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Abstract. Two-and-a-half and 3D printing are becoming increasingly
popular, and consequently the demand for high quality surface
reproduction is also increasing. Halftoning plays an important role in
the quality of the surface reproduction. Three dimensional halftoning
methods, that adapt the halftone structures to the geometrical
structure of 3D surfaces or to the viewing direction, could further
improve surface reproduction quality. In this paper, a 3D adaptive
halftoning method is proposed, that incorporates different halftone
structures on the same 3D surface. The halftone structures are
firstly adapted to the 3D geometrical structure of the surface.
Secondly, the halftone structures are adapted based on the normal
vector to the surface at a specific voxel. Two simple approaches
to approximate the normal vector are also proposed. The problem
of edge artefacts that might occur in the previously proposed 3D
Iterative Method Controlling the Dot Placement (IMCDP) halftoning
method is discussed and a solution to reduce these artefacts is
given. The results show that the proposed adaptive halftoning can
combine different halftone structures on the same 3D surface with
no transition artefacts between different halftone structures. It is also
shown that using second-order frequency modulation (FM) halftone,
in comparison to first-order FM, can result in more homogeneous
appearance of 3D surfaces with undesirable structures on them.
c© 2022 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2022.66.6.060403]

1. INTRODUCTION
Two-dimensional halftoning is a well-established topic in
image reproduction. There have been many 2D digital
halftoning methods presented in literature over the past
half a century. Iterative halftoning methods such as Direct
Binary Search (DBS) halftoning algorithm [1] and Iterative
Method Controlling the Dot Placement (IMCDP) [2] are
two examples of more advanced but computationally more
expensive 2D halftoning methods. Many of the developed
2D halftoning algorithms, such as error diffusion, DBS and
IMCDP, belong to the category of frequency modulation
(FM) halftoningmethods, which we refer to as the first-order
FM methods in this article. In these methods, the single
dots are distributed ‘‘stochastically’’. There is also another
type of FM methods, referred to as the second-order FM
halftoning in this article, that ‘‘stochastically’’ distributes
the clustered dots [3]. One of the advantages of the 2D
second-order FM halftoning over the first-order FM is that
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it results in halftones that give less grainy impression in the
homogeneous parts of an image [4].

As 2.5D and 3D printing are becoming more and more
popular and practically more feasible, the demand for high
quality surface reproduction is also increasing. Since 3D
halftoning methods directly affect the appearance of 3D
surfaces, advanced 3D halftoning algorithms have received
more attention over the past few years. Many of the proposed
3D halftoning algorithms are an extension of well-known
2D halftoning algorithms. Lou and Stucki were among the
firsts who adapted 2D dithering and error diffusion to 3D
domain [5]. In Ref. [6], 3D dithering has been applied to
material composition as a halftoning approach. Zhou et al.
applied error diffusion to layer-based 3D object halftoning
for monochrome 3D halftoning [7]. Alexa and Kyprianidis
addressed error diffusion on a surface in Ref. [8], where
they analyzed different path orders to better distribute the
error. Brunton et al. proposed an error-diffusion halftoning
algorithm to produce full color with multi-jet 3D printer [9].
In order to diffuse the error as proposed in the original 2D
error diffusion algorithm, they introduced a novel traversal
algorithm for surface voxels. Later, in Ref. [10], they used
the method presented in Ref. [9] for halftoning and by
replacing assigned whitematerials with transparentmaterial,
they controlled the degree of translucency. Urban et al.
have further standardized their halftoning techniques for
the RGBA (Red, Green, Blue, Alpha) data format to control
color layers of 3D color objects.[11]. Elek et al. improved
details in color texture reproduction of the proposed 3D
error diffusion in Ref. [9] by considering the scattering
behavior of the materials on flat surfaces [12]. In Ref. [13],
Michals et al. used the 3D traversal algorithm proposed in
Ref. [9] and developed a 3D tone-dependent error diffusion
method. Their proposed algorithm is a fast 3D halftoning
method, which, according to the authors, produces results
of quality close to iterative methods [13]. Morsy et al.
presented a purely geometric and computationally efficient
ditheringmethod that removes quantization artefacts, which
are a fundamental issue in 3D printing. Using an optimized
3D blue-noise mask, their proposed algorithm shifts low
frequency quantization errors to higher frequencies that
are mostly removed by the 3D printing process, which
acts as a low-pass filter [14]. In Ref. [15], the authors
presented the HANS3D content processing pipeline using
a volumetrically-probabilistic approach, which is applicable
to any printing material and printing system parameter.
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Halftoning becomes a problem of sampling a probability
distribution. Parallel Random Area Weighted Coverage
Selection (PARAWACS) is the halftoning method used in
Ref. [15], which was originally developed for 2D, creating
pre-computed halftone matrices making the process fully
parallel. An extension of the 2D DBS halftoning algorithm
has also been proposed in Ref. [16], which generates high
quality surface reproduction. In Ref. [17], an iterative 3D
halftoningmethod, called 3D IMCDPwas introduced, which
is an extension of the 2D IMCDP halftoning method
discussed in Ref. [2]. In Refs. [18] and [19], the 3D
IMCDP producing different halftone structures was applied
to several 3D surfaces. It was shown in these studies that
appropriate halftone structure could amplify or attenuate the
3D structure of a 3D surface.

