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Abstract
This paper presents the design of an accurate rain model for

the commercially-available Anyverse automotive simulation envi-
ronment. The model incorporates the physical properties of rain
and a process to validate the model against real rain is proposed.
Due to the high computational complexity of path tracing through
a particle-based model, a second more computationally efficient
model is also proposed. For the second model, the rain is modeled
using a combination of a particle-based model and an attenuation
field. The attenuation field is fine-tuned against the particle-only
model to minimize the difference between the models.

Introduction
For safe, reliable, and continuous operation, automated ve-

hicles need to be able to operate in adverse weather conditions.
Cameras are perhaps the most important sensor which enable au-
tomated vehicles. Therefore, understanding the impact of rain
on image quality is an important question in the context of au-
tonomous vehicles and ADAS. However, accurately measuring
image quality in an outdoor environment is a challenging problem
due to calibration constraints and the number of overlapping envi-
ronmental variables involved (lux level, sun position, etc.). A lack
of control of weather conditions adds further complexity. Simu-
lation is an attractive alternative that allows the impact of rain to
be examined in an isolated, controllable manner. To fully char-
acterize and understand the impact of rain, having an accurate,
realistic, and validated rain model is an important initial step.

In most cases the effect of falling raindrops on image quality
is minimal in comparison to the effects of raindrop adhesion on
the lens, which leads to occlusion, and the effects of spray from
puddles. However, within the context of sensor availability, due
to the prevalence of rain, its effect on image quality needs to be
properly characterized. For automotive applications, the impact
of falling raindrops lies in particular in edge cases. Simulated
rain is a useful approach for identifying and characterizing such
edge cases that can lead to a system failure. There is currently a
lack of publicly-available, open-source automotive datasets which
include detailed weather labels. At best some datasets, such as
BDD [1], contain very coarse labels (e.g. ‘rain’ and ‘no rain’),
which render the datasets unsuitable for accurately characterizing
camera availability under rain conditions. An accurate rain model
allows the creation of large-scale datasets with detailed weather
labels.

Related Works
Broadly-speaking, simulated rain can be split into two cate-

gories, namely real rain simulation, where rain is replicated at an
indoor testing facility, and virtually simulated rain, where rain is
recreated in a virtual environment using a variety of physics-based
models. Virtually simulated rain can also be added to an image in
post-processing, as synthetic rain.

Physical real rain simulators or ‘rain tunnels’ try to mimic
real rain by spraying water into a controlled environment. Wa-
ter is typically sprayed into the environment through specialized
nozzles which are calibrated to set the drop size distribution. The
Cerema R&D Platform [2] is an example of a large-scale real rain
simulator used for automotive applications. Duthon et al. used
the Cerema rain simulator to validate a digital rain image sim-
ulator [3]. Smaller-scale real rain simulators can also be used.
Hasirlioglu et al. designed a rain simulator to investigate the in-
fluence of rain on camera, LiDAR, and RADAR sensors [4]. The
simulator consisted of several potential rain layers with the sensor
under test placed at one end of the simulator and a target placed
at the other. Physical rain simulators have the advantage of be-
ing relatively straightforward to implement, however, accurately
recreating droplets of water that are similar to real raindrops is
challenging as noted in [5].

Unlike real rain simulators, virtual rain simulators are typi-
cally created in a fully simulated environment. Many simulators
are essentially game engines in their back end, such as Carla [6],
while others such as SVL [7] and D-Space [8] are physics-based
simulators that typically don’t run in real-time but provide more
accurate results based on larger mathematical models. The flexi-
bility of virtual simulators is particularly useful for investigating
the effects of a condition in terms of an application i.e. investigat-
ing the effects of rain on object detection performance in complex
scenarios, whereas real rain simulators are better suited to charac-
terizing the effect of a condition on the sensor itself. For example,
Jeon et al. investigated the effect of heavy rain on lane detection
[9] while Hasirlioglu et al. used their real rain simulator to look at
sensor performance [4]. Many simulators come with prebuilt rain
models, which are usually based on particle models, however, the
degree to which these models have been validated is often unclear.

