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Abstract
RANdom SAmple Consensus (RANSAC) is widely used in

computer vision and automotive related applications. It is an iter-
ative method to estimate parameters of mathematical model from
a set of observed data that contains outliers. In computer vision,
such observed data is usually a set of features (such as feature
points, line segments) extracted from images. In automotive re-
lated applications, RANSAC can be used to estimate lane vanish-
ing point, camera view angles, ground plane etc. In such applica-
tions, changing content of road scene makes stable online model
estimation difficult. In this paper, we propose a framework called
tRANSAC to dynamically accumulate features across time so that
online RANSAC model estimation can be stably performed. Fea-
ture accumulation across time is done in such a dynamic way that
when RANSAC tends to perform robustly and stably, accumulated
features are discarded fast so that fewer redundant features are
used for RANSAC estimation; when RANSAC tends to perform
poorly, accumulated features are discarded slowly so that more
features can be used for better RANSAC estimation. Experimen-
tal results on road scene dataset for vanishing point and cam-
era angle estimation show that the proposed tRANSAC method
gives more stable and accurate estimates compared to baseline
RANSAC method.

1. Introduction
RANdom SAmple Consensus (RANSAC) is widely used in

computer vision and automotive related applications. It is an iter-
ative method to estimate parameters of mathematical model from
a set of observed data that contains outliers [1]. In computer vi-
sion, such observed data is usually a set of features (such as fea-
ture points, line segments) extracted from image. In automotive
related applications, RANSAC can be used to estimate lane van-
ishing point, driving direction vanishing point, camera rotation
angles, ground plane, stereo camera fundamental matrix etc. In
such applications, observed data as input of RANSAC is usually
extracted from road scene images which changes from time to
time. As content of road scene changes, at some time point, a
large number of features may be extracted from image frame that
may lead to accurate model estimation; while at some other point
of time, only very few number of features can be extracted from
image frame which may lead to poor model estimation. There-
fore, if RANSAC estimation is only based on features extracted
from each single frame, estimated model may be very unstable
due to road scene content change. Although adding temporal fil-

ter such as Kalman filter[2] may ease the instability of final es-
timation to some extent, instability of RANSAC estimation from
single frame may still affect accuracy of final estimated model. A
novel framework is needed for handling changing content of road
scene and sufficiently making use of road scene video stream data
for stable and accurate online RANSAC model estimation.

In this paper, we propose a new framework called tRANSAC
to dynamically accumulate features across time so that online
RANSAC model estimation can be stably and accurately per-
formed with large number of features in spite of road scene con-
tent change. Feature accumulation across time is done in such a
dynamic way that when RANSAC tends to perform robustly, ac-
cumulated features are discarded fast so that fewer redundant fea-
tures are used for RANSAC estimation; when RANSAC tends to
perform poorly, accumulated features are discarded slowly so that
more features can be used for RANSAC estimation. The above
mechanism is realized by adding dynamic accumulated feature
pool, model estimation quality measure module, dynamic feature
accumulation control module and key frame selection module into
baseline RANSAC workflow. Compared to baseline RANSAC
workflow, tRANSAC workflow takes advantage of dynamic na-
ture of road scene video stream and overcome vulnerability of
online RANSAC model estimation to road scene content change.

2. Related Works
Video stream data contains much richer information com-

pared to single frame image. However, how to make use of such
data in practice to improve accuracy of RANSAC model estima-
tion has not been well studied in literature. To our knowledge,
there is no previous published work of adapting RANSAC algo-
rithm using temporal adaptively accumulated features for online
model estimation from changing automotive video stream data.
Although in [3], 3D points are naively accumulated in time for
offline ground plane estimation, it does not handle feature ac-
cumulation in adaptive way for online model estimation as we
propose in this paper. In [4], authors try to accumulate more
spatially evenly distributed features for camera pose estimation
in a camera network in which all cameras are static. There are
also a number of previous works [5, 6, 7] which use Kalman fil-
ter or extended Kalman filter (EKF) to improve stability of es-
timated model parameters using temporal information, however,
RANSAC model estimation process is still done using data from
single frame. While results in our experiments show that even
with the use of Kalman filter, the proposed tRANSAC workflow
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Figure 1. Baseline workflow.

still can further improve model estimation accuracy over single
frame based RANSAC workflow.

3. Method
In this section, we firstly describe baseline RANSAC work-

flow for RANSAC model estimation using video stream data.
Then we propose tRANSAC workflow and describe in detail its
innovative components. We also give some examples to show
how tRANSAC workflow improves model estimation robustness
compared to baseline workflow.

