includes a range of sensors con-
nected to an embedded PC to synchronize and record the sensor
signals. Furthermore, a HMI (human machine interface) com-
puter allows control and supervision of the system during opera-
tion.

Data Privacy and Protection
Effective since 2018, the GDPR7 has set a precedent for data

protection in the European Union. Data recording for autonomous
driving research inevitably captures personal data of people sur-
rounding the vehicle such as the faces of pedestrians and cyclists
or number plates of cars. While imaging sensors like (RGB) cam-
eras and Lidar capture human traits and actions in an identifiable
way, thermal or depth cameras for example can provide a privacy-
preserving alternative in some cases. However, for the application
of behaviour understanding of vulnerable road users, an image
representation of the non-verbal communication between vulner-
able road user and driver is usually necessary. Defined by the
GDPR, the data subject has a number of rights. The recording
of personal data must be communicated to the data subjects in
a clear and understandable way. For this purpose, our recording
vehicle is equipped with a large sign showing contact informa-
tion and a QR-Code leading to a statement of data policy. The
data subject has further a right of information and access to the
data. If a person was recorded, he/she can, at any point, request
the deletion of their data. It is the data controller’s obligation to
process and respond to such requests. To ensure confidentiality
and enable processing of data requests, we document any access
to the recorded data. One possible way to ensure the protection
of personal data is anonymization. Proper anonymization of any
identifiable trait would effectively render the data outside of the
scope of the GDPR. Since this is too labor intensive and because
anonymization would hinder the analysis of non-verbal commu-
nication between humans, we refrain from anonymization and fall
back to pseudonymization for data protection, which ensures that
any piece of data cannot be attributed to an individual anymore
without additional information. By this definition, we achieve
pseudonymization by encryption of the data.

7https://gdpr.eu/
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Figure 4: The human computer interface allows for control and
supervision of the recording system. Free disk space, mounted
disks, free RAM and the INS status as well as successful connec-
tion to the sensors are supervised during recording.

Scenarios
Vulnerable road users, such as pedestrians, cyclists, motor-

cyclists, and people with disabilities are individuals who are more
likely to be involved in a traffic accident due to their physical
vulnerability. These individuals are at a higher risk of injury or
death in a collision compared to other road users, such as mo-
torists who are protected by the structure of their vehicle. While
it is important for all road users to be aware of and take precau-
tions to protect vulnerable road users, appropriate measures also
need to be integrated in the design of assisted and autonomous
driving platforms. Non-verbal communication between a driver
and pedestrian can be important for maintaining safety and or-
der on the road [25, 26]. There are several ways that a driver
and pedestrian can communicate non-verbally. Making eye con-
tact with a pedestrian can indicate that the driver has seen them
and is aware of their presence. This can be particularly impor-
tant when pedestrians are crossing the road. Drivers can use hand
signals to indicate their intentions to pedestrians. For example, a
driver might wave their hand to indicate that it is safe for a pedes-
trian to cross the road. Drivers can use their headlights, turn sig-
nals, and other vehicle signals to communicate with pedestrians.
For example, flashing headlights might be used to indicate to a
pedestrian that it is safe to cross the road. Drivers can also com-
municate non-verbally through facial expressions. To complicate
things even more, the meaning of non-verbal signals may vary
with geographic location or cultural background.

To record such interactions in large number, we follow two
strategies. Firstly, we design artificial test cases on an automo-
tive proving ground. With the foreseen scenarios, we aim to ver-

Figure 5: Video recording and scenarios description of interaction
between pedestrian and vehicle on an automotive proving ground.

ify methods for object detection, object tracking and behaviour
prediction. Our scenarios are based on the insight that when the
path of vehicle and pedestrian are going to cross, communication
must be established and the right of way is negotiated. The sce-
narios take place at a four-way crossing, as depicted in Figure 5,
or straight parts of the track. In our planning, the test cases are
sketched following a description of the vehicle’s and pedestrian’s
path, while several variables describe their behaviour. Most im-
portantly, we pre-define for each test case whether the pedestrian
is paying attention to the scene or if they are in a distracted state.
The latter may be represented by the pedestrian either looking
away from the vehicle or being distracted by a smartphone. An-
other variable describes who has the right of way, defining if either
the pedestrian or the vehicle has to stop.

To implement custom traffic scenarios in a safe manner, two
stunt people were hired. One acted as a pedestrian with the inten-
tion of crossing the road, and a second professional drove the car.
With their experience, the stunt persons were able to execute the
defined scenarios with utmost precision and their previous experi-
ence in the entertainment industry was helpful to present realistic
forms of non-verbal communication. The driver had to establish
and maintain a defined speed and be able to stop the vehicle at
a specified point. Additionally, the pedestrian also needed to ad-
here to the right starting point and timing, such that both meet at
the desired point. For easier orientation, some tests keypoints on
the test track were marked with traffic cones, and communication
between a coordinator and both stunt people was maintained via
radio phones.

