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Abstract

Capturing images under low light conditions generally re-
sults in loss of contrast and difficulty discerning objects for both
human observers and machine vision systems. To address this,
the gain and exposure time are often increased to brighten the im-
age. This may lead to the images becoming heavily affected by
noise or motion blur. The impact of motion blur on image quality
is therefore an important consideration. We present a simulation
in which the exposure time and motion blur can be simulated and
the impact on image quality metrics can be measured. Traditional
image quality metrics are investigated, as well as some recently-
proposed alternatives. Our simulation incorporates the exposure
time, motion blurring, camera setting, ambient lighting, a noise
model, and optical blurring. The model allows the blurring of
image quality targets and real-world images, in this paper, im-
age quality targets are used. The variation in image quality as a
Sfunction of motion and exposure time may be useful in system de-
sign, in particular, determining the sensitivity to relative motion
between object and imaging system.

Introduction

The occurrence of motion blur in an image arises from the
relative movement between the image acquisition system and the
object during the exposure window. It is known that motion blur
has a significant impact on image quality and object detection per-
formance, particularly in the context of autonomous vehicles. In
low-light conditions, the diminished illumination of the environ-
ment can lead to less contrast and discernible information in the
images, requiring an increase in exposure time and/or gain to en-
hance image quality. However, merely increasing the gain will
only amplify what is already captured, including noise, without
improving the signal-to-noise ratio. Increasing exposure time, on
the other hand, increases the amount of information captured but
will also increase the noise. The optimal exposure time for a given
application remains a challenge. The conventional approach to in-
vestigating these trade-offs typically involves mathematical calcu-
lations, assumptions, and iterative trials. A controlled simulation
approach, on the other hand, provides the advantage of control-
ling and measuring the variables of the scene, which can be diffi-
cult to achieve in real-world scenarios. Utilizing a simulation will
enable the definition of the limits of the camera and algorithm un-
der investigation, and ultimately determine the range of exposure
time and motion blur for a specific camera application that will
produce a target performance level. The objective of this paper
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Image Quality Metrics ~ Units

SNR dB

MTF50 Cycles per pixel
SIC Bits per pixel
NEQ Photons

Table 1: Image quality metrics used and the corresponding units

is to investigate the relationship between motion blur, exposure
time, and image quality metric values. The results may be used to
define a range of tolerable exposure times and motion blur for a
given camera application.

Related Works
Motion blur

As previously mentioned, motion blur is a common issue in
autonomous vehicle applications. The problem is further ampli-
fied under low light conditions, where the exposure time is in-
creased. Many studies have shown that blur has a significant im-
pact on image quality and object detection performance, both of
which are crucial in an autonomous vehicle application [1, 2, 3, 4].
Dodge et al [2] showed that CNN performance, while resilient to
artifacts and contrast, is very susceptible to blur and noise. How-
ever, many of these studies simulate blur using Gaussian statistics
and do not explicitly simulate motion blur.

Metrics

In optics, the most common image quality metrics are Mod-
ular Transfer Function (MTF) and Signal to Noise Ratio (SNR).
Both MTF [5, 6] and SNR [7] are very well-established metrics.
In recent years, these metrics alone have been considered to be in-
sufficient for the quantification of the performance of modern-day
image applications, especially when trying to relate image qual-
ity back to object detection performance. Recently, newer met-
rics such as Shannon Information Capacity (SIC) [8] and Noise
Equivalent Quanta (NEQ) [9] have gained popularity in the im-
age quality community. Both of these metrics are combinations
of signal and noise components. A list of the metrics used and its
corresponding units are shown in Table 1.

MTF and SNR
Vinax — Vmin
C(f) - Vinax + Vinin W



MTF(f) = 100% * e (2)

c(0)

In optics, the difference between bright and dark is referred
to as contrast [6]. The amount of contrast that is preserved by an
imaging system, as a function of spatial frequency, is captured by
the Modulation Transfer Function (MTF). MTF is a key metric
used to measure sharpness[5]. The calculation of MTF and sine
pattern contrast (C(f)) at a spatial frequency (f) and luminance (V)
is shown in Equation (1) and Equation (2) [10]. The most com-
monly used point on the MTF curve is the point where the con-
trast decays to 50% of its low-frequency values, more commonly
called MTF50. The signal-to-noise ratio (SNR) is a well-known
measure that compares the level of a desired signal to the level of
background noise [7].

Shannon Information Capacity (SIC)

Traditionally, SIC [8, 11] is a widely used quantity in com-
munication systems and information theory and defines the max-
imum rate in bits per second that data can be transmitted through
a channel without error. From an image quality perspective, a
camera can be viewed as a “channel”. Hence, SIC measures the
maximum information that an image can contain. As shown in
Equation (3) [8], SIC is a metric that combines both signal and
noise in its calculations. S(f) is the signal component, N(f) is the
noise component and B is the Nyquist frequency.

B

SIC = Zn/.logsz( SUH N ) fdf 3)
0

N(f)

Noise Equivalent Quanta (NEQ)

As shown in Equation (4), NEQ combines both MTF and
Noise Power Spectrum (NPS) to quantify the square of the signal-
to-noise ratio (SNR) as a function of spatial frequency [8, 9]. In
Equation (4), u is the mean linear signal and v is the spatial fre-
quency.

MTF?(vy,vy)

NEQ(ev) = bt

@

Methodology
Target Charts

The target chart used for the work described in this paper
is the Siemens Star chart [12]. The Siemens Star chart measures
MTF from a star pattern along the radii of a circle for a range of
angles. This chart is scale-invariant, measures MTF in a variety
of angles, and has the benefit of noise and signal being measured
in the same location. The alternative to the Siemens Star chart is
the slanted edge chart [13]. The slanted edge may be favorable in
many cases due to its robustness but in the use case for this paper,
the Siemens Star chart was used for its ability to measure MTF
from a variety of angles [14, 15, 16].