3.1 RANSAC Model Estimation from Video Stream
Data: Baseline Workflow

A simple straightforward workflow of using RANSAC algo-
rithm in online model estimation is to extract features from each
single frame, apply RANSAC using the extracted features to es-
timate model parameters. Then estimated model parameters are
input as measurement to Kalman filter [2] so that it gives less
noisy estimated model together with knowledge of uncertainty of
current estimates (see Figure 1). This simple workflow is widely
used in current literature [6, 7].

In the above baseline RANSAC workflow, each RANSAC
estimation only uses features exacted from single image frame. In
automotive applications, as vehicle drives fast, road scene content
may change fast. In some frames, we can extract large number of
inlier features without many outliers; while in other frames, we
can extract very few inlier features or large number of outlier fea-
tures which may lead to failed or inaccurate RANSAC estimation.

3.2 Proposed tRANSAC Workflow
To handle the above mentioned instability, we propose new

workflow called tRANSAC to dynamically accumulate features
across time so that RANSAC can be robustly performed with large
number of features which are accumulated in a period of time (see
Figure 2). In tRANSAC, feature accumulation across time is done
in such a dynamic and adaptive way that when RANSAC tends to
perform robustly, accumulated features are discarded fast so that
fewer redundant features are accumulated and used for RANSAC
estimation; when RANSAC tends to perform poorly, accumulated
features are discarded slowly so that more features can be used for
RANSAC estimation. The above mechanism is realized by adding
model estimation quality measure module, dynamic feature accu-

mulation control module, and key frame selection module into the
baseline framework. These modules are described in more details
in Section 3.3.

Figure 3 shows an example of using optical flow feature to
estimate driving direction vanishing point. If only optical flow
vectors extracted from current frame are used for RANSAC es-
timation, a small number of inliers leads to inaccurate vanishing
point estimation (D1 in left image of Figure 3). In tRANSAC
workflow, large number of optical flow features which are accu-
mulated across time are used and give more accurate RANSAC
estimation of vanishing point (D2 in right image of Figure 3).

Figure 4 shows another example of using near-horizontal
or near-vertical line segments to estimate camera roll angle for
camera view correction. Using baseline RANSAC workflow, we
cannot get enough number of line segments to give us confi-
dent RANSAC estimation (Figure 4 top left). However, by us-
ing tRANSAC workflow, we can get good estimation of roll angle
from a large number of accumulated near-vertical line segments
in accumulated feature pool (Figure 4 top right). Furthermore,
we can perform accurate roll angle correction on the scene image
(Figure 4 bottom right).

3.3 Dynamic Feature Accumulation
Figure 5 gives clear illustration of dynamic feature accumu-

lation process. In certain time point, after features are extracted
from current frame (a in Figure 5), they are added into dynamic
accumulated feature pool (c in Figure 5). Then RANSAC is per-
formed using features accumulated in the pool (d in Figure 5).
After that estimated model quality measure component (e in Fig-
ure 5) measures how good current estimated model is and send the
quality measure q to dynamic feature accumulated control com-
ponent (b in Figure 5)), where q may be a function of RANSAC
votes, model residual error or number of inlier features etc. Then
dynamic feature accumulation control component (b in Figure 5)
takes input q and decides how many or to what extent old fea-
tures in the dynamic accumulated pool (c in Figure 5) should be
retained or discarded. This control component (b in Figure 5)
is like water tap and sink. It allows new features from new frame
flow into feature pool and let old features slowly run out of feature
pool by computing control variable d, which is a monotonically
decreasing function of q. The larger d is, the slower old features
in the pool are discarded and the more features tend to be retained
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Figure 2. Proposed tRANSAC workflow.

in the pool.

Figure 3. tRANSAC example 1. Left: RANSAC estimation of lane van-

ishing point (D1) by optical flow features extracted from single frame. Right:

tRANSAC estimation of lane vanishing point (D2) by optical flow features

accumulated dynamically across time. (only inlier optical flow vectors are

shown for better visualization.)

Figure 4. tRANSAC example 2. Left: No camera roll angle can be esti-

mated by RANSAC as too few features (red near-vertical line segments) can

be extracted from single frames. Right: camera roll angle can be estimated

by tRANSAC from dynamically accumulated features (red near-vertical line

segments) and roll angle can be corrected accurately.

Figure 6 gives a simple and concrete example of dynamic
feature accumulation process. In this example estimated model
quality measure component (e in Figure 6) measures current es-
timated model quality q based on number of RANSAC support
votes. If q is larger than a threshold T1, dynamic feature accumu-
lation control (b in Figure 6) will open sink to let old features flow
out of the pool. This is realized by a feature weight decay process,
in which the control components (b in Figure 6) sets control vari-

Figure 5. Dynamic feature accumulation process.

