

Orchestration of Co-operative and Adaptive Multi-core Deep
Learning Engines
Mihir Mody, Kumar Desappan, Pramod Swami, David Smith*, Shyam Jagannathan, Kevin Lavery*, Greg Shultz*, Jason Jones*
Embedded Processors Business, Texas Instruments (India and *USA)

Abstract

Automated driving functions, like highway driving and
parking assist, are increasingly getting deployed in high-end cars
with the goal of realizing self-driving car using Deep learning
(DL) techniques like convolution neural network (CNN),
Transformers etc. Deep learning (DL)-based algorithms are used
in many integral modules of Advanced driver Assistance systems
(ADAS) and Automated Driving Systems. Camera based
perception, Driver Monitoring, Driving Policy, Radar and Lidar
perception are few of the examples built using DL algorithms in
such systems. These real-time DL applications requires huge
compute requires up to 250 TOPs to realize them on an edge
device. To meet the needs of such SoCs efficiently in-terms of Cost
and Power silicon vendor provide a complex SoC with multiple DL
engines. These SoCs also comes with all the system resources like
L2/L3 on-chip memory, high speed DDR interface, PMIC etc to
feed the data and power to utilize these DL engines compute
efficiently. These system resource would scale linearly with
number of DL engines in the system. This paper proposes solutions
to optimizes these system resource to provide cost and Power
efficient solution. (1) Co-operative and Adaptive asynchronous DL
engines scheduling to optimize the peak resources usage in
multiple vectors like memory size, throughput, Power/ Current. (2)
Orchestration of Co-operative and Adaptive Multi-core DL
Engines to achieve synchronous execution to achieve maximum
utilization of all the resources.

Introduction
The Automated driving (AD) systems implement highway

driving and value parking functions at multiple automation levels
(L2-L5) [1-2]. The figure 1 shows the functional block diagram to
achieve these functions. The key blocks for automated driving are
namely Perception, Localization, Fusion, Driving Policy, Motion
Planning and Control. The multi-modality perception (Camera,
radar and Lidar) is used to gather environment information around
car [3]. ‘Fusion’ module is used to give most reliable environment
using Bayesian filtering among all modalities [4]. The
‘localization’ module is used to find exact position of vehicle in
real world co-ordinates using High definition-HD Maps and
perception data. The resulting environment model is used by
‘Driving Policy’ module to take decision e.g. stay in lane, lane
change, yield, merge etc. The decision of Driving policy module is
translated in actual car movement with ‘Motion planning’ module
accounting kinematics and passenger’s comfort. Lastly, typical
‘control’ module is used to track actual trajectory with respect to
reference by controlling actuators.

As shown in figure 1, many of these modules are built with
Deep Learning (DL) based approaches either completely or
partially. With the pervasive used of DL, realization of
autonomous systems includes one or more purpose-built
processors for DL acceleration along with general purpose

processors like Cortex ARM. As these DL engines (Hardware
accelerators or DSPs) are purpose built, the silicon vender would
provide custom software APIs to deploy DL model on these
engines. DL algorithms in ADAS or Autonomous driving system
are used for various kind of modalities (Camera, RADAR, LiDAR)
and algorithms (Perceptions, Planning, Fusion), so a wide range of
DL model architectures needs to be deployed/evaluated on these
DL engines. These purpose-built HW engines would come with
fixed set of functionally (DL Layer/Operator types) and software
support. With rapidly evolving DL model architectures,
development of these Automated Driving Systems would need to
evaluate new models which may not be supported by exiting DL
offering.

Figure 1. Computation blocks of Autonomous driving system.

Deep Learning application Development Workflow
A typical SoC targeted for high throughput DL applications

like Automated driving would have multiple DL engines. The
Figure-2 here describes example block diagram of such a SoC.
Open-source DL inference frameworks (Tensorflow Lite, ONNX
runtime, TVM, NEO-AI-DLR etc.) [5-8] have been developed to
improve the ease of DL model deployment with offload
mechanisms to DL accelerators [9-11]. The memory throughput
requirements of DL engines are very high as these engines are
designed to perform huge number of compute operations per
cycles. To meet these requirements, each CNN/DL core has
dedicated on chip level 2 memory and system resources like DMA
engines statically linked to it. This would make the software
execution on these cores would be independent and run totally
asynchronously. The peak system resource requirement (like
system resources like L2/L3 on-chip memory, high speed DDR
interface, PMIC etc.) of this SoCs would traditionally scale
linearly. For example, the L2 memory requirements would be 4x
if the SoCs has 4 DL engines compared to one. The Figure -3

IS&T International Symposium on Electronic Imaging 2023
Autonomous Vehicles and Machines 2023 112-1

https://doi.org/10.2352/EI.2023.35.16.AVM-112
© 2023, Society for Imaging Science and Technology

shows the software usage models of such linearly scaling SoCs
design.