Augmenting training data for machine learning algorithms
with synthetic weather-degraded data is a popular technique, in an
attempt to limit the algorithm’s degradation in performance when
presented with real-world weather-degraded data. Haldar et al.
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Figure 1. Raindrop diameter distributions for rain of varying intensities [18].

used a physics-based simulator to boost the performance of an ob-
ject detection algorithm in rain [10]. Many synthetic rain genera-
tion techniques are deep learning-based and rely on the collection
of rain and no-rain image pairs to use as training data [11, 12].
No matter what type of rain simulation is used, the importance
of validating the model is crucial to avoid a domain mismatch.
Hnewa and Radha noted that any inaccuracy in a simulated rain
model is likely to lead to a domain mismatch when an algorithm
is evaluated on real rain [13].

Rain Characteristics
In North-Western Europe the mean rainfall intensity, includ-

ing periods of no rain, is between 0.05-0.3 mm/hr [14], while the
total annual precipitation ranges from 100mm to 1300mm[14]. In
Ireland, the average rainfall is between 1000mm and 1300mm per
year [15], with rain falling on up to 300 days per year. The aver-
age rainfall intensity rate in Ireland is 2 mm/hour.

Several studies, investigating features of rain, have been pub-
lished which indicate that raindrops are uniformly distributed in
space [16, 17]. Unlike the spatial distribution of raindrops, drop
size distribution is not uniform. Laws and Parsons noted that drop
size distribution is correlated with rainfall intensity [18]. As the
rainfall intensity increases, so too does the average drop size. This
increase in drop size is also characterized as having a wider dis-
tribution meaning that as the rainfall intensity increases, so does
the range of the droplet size distribution. Figure 2 shows the dis-
tribution of raindrop sizes for three different rainfall intensities.
Typical drop sizes range in value from just above 0 mm to 6 mm
for rain falling at 12.5 mm/hour (0.5 inches/hour).

Raindrop terminal velocity is related to raindrop size [19].
Several models for raindrop terminal velocity have been created
[19, 20, 21, 22, 23, 24]. The results of these studies are sum-
marised in Figure 1, with a high level of correlation demonstrated
between the studies. Typical terminal velocities are in the range
of 2 to 10 m/s.

The Anyverse Simulation Environment
The Anyverse simulation environment [26] is a commer-

cially available simulator specializing in high-end simulated data
for automotive applications. The proprietary simulator, which is
physics based, uses hyperspectral path tracing to produce highly
accurate simulated data. A sample image from the Anyverse sim-
ulator is shown in Figure 3.

All objects added to a scene are spectrally characterized for
256 different wavelengths, up to 780nm. Optical irradiance is
simulated for each object in the scene and passed to the optical

system to simulate the effect of a camera lens. Multiple optical
models, including pinhole and thin lens, are available in the simu-
lator. The optical irradiance is filtered by wavelength, to simulate
the effect of an IR filter and a color filter array. The filtered irradi-
ance is then passed to a simulated image sensor. Multiple image
sensor models or custom configurations are available. Finally, the
digital output from the image sensor is passed to an ISP pipeline
for further processing.

Model Design
Particle Model

To capture the characteristics of rain a particle-based model
is used. Each raindrop is modeled as a 3-dimensional sphere and
added to the scene. The model has the following properties to
capture the physical properties of rain accurately:

• Raindrops are evenly distributed in space.
• Raindrop diameter is between 0 and 6 mm and is randomly

sampled from a Gaussian distribution.
• Raindrop terminal velocity is calculated based on drop size.
• Raindrop ‘streaks’ are captured using a 3D motion blur

model which factors in exposure time and raindrop speed.

Raindrops are added to a scene that undergoes path tracing. Path
tracing is used to accurately capture the effect of rain on optical
irradiance in the scene. The principles of tracing are embedded in
ray optics (geometric optics) which have been noted to have been
suitable for modeling the effect of refraction due to raindrops [27].

The main issue with using a particle model is the compu-
tation time associated with path tracing the scene once the rain
has been added. Each raindrop has the potential to interact with
light rays, in the form of either refraction or reflection. As more
raindrops are added the number of interactions increases exponen-
tially. The computational cost of path tracing becomes prohibitive
as scenes get larger, especially if the rain model is used to render
a large dataset suitable for training a machine learning algorithm.