Secondly, we recorded real driving sequences by driving
through urban areas. With the goal of meeting large numbers
of pedestrians, we aimed for the inner city of Vienna, Austria.
The most interesting sequences we obtained are situations where
the right of way must be negotiated, since it is more challeng-
ing to recognize the intention of a pedestrian wanting to cross the
street when there is no indication of a safe way of crossing, i.e. a
cross-walk or traffic lights. With this in mind, we aimed mostly
for narrow streets, where said situations are more likely to arise.
While conducting the recordings, tasks were distributed among
four team members inside the vehicle. The driver was solely re-
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Figure 6: For data annotation, the “Computer Vision Annotation
Toolkit” (CVAT) was used. To facilitate fast and efficient annota-
tion, we integrated a state-of-the-art single object tracking algo-
rithm for semi-automatic annotation.

sponsible for steering the car, while the co-driver navigated to
streets matching our desired traffic profile. Two more people were
in charge of the recordings controlled by the OpenHAB interface;
one had to start and stop recordings while the other was tagging
the occurrences of vulnerable road users.

Video Annotation
The Computer Vision Annotation Toolkit (CVAT) is a free

and open-source software that enables users to annotate images
and videos for computer vision tasks such as object detection,
segmentation, and tracking. CVAT offers a range of features that
make the annotation process efficient and accurate, including the
option to review existing annotations and make use of interac-
tive annotation modes, such as support for semi-automatic anno-
tation. In CVAT’s semi-automatic video annotation workflow, an
algorithm is used to automatically identify and label specific ob-
jects or scenes in a video. This is typically done via machine
learning algorithms and pre-defined rules or criteria. Once the
algorithm has identified and labeled the objects or scenes in the
video, a human annotator can review the labels and make any
necessary adjustments or corrections. This allows for a more ef-
ficient and accurate video annotation process, as the computer is
able to handle the initial identification and labeling, while the hu-
man annotator can focus on ensuring the accuracy and quality of
the annotations. For semi-automatic annotation, CVAT supports
the integration of interactors, detectors and single object trackers,
where we are focusing on the latter. Single object tracking mech-
anisms are able to track image templates from frame to frame to
ultimately form the trajectory of an object. The architecture of
CVAT separates the integration of ‘AI Tools’ into a containerized
environment managed by Nuclio, where the required algorithms
are provided as serverless functions which communicate with the
CVAT application through a web-based interface. We integrate
the state-of-the-art tracking algorithm TransT [27], which is class
agnostic and sufficiently accurate, into the annotation system’s ar-
chitecture. The integration of TransT into CVAT has been made
publicly available. We show an exemplified usage of CVAT in
Figure 6.

Conclusions
In this paper, we discussed our approach to an automotive

platform for computer vision research. We elaborated on the sen-
sors and hardware components used and presented our methods

Figure 7: GPS mapping of data recordings in Vienna, Austria. We
enable data recording during our drives for specific time periods
corresponding to areas where we expect a significant number of
vulnerable road users.

to record data for pedestrian behaviour analysis. We found that
while the sensor placement on the rail allowed for easy mechan-
ical access, the construction has some structural issues, as vibra-
tions are more strongly translated to the sensors. Another aspect
we evaluated while recording on public streets was the system’s
resilience. While mechanical perturbation of the vehicle had no
impact on the sensor recordings, we found that the side-facing
cameras occasionally showed dropped frames, which we attribute
to bandwidth limitations. An issue observed was the signal align-
ment of the INS, which worked as expected when the vehicle was
moving but abnormal vehicle movement like abrupt breaking af-
fected the INS negatively. During recording we therefore super-
vised the INS status as shown in Figure 4. With respect to regu-
lar driving maneuvers, interaction with pedestrians is comparably
rare and requires a data acquisition strategy to capture scenarios
of interest efficiently. To balance between realistic behaviour and
data quantity, we chose to record on public streets and automo-
tive proving grounds. Recording on public streets is arguably less
resource intensive than the usage of proving grounds, but also re-
quires a considerable amount of personnel to drive, navigate, su-
pervise, select and tag data as described in the previous section.
Figure 7 shows the GPS trajectory of our recordings and indi-
cates selective recording sequences along the route. The designed
automotive platform will provide a base for future research on
pedestrian behaviour analysis.
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