Figure 2. Typical system with Multi-Core DL/CNN Cores.

Scaling a such design for SoC with large number of DL

engines would be practically not possible (peak power and Area
requirements etc) to meet the compute requirements of systems
like automated driving. An optimal software and SoC co-design
would be needed to meet these requirements.

Figure 3. Software usage model for DL inference

Parallel execution flow of typical system described in the
above section would be almost independent of other cores. The
Figure 4 illustrates the execution flow of this system in a given
time interval.

Figure 4. Typical Parallel CNN engines execution flow

Orchestration of Multi-core DL Engines
We propose below solutions to address the limitations

described in the previous section.

1. Co-operative and Adaptive asynchronous DL engines

scheduling to optimize the peak resources usage in multiple
vectors like memory size, throughput, Power/ Current.

2. Orchestration of Co-operative and Adaptive Multi-core
DL Engines to achieve synchronous execution to achieve
maximum utilization of all the resources.

Adaptive Resource allocation for DL engines
The Figure - 3 describes the design of proposed SoC. Here all

the system resources are not completely allocated statically at SoC
design level. A portion of resources are statically allocated for each
DL engine and a common portion is dynamically allocated across
all the DL engines during runtime on as per the requirements of a
layer being processed in given point of time. The SoC modules
would be designed / enhanced to address such dynamic allocation.
For example, to make the software view the dynamically allocated
memory as linear extended memory a memory management unit
(MMU) would be needed in DMA engines of each DL. The Figure
- 4 shows the software usage models of SoCs design with dynamic
resource allocation. A common resource manager software module
with would be designed to service the request of dynamic resource
allocation from each DL engine. The common resource manager
would be registered with the layer level resource requirements
from each DL engine at boot of the system to avoid any delays in
allocation during the runtime.

Figure 5. Software usage model for dynamic resource allocation and Adaption
policies

Co-operative DL engines scheduling
When a resource manager runs out of resource of a given DL

engine execution, we have two options to handle this based on user
preference.

a) Adapt the layer execution policy to choose different
strategy (either execute slowly or with reduce accuracy) with the
limited system resource.

b) Stall the layer execution till all the required system
resources are fully available.

The Figure 8. Illustrates the execution flow DL core with

dynamic resource allocation and Adaption policies. During
initialization of all the core, the minimum required resources are
statically allocated. Also, layer level dynamic resource
requirements are registered with the resource allocator. The
applicable adaption polices for required accuracy and latency

112-2
IS&T International Symposium on Electronic Imaging 2023

Autonomous Vehicles and Machines 2023

requirements are configured as per the needs of application. The
following steps describes sequence of resource
allocation/execution at layer level for each DL core.

(1) If the statically allocated resources are enough to for the

layer computation – Completes the execution flayer
(2) Request additional resources if needed, if they are

available complete – Completes the execution flayer.
(3) Request the applicable adaption policy to compute the

layer with available limited resources - if they are
available complete – Completes the execution flayer.

(4) Stall the execution till one of request from steps (2) or
steps (3) is serviced.

The Figure – 6 shows time-line view of such dynamically resource
allocating scheduling.

Figure 6. Execution flow with dynamic resource allocation and Adaption
policies

Adaption policies to optimize system utilization
Adaption of resource requirements maximizes the system

utilization without stalling the execution of any DL cores. This
paper proposes various adoption configuration/policies for each
critical system resources like memory size, throughput, Power/
Current. Some of these the polices also explained with details in
the following sections. The Table 1 lists some of the example
adaption configuration to reduce peak requirement of internal
memory size, DRAM bandwidth, Internal memory throughput and
Power.