Particle/Density Model
To address the computational complexity of the ‘Particle

Model’ a more efficient two-stage model is proposed which uses
a density-based attenuation field to approximate the effects of rain
further from the camera. The model is split into two sections
based on distance from the camera. The model leverages the fact
that raindrops at different distances from a camera exhibit differ-
ent behaviors on the image plane. Rain closest to the camera,
referred to as ‘Near-Field’ (NF) rain, is clearly visible on the im-
age plane and is prone to cause streaks in an image, due to motion
blur. NF rain is modeled using the ‘Particle Model.’ Rain further

Figure 2. Raindrop terminal velocity models vs. drop radius [25].
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Figure 3. Sample Image from the Anyverse Simulator.

from the camera, referred to as ‘Far-Field’ (FF) rain, is less visi-
ble on the image plane and causes a ‘graying effect’ on the image
plane due to heavy dispersion and scattering of light. FF rain is
modeled using an attenuation field.

Both models are set up using a cylindrical coordinate system
with the camera at the origin. The coverage of both models is
shown in Figure 4. There is no overlap between the coverage areas
of the models. The radius of the NF rain section of the model is
set so that raindrops are smaller than one pixel when projected
onto the image plane. The radius length is specific to the camera
setup and depends on a number of factors including focal length,
pixel size, and sensor size. For a 70◦field of view lens the radius
of the NF rain is approximately 10m. The properties of NF and
FF rain are summarised in Table 1. Figure 5 shows the output
of each model on the image plane, with the ‘Particle Model‘ on
the left and the ‘Particle/Density Model’ on the right. Table 1
summarises the properties of NF and FF rain.

Figure 4. Particle/Density Model Layout

Validation Process
To ensure the accuracy of the two-stage model both the ‘Par-

ticle Model’ and ‘Particle/Density Model’ need to be validated
against real rain in terms of image quality. To minimize the differ-
ence between the ‘Particle/Density Model’ and real rain, a three-
step validation process is proposed:

1. Characterise the effect of real rain on the image plane.
2. Validate the particle model rendered in the simulator.
3. Calibrate the attenuation field to mimic the Particle Model.

To characterize the effect of rain on image quality both a
short-distance and long-distance test are carried out. For the short-
distance test an outdoor image quality scene is set up for long-
term data collection. The scene consists of several industry stan-
dard image quality test charts, 2 mannequins, and a number of
standard road signs. A picture of the scene is shown in Figure 6.

The outdoor scene is recorded using a 6.3MP FLIR Black-
fly S camera, with a weather station recording the meteorological
conditions and light levels at the scene. Image quality metrics
for sharpness, such as MTF, contrast, and color accuracy can be
measured from the charts. The charts are situated 13m from the
camera making them suitable for characterizing the effects of NF
rain.

For outdoor characterization over longer distances, the use of
test targets becomes infeasible due to the required size of the tar-
gets. However, some metrics for sharpness, such as MTF [28],
and contrast [29], can be approximated directly from a scene.
The initial results from the long-range rain characterization are
included in the Results Section of this paper.

The effect of the ‘Particle Model’ on image quality is char-
acterized in the simulator. As shown in Figure 5, image quality
test charts for sharpness, contrast, and color accuracy are added to
the scene. The model should be evaluated at different distances,
so the test charts can be set up at varying distances from the cam-
era in the scene. To ensure a fair comparison at each distance
the charts need to be scaled to maintain a constant spatial resolu-
tion. The results are compared with the real rain characterization
to ensure the accuracy of the ‘Particle Model.’

Finally, the ‘Particle/Density Model’ needs to be evaluated
and calibrated. Image quality is measured in the simulator in the
same manner as the ‘Particle Model.’ As the density field approxi-
mates FF rain, the density field needs to be calibrated to match the
already validated ‘Particle Model’. Once calibrated, the computa-
tionally efficient ‘Particle/Density Model’ will produce a similar
effect to real rain.

Results
This section presents the initial results from the long-

distance rain characterization. An image of the same scene was
captured in both rain and no rain conditions. Both images are dis-
played in Figure 7. Both images were processed using a minimal
ISP pipeline, with no edge enhancement or denoising. The two
images were captured 10 minutes apart and show the impact of
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Near-Field Rain Far-Field Rain
- Raindrops located near to the camera - Raindrops located further from the camera
- Raindrops larger than 1 pixel on the image plane - Raindrops smaller than 1 pixel on the image plane
- Individual raindrops are clearly visible on the image plane - Individual raindrops are not clearly visible on the image
which leads to streaking and blurring plane.
- Raindrops have less of an impact in terms of dispersion - Raindrops cause heavy dispersion and scattering of light
- Modeled used a particle field - Modeled using an attenuation field

Table 1: Properties of Near-Filed and Far-Field Rain.