Figure 6. Dynamic feature accumulation process: a simple and concrete

example.
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able d to some value smaller than 1.0 and multiplies weights of
current features in the pool (c n Figure 6) by this value. Then all
features in the pool with weights smaller than another threshold
T2 are removed from the pool. On the other hand, if q is smaller
than T1, dynamic feature accumulation control will close sink to
retain all features in the pool by setting control variable d to be
1.0.

3.4 Key Frame Selection
Figure 7 gives clear illustration of key frame selection pro-

cess in tRANSAC workflow. At each frame time point, after dy-
namic feature accumulate pool is updated by process described in
Section 3.3, tRANSAC workflow checks the consistency of cur-
rent feature pool with previous estimated model. If consistency is
larger than a threshold, it skips this frame from doing RANSAC,
otherwise, it goes to do RANSAC estimation using accumulated
features in the pool. It is worth noting that this consistency check
process only involves one round of feature voting on the previ-
ous estimated model, while RANSAC estimation involves a large
number of looped rounds for features to vote out a new estimated
model. Therefore, key frame selection process may largely re-
duce computational cost of unnecessary RANSAC estimation on
frames not bringing much new information.

4. Experiments
In this section, we firstly introduce road scene benchmark

datasets which were built for testing effectiveness of the proposed
method. Section 4.2 briefly describes method of estimating driv-
ing direction vanishing point and compares result between using
RANSAC and tRANSAC method. Section 4.3 describes method
of estimating camera roll angle and compares results between us-
ing RANSAC and tRANSAC.

4.1 Benchmark Dataset
To test effectiveness of the proposed tRANSAC workflow,

we have collected a number of road scene test video clips in Santa
Clara (US), Taipei (TW) and Singapore (SG). The video clips are
taken while vehicle is driving forward on road and camera is hav-
ing certain degree (up to 15) of out of position view angles (yaw
/ pitch / roll). In different locations, road scene content has dif-
ferent characteristics, which is summarized in Table 1. Figure 8
gives sample scenes from the three datasets.

We have manually labelled driving direction vanishing point
(Figure 9) and a few horizontal lines and vertical lines for each
test clip (Figure 10). For evaluating vanishing point estimation,
we use warped vanishing point (VP) error which is distance be-

Figure 7. Key frame selection process.

tween labelled vanishing point and estimated vanishing point after
warping the estimated vanishing point into image centre (see Fig-
ure 9). For evaluating roll angle estimation, we use estimated roll
angle to do roll angle correction on images. After the correction,
we measure angles between all hand labelled horizontal or verti-
cal line segments and horizontal or vertical direction in corrected
image (Figure 10 right). Roll angle estimation error of a clip is
defined as average value of those angles on all hand labelled line
segments in the clip.

Table 1: Benchmark Test Datasets

scene environments
US dataset (14 clips) highway, not many tall

buildings
TW dataset (15 clips) city street, tall buildings,

crowded traffic
SG dataset (14 clips) city street, tall building, big

tropical trees

4.2 Driving Direction Vanishing Point Estimation
Using Optical Flow

We use KLT algorithm [8, 9] to compute optical flow be-
tween consecutive frames. Ideally, all optical flow vector lines
should go through driving direction vanishing point. We then use
baseline workflow and tRANSAC workflow to estimate driving
direction vanishing point using extracted optical flow as input.
Table 2 gives evaluation result of vanishing point estimation us-
ing optical flow on different groups of dataset. Firstly, we com-
pare result of single frame estimation without using Kalman fil-
ter. RANSAC or tRANSAC is done on each frame and warped
VP error is computed on each frame. We report average value
of warped VP error on all frames across all video clips in each
dataset. Results in Table 2 column 2 and column 3 show that
tRANSAC generates much smaller estimation error compared to
RANSAC on single frames. Secondly, when Kalman filter is
added in, both RANAC and tRANSAC error drop significantly.
However, tRANSAC plus Kalman filter workflow still has sig-
nificantly smaller error than that of baseline workflow (see Table
2 column 4 and column 5). Finally, adding in key frame selec-
tion slightly increases or decreases the error, depending on the
dataset (see Table 2 column 6). However, it may save computa-
tional cost depending on the platform. We also convert warped
vanishing point error in pixel to yaw and pitch error in degree to
have some more intuitive idea of accuracy (see Table 2 column 6).
Moreover, we define key frame ratio as ratio between number of
frames taken as key frame and total number of frames. In Table 2
column 6, we also report key frame ratio on different dataset. It
is shown on dataset with richer image features (TW dataset with
busy street scenes), key frame ratio is smaller than that on the
other two datasets.