Table I: Example adaption configuration

Adaption
Type

Adaption Cofig-1 Adaption Config-2

Algorithm Tradeoffs Algorithm Tradeoffs

DRAM BW Parameter
Precision

Quality
Degrade

Feature
Precision

Quality
Degrade

Internal
Memory Size

Use external
DRAM
Memory

Lesser FPS
Parameter and
Feature
Precision

Quality
Degrade

Internal
Memory
Throughput

Parameter
and Feature
Precision

Quality
Degrade

Use external
DRAM Memory

Lesser
FPS

Power
Run given
Layer at
lower speed

Lesser FPS
Run given layer
on power
efficient core

Lesser
FPS

Figure 7. On-the-fly adaption policy to reduce peak internal memory
throughput and peak power requirement

As described in the introduction section memory throughput
is very critical contributor in efficiently utilizing the compute
capabilities of a DL engines. Increasing external memory
throughput to meets needs of multi core DL SoC design would
need have impact cost and power requirements. The common
Resource allocation manager would allocate these internal memory
resources on demand. When multiple DL engines requests the
internal memories at the same time and it would not allocate for all
of them. In this case, the resource allocator would choose a
applicable adaption policy, for example allocate DRAM for one of
the DL engine instead of allocating in internal memory. This
would impact the utilization for one of the DL engines and
resulting higher latency. The adaption polices are decided at
runtime to avoid any underutilization of internal memory in terms
of both size and throughput. Another example of such adaption
policy for internal memory would be to choosing lower bit depth
for either parameters or feature vectors of layer. This would result
in accuracy degradation, software would be configured to choose
this based on acceptable accuracy targets by the application
requirements. Figure 7 and 8 illustrates the selection of few
adaption polices for memory and power optimization requirements.

Figure 8. On-the-fly adaption policy to select weights and feature tensors
Precision

Synchronous Execution of Multiple Cores
The dynamic resource allocator with adaption policy would

proposed in the previous section would try to maximize the
utilization of resource. As showcased in Figure - 6 time-line of
such dynamically resource allocator, there will be scenarios were
some of the DL engine execution would be stalled when a required
resource could be allocated. When a SoC has multiple such DL
engine, then occurrence and frequency of such stalls would non-

IS&T International Symposium on Electronic Imaging 2023
Autonomous Vehicles and Machines 2023 112-3

deterministic. Safety critcle systems have hard requirement to be
deterministic interns both resource allocation and accuracy of the
application. To address these requirements, we propose a multi
core orchestrator on top of the dynamic resource allocation and
Adaption policy software model described in previous sections.
The multi core orchestrator prepares the dynamic resource
requirements by analyzing the models running in all DL engine
instead of analysis one model/network individually. The Figure -9
describes the software usage model of this orchestrator for
Synchronous Execution of DL engine.

Figure 9. Software usage Model for Synchronous Execution

The common context table prepared by offline software would
determine the stalls in the execution of each DL engines. These
sync points are decided based on the resource requirements of the
al the DL engines for a given time instance. This decision is made
in offline software by analyzing adaption policies of all the model
in a given time instance, compared one model’s policy in
asynchronous execution. The Figure -10 captures the time-line
view of Synchronous Execution flow with Multi Core Orchestrator

Figure 10. Synchronous Execution flow with Multi Core Orchestrator

Results

The graph in Figure 11 shows a SoC design decision for
choice of number of internal memory ports while scaling the
scaling numbers of DL engines with proposed solutions in this
paper. The adoption configuration could achieve up to 25%
reduction in number required ports, which would result in cost and
power efficient SoC design. The graph in Figure 12 shows
compute utilization with adaptive configuration in given SoC with
multi core Orchestrator proposed for synchronous execution which
results in up to 20% higher utilization.

Figure 11. Peak Internal memory throughput requirements comparison

Figure 12. Peak TOPs utilization/Loss comparison

112-4
IS&T International Symposium on Electronic Imaging 2023

Autonomous Vehicles and Machines 2023

Conclusion
This paper proposed solutions to optimizes the system

resource to provide cost and Power efficient solution of real-time
DL applications requiring huge compute capabilities. The Co-
operative and Adaptive resource allocator proposed here make it
possible to design a SoC with multi-core DL engines without
linearly scaling system resources. The multi core Orchestrator
proposed for synchronous execution of core to meets the
deterministic system requirement of safety critical applications.

References
[1] Mody, Mihir, Jason Jones, Kedar Chitnis, Rajat Sagar, Gregory

Shurtz, Yashwant Dutt, Manoj Koul, M. G. Biju, and Aish Dubey.
"Understanding vehicle e/e architecture topologies for automated
driving: System partitioning and tradeoff parameters." Electronic
Imaging 2018, no. 17 (2018): 358-1

[2] SAE J3016, “Taxonomy and Definitions for terms related to on-road
automated motor vehicles”

[3] Mihir Mody, Niraj Nandan, Shashank Dabral, Hetul Sanghvi, et.al,
“Image Signal Processing for Front Camera based Automated Driver
Assistance System”, IEEE International Conference on Consumer
Electronics, (ICCE) , Berlin, 2015

[4] Shyam Jagannathan, Mihir Mody, Jason Jones, Pramod Swami and
Deepak Poddar, “Multi-sensor fusion for Automated Driving:
Selecting Model and Optimizing on Embedded Platform”, AVM
track, Electronic Imaging, 2018

[5] Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin et al. "Tensorflow: A system for
large-scale machine learning." In 12th {USENIX} symposium on
operating systems design and implementation ({OSDI} 16), pp. 265-
283. 2016.