Simulation flow

In Figure 1, we have shown the flowchart of the simulation.
The camera configurations that are used include the quantum ef-
ficiency, sensitivity, baseline offset, and bit depth of the camera.
The number of electrons generated by photons hitting an active
area of the sensor is obtained from the quantum efficiency. The
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Figure 1: Simulation flowchart. The simulation takes in an image
as input and a set of parameters including camera configurations,
ambient lux level, degree of motion, and exposure time. The im-
age is then converted to grayscale and optical blurring is applied.
The motion blur is then applied to the image. Then the noise
model is applied to the image. The image is then converted to
analog digital units using the camera configuration values.
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Figure 2: Simulation noise model. In these expressions, it and 62
represent the mean and variance of the number of photons hitting
the camera (p), the dark noise (d), and the output signal in ADU’s
(y). The number of electrons e generated by p photons hitting the
active area of the sensor is obtained from the expression for the
quantum efficiency 7, an engineered property of the camera that
in general depends on the wavelength.

sensitivity of the camera represents the amplification of the volt-
age in pixels from the photoelectrons.

A simple disk optical blur model, implemented from Mat-
lab’s built-in disk function, is applied to the simulation. When
applying the motion blur, a blur kernel is first created using the
vector combination of the horizontal pixel movement and the ver-
tical pixel movements, which gives the length of the motion. The
blur kernel is then rotated by a transformation matrix which is
generated by the angle between the two vectors, this will give the
direction of the motion blur. The blur kernel is then normalized
and applied to the image in the form of a filter. The noise model
for the simulation, as shown in Figure 2, is then applied to the
image. The noise model implemented is an extension of that de-
scribed in Douglas et al. [17]. The image is then converted to
analog digital units (ADUs) to simulate the quantization error of
the camera, producing the final output image. The simulation is
performed on gray-scale images. Example images taken at differ-
ent lux levels are shown in Figure 3.

The array of simulated images of different degrees of expo-
sure time, lux level, and motion blur are then inputted into Imatest
[18] for the calculation of image quality metrics.
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Figure 3: Samples images without motion blur, with light levels
of 50 lux on left and 300 lux on the right. Both images were
captured under 30ms exposure time.

Results

Figure 4: Static scene of a simulated image on the left and real
image on the right. Both were captured under 200lux and at 30ms
exposure time.
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Figure 5: Simulated motion blurred image on the left and real mo-
tion blurred image on the right. Both images are approximately
at 1500 DX(horizontal pixel movement per second). Both were

captured under 200 lux and 30ms exposure time.

The images produced by simulation show a large degree of
correlation with real-world images, for both static and motion-
blurred images. This can be seen in the examples shown in Fig-
ure 4 and Figure 5. Similar blurring at the center of the chart and
similar figure eight blur artifacts appear when applying horizontal
blurring.

Figure 6 and Figure 7 show the variation of quality metrics
as a function of exposure time (10 ms to 30 ms) and degree of hor-
izontal and diagonal pixel movement. We can see from Figure 6
and Figure 7 that, during static scenes, increasing the exposure
time will directly improve the image quality metrics which sug-
gests that the information in the image has increased. However,
with the higher exposure time, the degree at which motion blur af-
fects image quality also increases. The image quality metrics be-
come less useful as more motion blur is added, resulting in erratic
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and noisy behavior in the graph for high pixel movement values.
The longer the exposure time, the earlier the inconsistent behav-
ior begins to occur. The loss of reliability in the metrics is more
apparent in diagonally blurred images in Figure 7 because there is
blurring in both the vertical axis and horizontal axis. While some-
what subjective, we can see that the useful range of the graphs
the metrics for our camera setting at 30ms exposure and 200 lux
illumination, is approximately 900-pixel movement per second,
which can be converted to meters per second if the distance and
size of the target are known.

Conclusion

This paper has described a simulation that measures a num-
ber of image quality metrics as a function of motion blur and cam-
era exposure times, for night-time imaging applications. Increas-
ing the exposure time will increase the amount of information in
the image (as measured by SIC) but will also increase the rate at
which motion blur affects the image. As well as traditional met-
rics like MTF50 and SNR, we also examine alternative metrics
like SIC and NEQ. Our simulation correlates well with real world
images. The results indicating the variation in image quality as
a function of motion blur and exposure time may be used in sys-
tem design as a guide to choosing system parameters to achieve
certain performance goals.

Future Works

We plan to extend the research to natural scenes and exam-
ine the correlation between the simulation and real-world images.
We also plan to improve our simulation to include applications
such as rolling shutter cameras and improve our blurring simu-
lation to include localized blurring. We also plan to incorporate
other metrics and other image quality targets into our future stud-
ies, for example, SNRI [8] and BxU [19]. Other image quality
targets such as the slanted edge will be considered for the test-
ing of more extreme scenarios and exposures, as it is much more
robust than the Siemens Star chart, albeit less sensitive. We also
plan to investigate the relationship between motion blur, image
quality metrics, and object detection performance.
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Figure 6: Graph of IQ metrics plotted against horizontal pixel movement per second, with different exposures and constant 200 lux light
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Figure 7: Graph of IQ metrics plotted against diagonal pixel movement per second, with different exposures and constant 200 lux light
level The diagonal pixel movement is a combination of horizontal and vertical pixel movement.
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