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Abstract 

Automated driving functions, like highway driving and 
parking assist, are increasingly getting deployed in high-end cars 
with the goal of realizing self-driving car using Deep learning 
(DL) techniques like convolution neural network (CNN), 
Transformers etc. Deep learning (DL)-based algorithms are used 
in many integral modules of Advanced driver Assistance systems 
(ADAS) and Automated Driving Systems. Camera based 
perception, Driver Monitoring, Driving Policy, Radar and Lidar 
perception are few of the examples built using DL algorithms in 
such systems. These real-time DL applications requires huge 
compute requires up to 250 TOPs to realize them on an edge 
device. To meet the needs of such SoCs efficiently in-terms of Cost 
and Power silicon vendor provide a complex SoC with multiple DL 
engines. These SoCs also comes with all the system resources like 
L2/L3 on-chip memory, high speed DDR interface, PMIC etc to 
feed the data and power to utilize these DL engines compute 
efficiently. These system resource would scale linearly with 
number of DL engines in the system. This paper proposes solutions 
to optimizes these system resource to provide cost and Power 
efficient solution. (1) Co-operative and Adaptive asynchronous DL 
engines scheduling to optimize the peak resources usage in 
multiple vectors like memory size, throughput, Power/ Current. (2) 
Orchestration of Co-operative and Adaptive Multi-core DL 
Engines to achieve synchronous execution to achieve maximum 
utilization of all the resources.  

Introduction  
The Automated driving (AD) systems implement highway 

driving and value parking functions at multiple automation levels 
(L2-L5) [1-2]. The figure 1 shows the functional block diagram to 
achieve these functions.  The key blocks for automated driving are 
namely Perception, Localization, Fusion, Driving Policy, Motion 
Planning and Control. The multi-modality perception (Camera, 
radar and Lidar) is used to gather environment information around 
car [3].  ‘Fusion’ module is used to give most reliable environment 
using Bayesian filtering among all modalities [4]. The 
‘localization’ module is used to find exact position of vehicle in 
real world co-ordinates using High definition-HD Maps and 
perception data. The resulting environment model is used by 
‘Driving Policy’ module to take decision e.g. stay in lane, lane 
change, yield, merge etc.  The decision of Driving policy module is 
translated in actual car movement with ‘Motion planning’ module 
accounting kinematics and passenger’s comfort.  Lastly, typical 
‘control’ module is used to track actual trajectory with respect to 
reference by controlling actuators. 

As shown in figure 1, many of these modules are built with 
Deep Learning (DL) based approaches either completely or 
partially. With the pervasive used of DL, realization of 
autonomous systems includes one or more purpose-built 
processors for DL acceleration along with general purpose 

processors like Cortex ARM.  As these DL engines (Hardware 
accelerators or DSPs) are purpose built, the silicon vender would 
provide custom software APIs to deploy DL model on these 
engines. DL algorithms in ADAS or Autonomous driving system 
are used for various kind of modalities (Camera, RADAR, LiDAR) 
and algorithms (Perceptions, Planning, Fusion), so a wide range of 
DL model architectures needs to be deployed/evaluated on these 
DL engines. These purpose-built HW engines would come with 
fixed set of functionally (DL Layer/Operator types) and software 
support. With rapidly evolving DL model architectures, 
development of these Automated Driving Systems would need to 
evaluate new models which may not be supported by exiting DL 
offering.

 
Figure 1. Computation blocks of Autonomous driving system.  

Deep Learning application Development Workflow 
A typical SoC targeted for high throughput DL applications 

like Automated driving would have multiple DL engines. The 
Figure-2 here describes example block diagram of such a SoC. 
Open-source DL inference frameworks (Tensorflow Lite, ONNX 
runtime, TVM, NEO-AI-DLR etc.) [5-8] have been developed to 
improve the ease of DL model deployment with offload 
mechanisms to DL accelerators [9-11]. The memory throughput 
requirements of DL engines are very high as these engines are 
designed to perform huge number of compute operations per 
cycles. To meet these requirements, each CNN/DL core has 
dedicated on chip level 2 memory and system resources like DMA 
engines statically linked to it. This would make the software 
execution on these cores would be independent and run totally 
asynchronously. The peak system resource requirement (like 
system resources like L2/L3 on-chip memory, high speed DDR 
interface, PMIC etc. ) of this SoCs would traditionally scale 
linearly.  For example, the L2 memory requirements would be 4x 
if the SoCs has 4 DL engines compared to one. The Figure -3 
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shows the software usage models of such linearly scaling SoCs 
design. 