[6] ONNX Runtime - https://onnxruntime.ai/docs/execution-providers/

[7] T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. 13th USENIX Symp. Oper. Syst. Design
Implement. (OSDI), Carlsbad, CA, USA, 2018, pp. 578–594.

[8] Neo-AI DLR - https://github.com/neo-ai/neo-ai-dlr

[9] K Desappan, et.al, “CNN Inference: Dynamic and Predictive
Quantization”, IEEE International Conference on Consumer
Electronics, (ICCE) , Berlin, 2018.

[10] M. Mathew, K. Desappan, P. K. Swami, S. Nagori, and B. M.
Gopinath, “Embedded low-power deep learning with tidl,” Texas
Instrum., Dallas, TX, USA, Tech. Rep. SPRY314, 2018.

[11] Kumar Desappan, Anand Pathak, Pramod Swami, Mihir Mody, Yuan
Zhao, Paula Carrillo, Praveen Eppa, Jianzhong Xu, "Open source
deep learning inference libraries for autonomous driving systems" in
Proc. IS&T Int’l. Symp. on Electronic Imaging: Autonomous
Vehicles and Machines, 2022, pp 118-1 - 118-5,
https://doi.org/10.2352/EI.2022.34.16.AVM-118

Author Biography

Mihir Mody is SoC Architect lead (DMTS) responsible for roadmap and
chip definition for Sitara MCU business in Texas Instrument (TI). His
domains of interest are real time control, image processing, computer
vision, deep learning and Video coding. He received his master’s in
electrical engineering from Indian Institute of Science (IISc) in 2000

Kumar Desappan is Senior Member of Technical Staff (SMTS) at Texas
Instruments (TI) Incorporated. His domains of interest are Machine/Deep
learning, image processing and computer vision algorithms with a focus on
software solution for edge devices. He received Bachelor of Engineering
(BE) from Anna University - Chennai in 2005

Pramod Swami is Distinguish Member of Technical Staff (DMTS) at
Processors Business in Texas Instruments (TI) leading the software
development for EdgeAI processing. His domains of interest are Embedded
systems, Digital Signal Processors, Deep Learning, Computer Vision,
Image Processing, and Video coding. He received his Bachelor’s degree in
Electronics and communication engineering from Malaviya National
Institute of Technology (MNIT) Jaipur in 2001.

David Smith is a Design Engineer for Processors business at Texas
Instruments (TI) Incorporated, responsible designing IPs Concentrating on
optimal data movement and sub-system optimization. He received his
Master of Science (MS) degree from Harvey Mudd College in 1996.

Shyam Jagannathan is an EdgeAI architect and Senior Member of
Technical Staff at Embedded Processors Group, Texas Instruments. He
received a master’s degree from IIT Chicago in the field of Signal
Processing and Communications and has been with Texas Instruments
since 2005. His areas of interest include DSP architecture, SoC
architecture, hardware accelerators, deep learning, perception, sensor
fusion localization, path planning and overall system optimization

Kevin Lavery is an application’s engineer, working in device
characterization. His interests lie on the analog / digital boundary. He has
a master’s degree in physics from the University of Houston (1994).

Gregory Shurtz is Principal Systems Architect for Processors business at
Texas Instruments (TI) Incorporated responsible for SoC platform
definition for Infotainment & ADAS solutions. Former positions include
FPGA Logic Designer at Lockheed Martin and Designer for mass storage
systems at Symbios Logic. He received a Bachelor of Science in Electrical
Engineering (BSEE) degree, summa cum laude, from Wichita State
University in 1995.

Jason Jones is the Principal Systems Architect for Processors business at
Texas Instruments (TI) Incorporated, responsible for current and future
roadmap solutions encompassing Digital Cockpit, ADAS, and Vehicle
Gateway applications. He holds Bachelor of Science (BS) degree from
Texas A&M University in 1993.

IS&T International Symposium on Electronic Imaging 2023
Autonomous Vehicles and Machines 2023 112-5

https://github.com/neo-ai/neo-ai-dlr