Figure 5. The Particle Model and The Particle/Density Model.

Figure 6. Outdoor image quality test scene.

rain on a typical scene. From a visual perspective, there appears
to be less contrast in the rain image with the image appearing to
be washed out and lacking highly saturated colors. The change in
ambient light conditions is also evident with ambient light levels
dropping in rain conditions. The rain in the right-hand image is
clearly visible with the raindrops in the foreground easily distin-
guishable from the background scene. Due to a short exposure
time, the effect of motion blur on the raindrops is limited and
therefore long streaks of rain are not present in the image.

For each image, several different contrast metrics are mea-
sured and MTF is estimated from a slanted edge found in the
scene. The distance between the camera and the target building is
approximately 60m. To measure contrast several patches are se-
lected from the pair images which correspond to different shades
of gray: 60%, 35%, and 15% were selected from the scene. Figure
8 shows the regions, in red, that were selected from each image.
The green box corresponds to the slanted edge used to measure
NS-MTF (Natural Scene MTF). All patches selected were 100 x
100 pixels in size, with the contrast and NS-MTF measurements
being taken from the luminance channel of the YCbCr colorspace.

Figure 9 displays the histograms for each patch (different
gray values) under rain and no rain conditions. Both the light
gray (1) and mid-gray (2) patches show a significant change in the
value of the luminance channel between both conditions. Under
rain conditions, there is approximately a 50% decrease in lumi-
nance value for both patches. The dark gray patch (3) shows little
change in luminance value under the two conditions, with a minor

increase in luminance under rain conditions.

Patch 1 vs Patch 2 Patch 1 vs Patch 3 Patch 2 vs Patch 3
Rain No Rain Rain No Rain Rain No Rain

CNR 14.774 13.786 11.005 38.257 -2.9343 13.862
Michelson Contrast 0.4078 0.2577 0.3028 0.5939 -0. 1198 0.3970

Weber Contrast 0.6942 0.7558 0.8686 2.9252 -0.2140 1.3168

Table 2: Contrast Results

Table 2 displays the results of the relative contrasts between
each patch in the same image under rain and no rain conditions.
Patch 1 vs. Patch 3 demonstrates the expected result where there
is a clear decrease in relative contrast across an image in rain con-
ditions. The decrease, in contrast, is reflected in all three contrast
metrics (CNR, Weber, and Michelson). A similar result is evident
between Patch 2 and Patch 3 with contrast falling across all three
metrics. The negative contrasts displayed in the results are due to
the fact that in rain conditions Patch 2 and Patch 3 display differ-
ing behaviors. The value of Patch 2 significantly decreases in rain,
while Patch 3 remains almost constant. The negative metric val-
ues arise due to the mean value of the luminance channel of Patch
2 falling below that of Patch 3 in rain conditions. The Patch 1 vs
Patch 2 metrics show a minor increase in contrast under rain con-
ditions. Both patches behave similarly under rain conditions with
a substantial decrease in the luminance values across each patch.
As both patches behave similarly the relative contrast between the
patches remains almost identical.

Future Work

The design and validation of the rain model is part of a long-
term project investigating the impact of rain on image quality and
the subsequent effect on machine learning performance. The ef-
fects of NF and FF rain are being characterized in terms of image
quality. Once characterized, the ‘Particle Model’ needs to be val-
idated against real rain. Given that the ‘Particle Model’ is based
on the physical properties of rain, the model should have a sim-
ilar effect on image quality as real rain. The ‘Particle/Density
Model’ will be calibrated by comparing the model with the ‘Par-
ticle Model’ in terms of each model’s effect on image quality.
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Figure 7. Long Distance Rain Characterisation Scene.

Figure 8. Long Distance Rain Characterisation Scene.

Figure 9. Histograms showing the profile of the luminance of channel of

each patch under rain and no rain conditions.
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