 
 

 
Figure 2. Typical system with Multi-Core DL/CNN Cores. 

 
Scaling a such design for SoC with large number of DL 

engines would be practically not possible (peak power and Area 
requirements etc) to meet the compute requirements of systems 
like automated driving. An optimal software and SoC co-design 
would be needed to meet these requirements.  

 

 
Figure 3. Software usage model for DL inference 

Parallel execution flow of typical system described in the 
above section would be almost independent of other cores. The 
Figure 4 illustrates the execution flow of this system in a given 
time interval.  

 
 

 
Figure 4. Typical Parallel CNN engines execution flow 

 

Orchestration of Multi-core DL Engines  
We propose below solutions to address the limitations 

described in the previous section. 
 
1. Co-operative and Adaptive asynchronous DL engines 

scheduling to optimize the peak resources usage in multiple 
vectors like memory size, throughput, Power/ Current.  

2. Orchestration of Co-operative and Adaptive Multi-core 
DL Engines to achieve synchronous execution to achieve 
maximum utilization of all the resources. 
 

Adaptive Resource allocation for DL engines 
The Figure - 3 describes the design of proposed SoC.  Here all 

the system resources are not completely allocated statically at SoC 
design level. A portion of resources are statically allocated for each 
DL engine and a common portion is dynamically allocated across 
all the DL engines during runtime on as per the requirements of a 
layer being processed in given point of time. The SoC modules 
would be designed / enhanced to address such dynamic allocation. 
For example, to make the software view the dynamically allocated 
memory as linear extended memory a memory management unit 
(MMU) would be needed in DMA engines of each DL. The Figure 
- 4 shows the software usage models of SoCs design with dynamic 
resource allocation. A common resource manager software module 
with would be designed to service the request of dynamic resource 
allocation from each DL engine. The common resource manager 
would be registered with the layer level resource requirements 
from each DL engine at boot of the system to avoid any delays in 
allocation during the runtime.  

 
Figure 5. Software usage model for dynamic resource allocation and Adaption 
policies 

Co-operative DL engines scheduling 
When a resource manager runs out of resource of a given DL 

engine execution, we have two options to handle this based on user 
preference. 

a) Adapt the layer execution policy to choose different 
strategy (either execute slowly or with reduce accuracy) with the 
limited system resource. 

b) Stall the layer execution till all the required system 
resources are fully available. 

 
The Figure 8. Illustrates the execution flow DL core with 

dynamic resource allocation and Adaption policies. During 
initialization of all the core, the minimum required resources are 
statically allocated. Also, layer level dynamic resource 
requirements are registered with the resource allocator. The 
applicable adaption polices for required accuracy and latency 
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requirements are configured as per the needs of application. The 
following steps describes sequence of resource 
allocation/execution at layer level for each DL core. 

 
(1) If the statically allocated resources are enough to for the 

layer computation – Completes the execution flayer 
(2) Request additional resources if needed, if they are 

available complete – Completes the execution flayer. 
(3) Request the applicable adaption policy to compute the 

layer with available limited resources - if they are 
available complete – Completes the execution flayer. 

(4) Stall the execution till one of request from steps (2) or 
steps (3) is serviced. 

The Figure – 6 shows time-line view of such dynamically resource 
allocating scheduling.  

 

 
Figure 6. Execution flow with dynamic resource allocation and Adaption 
policies 

Adaption policies to optimize system utilization 
Adaption of resource requirements maximizes the system 

utilization without stalling the execution of any DL cores. This 
paper proposes various adoption configuration/policies for each 
critical system resources like memory size, throughput, Power/ 
Current. Some of these the polices also explained with details in 
the following sections. The Table 1 lists some of the example 
adaption configuration to reduce peak requirement of internal 
memory size, DRAM bandwidth, Internal memory throughput and 
Power. 