4.3 Camera Roll Angle Estimation Using Near-
Horizontal and Near-Vertical Line Segments in
Road Scene

We use near-horizontal and near-vertical line segments ex-
tracted using edgelets computation [10] as input features for
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Figure 8. Sample scenes from US (left), TW (middle) and SG (right) datasets.

Table 2: Evaluation result of vanishing point (VP) estimation using optical flow
Processing res-
olution 640x480

Average per
frame VP er-
ror in pixel
(RANSAC)

Average per
frame VP er-
ror in pixel
(tRANSAC)

Average per
clip VP error in
pixel (RANSAC
+ Kalman Filter)

Average per clip
VP error in pixel
(tRANSAC +
Kalman Filter)

Average per clip VP error
in pixel (tRANSAC with key
frame selection + Kalman
Filter)

US dataset 50.98 25.91 16.85 11.16 10.53
(yaw/pitch error: 1.82 / 1.87
degree)
(key frame ratio: 0.51)

TW dataset 88.08 22.71 16.17 11.46 13.75
(yaw/pitch error: 2.51 / 1.89
degree)
(key frame ratio: 0.41)

SG dataset 59.85 15.23 14.32 7.12 8.87
(yaw/pitch error: 1.76 / 1.05
degree)
(key frame ratio: 0.58)

RANSAC or tRANSAC estimation of roll angle. Roll angle es-

Figure 9. Warped vanishing point (VP) error. Top left: red color cross -

estimated vanishing point, green color cross - hand labelled vanishing point.

Top right: image after warping estimated vanishing point to image center.

Bottom right: warped vanishing point (VP) error is defined as distance be-

tween labelled vanishing point (green color cross) and estimated vanishing

point (red color cross) in warped image in which estimated vanishing point

lies in image center.

Figure 10. Left: hand labelled horizontal (purple) and vertical (green) line

segments. Right: labelled horizontal (purple) and vertical (green) line seg-

ments after roll angle correction.

timation error is computed as we described in Section 4.1. Ta-
ble 3 shows result of comparison between using baseline work-
flow and using tRANSAC workflow for roll angle estimation. It
is shown that tRANSAC gives numerically smaller errors on all
the datasets. Adding key frame selection process increases or de-
creases slightly on different datasets. Key frame ratio is relatively
low in TW dataset due to large number of line features in busy
road scene in Taipei. Figure 11 shows sample result of feature ac-
cumulation process in tRANSAC roll angle estimation and image
after roll angle correction. RANSAC baseline workflow failed to
estimate confident roll angle on this video clip due to lack of fea-
tures in single frames. Average processing time of vanishing point
estimation plus roll angle estimation is around 30-40ms per frame
on our PC (2.5GHz).

Figure 11. Left: accumulated near horizontal (green) / vertical (purple) lines

in tRANSAC feature pool for roll angle estimation. Right: roll angle correction

using roll angle estimated by tRANSAC workflow.

5. Discussion
It is noted that tRANSAC workflow is based on assumption

that model to be estimated is constant within short period of time
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Table 3: Evaluation result of roll angle estimation from near
horizontal or vertical line segments

Processing
resolution
640x480

Estimated
roll angle
error (in
degree)
(RANSAC +
Kalman filter)

Estimated
roll angle
error (in
degree)
(tRANSAC +
Kalman filter)

Estimated
roll angle
error (in
degree)
(tRANSAC +
Kalman filter
+ key frame
selection)

US
dataset

5.12 2.13 2.62
(key frame
ratio: 0.62)

TW
dataset

2.77 1.35 2.04
(key frame
ratio: 0.28)

SG
dataset

3.05 1.82 1.77
(key frame
ratio: 0.59)

(up to a few frames). Since features are in and out dynamic ac-
cumulated feature pool adaptively, tRANSAC does not require
model to be estimated to be constant in long period of time. It is
also worth noting that extended Kalman filter (EKF) itself could
be used as powerful online model estimation tool [11] in paral-
lel with RANSAC algorithm. This kind of workflow is usually
adopted in robotics community. In future work, we may compare
the accuracy and convergence speed of tRANSAC workflow with
EKF model estimation workflow.

6. Conclusion
In summary, compared to baseline RANSAC workflow, the

proposed tRANSAC workflow takes advantage of dynamic nature
of road scene video stream by accumulating features across time
in dynamic way. In such way, vulnerability of RANSAC estima-
tion to road scene content is overcome. Experimental results have
proved the effectiveness of using tRANSAC workflow in van-
ishing point and camera view angle estimation from automotive
road scene videos in different environments. Baseline RANSAC
workflow is for solving general computer vision problems, while
tRANSAC workflow is designed and proved to better solve prob-
lems in automotive applications. tRANSAC is suitable for Au-
tonomous Driving Assistant System (ADAS) related applications
with better robustness in dynamic changing road environment.
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