Table I: Example adaption configuration 

Adaption 
Type 

Adaption Cofig-1 Adaption Config-2 

Algorithm Tradeoffs Algorithm Tradeoffs 

DRAM BW  Parameter 
Precision 

Quality 
Degrade 

Feature 
Precision 

Quality 
Degrade 

Internal 
Memory Size  

Use external 
DRAM 
Memory   

Lesser FPS 
Parameter and 
Feature 
Precision 

Quality 
Degrade 

Internal 
Memory 
Throughput 

Parameter 
and Feature 
Precision 

Quality 
Degrade 

Use external 
DRAM Memory   

Lesser 
FPS 

Power  
Run given 
Layer at 
lower speed 

Lesser FPS 
Run given layer 
on power 
efficient core 

Lesser 
FPS 

 
 

 
Figure 7. On-the-fly adaption policy to reduce peak internal memory 
throughput and peak power requirement 

As described in the introduction section memory throughput 
is very critical contributor in efficiently utilizing the compute 
capabilities of a DL engines. Increasing external memory 
throughput to meets needs of multi core DL SoC design would 
need have impact cost and power requirements. The common 
Resource allocation manager would allocate these internal memory 
resources on demand. When multiple DL engines requests the 
internal memories at the same time and it would not allocate for all 
of them. In this case, the resource allocator would choose a 
applicable adaption policy, for example allocate DRAM for one of 
the DL engine instead of allocating in internal memory. This 
would impact the utilization for one of the DL engines and 
resulting higher latency. The adaption polices are decided at 
runtime to avoid any underutilization of internal memory in terms 
of both size and throughput. Another example of such adaption 
policy for internal memory would be to choosing lower bit depth 
for either parameters or feature vectors of layer. This would result 
in accuracy degradation, software would be configured to choose 
this based on acceptable accuracy targets by the application 
requirements. Figure 7 and 8 illustrates the selection of few 
adaption polices for memory and power optimization requirements. 

 
 

 
 
Figure 8. On-the-fly adaption policy to select weights and feature tensors 
Precision 

Synchronous Execution of Multiple Cores 
The dynamic resource allocator with adaption policy would 

proposed in the previous section would try to maximize the 
utilization of resource. As showcased in Figure - 6 time-line of 
such dynamically resource allocator, there will be scenarios were 
some of the DL engine execution would be stalled when a required 
resource could be allocated. When a SoC has multiple such DL 
engine, then occurrence and frequency of such stalls would non-
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deterministic. Safety critcle systems have hard requirement to be 
deterministic interns both resource allocation and accuracy of the 
application. To address these requirements, we propose a multi 
core orchestrator on top of the dynamic resource allocation and 
Adaption policy software model described in previous sections. 
The multi core orchestrator prepares the dynamic resource 
requirements by analyzing the models running in all DL engine 
instead of analysis one model/network individually. The Figure -9 
describes the software usage model of this orchestrator for 
Synchronous Execution of DL engine. 

 

 
Figure 9. Software usage Model for Synchronous Execution 

The common context table prepared by offline software would 
determine the stalls in the execution of each DL engines. These 
sync points are decided based on the resource requirements of the 
al the DL engines for a given time instance. This decision is made 
in offline software by analyzing adaption policies of all the model 
in a given time instance, compared one model’s policy in 
asynchronous execution. The Figure -10 captures the time-line 
view of Synchronous Execution flow with Multi Core Orchestrator 

 
Figure 10. Synchronous Execution flow with Multi Core Orchestrator 

Results 
 

The graph in Figure 11 shows a SoC design decision for 
choice of number of internal memory ports while scaling the 
scaling numbers of DL engines with proposed solutions in this 
paper. The adoption configuration could achieve up to 25% 
reduction in number required ports, which would result in cost and 
power efficient SoC design. The graph in Figure 12 shows 
compute utilization with adaptive configuration in given SoC with 
multi core Orchestrator proposed for synchronous execution which 
results in up to 20% higher utilization. 

 
Figure 11. Peak Internal memory throughput requirements comparison 

 

 
Figure 12. Peak TOPs utilization/Loss comparison 
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Conclusion 
This paper proposed solutions to optimizes the system 

resource to provide cost and Power efficient solution of real-time 
DL applications requiring huge compute capabilities. The Co-
operative and Adaptive resource allocator proposed here make it 
possible to design a SoC with multi-core DL engines without 
linearly scaling system resources. The multi core Orchestrator 
proposed for synchronous execution of core to meets the 
deterministic system requirement of safety critical applications.  
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