In the presentwork,we propose a 3Dadaptive halftoning
method based on 3D IMCDP, in which the halftones could
be adapted to either the spatial structure of the 3D surface or
to the viewing/light direction. The problem of edge artefact
that might occur at sharp edges on 3D shapes is discussed
and a solution to reduce this artefact is also proposed.
This article is organized as follows. Section 2 provides a
brief description of the 2D IMCDP method and how it
can produce different halftone structures. In Section 3, the
3D IMCDP is thoroughly described and an approach to
reduce the edge effect problem at sharp edges is proposed. In
Section 4, the 3D adaptive halftoning based on 3D IMCDP
is described and an approach to partition a 3D surface into
several structural areas is presented. Two approaches for
approximating the normal vector to a 3D surface at a specific
voxel are also proposed in this section. In Section 5, 3D
halftone results of the proposed 3D adaptive method for
several different 3D surfaces are illustrated and Section 6
provides a brief summary and the conclusion.

2. TWO-DIMENSIONAL IMCDP
In this section, a description of IMCDP, the 2D iterative
halftoning method is given. This method is described in
detail in Ref. [2]. The IMCDP method starts with a blank
image with the same size as the original image. The first
dot is placed at the position where the original image holds
the maximum pixel value. Then, a very small number is
set at this position in the original image to make sure that
this position will not be found as the maximum again.
The effect of this dot placement is then fed-back into
the halftoning process by subtracting a neighbourhood of
the position of the found maximum by a filter, which is
referred to as the feed-back filter, hereafter. By doing so, the
probability to find the nextmaximum in that neighbourhood
is reduced. This process proceeds and in each iteration
one dot is placed at the position of the maximum pixel
value and the effect of the placed dot is fed-back by an
appropriate filter until a pre-determined number of dots are
placed. The feed-back filter plays an important role on the
halftone structure of the final reproduced image. Different
appropriate filters can generate different halftone structures,
shapes and alignments [3]. In order to generate symmetrical

and well-formed first-order FM halftones having blue-noise
characteristic, the following Gaussian function is used in the
feed-back process,

f (m, n)=Ke−(m
2
+n2)/2σ 2

, (1)

where K is a normalization factor to make the filter
elements sum to one. In Ref. [4], it was discussed that
σ = 1.7 generates halftones that result in the smallest average
mean squared error when tested on many different test
images. It is also possible to generate non-symmetrical
first-order FM halftones with different alignments by using
a non-symmetrical feed-back filter. Equation (2) shows such
a non-symmetrical (elliptical) filter:

g (m, n)=Ke−(Am
2
+Bmn+Cn2). (2)

The constants A, B, and C are calculated by [20]

A=
cos2 φ

2K1σ 2 +
sin2 φ

2K2σ 2 , (3)

B=
− sin 2φ
4K1σ 2 +

sin 2φ
4K2σ 2 , (4)

C =
sin2 φ

2K1σ 2 +
cos2 φ

2K2σ 2 . (5)

The parameters K1 and K2 are used to adjust the symmetry
of the filter. Note that, by setting K1 = K2 = 1 and φ = 0,
the filter in Eq. (2) becomes identical to that in Eq. (1),
representing a symmetrical Gaussian filter. On the other
hand, K1 > K2 makes the halftone dots grow faster in
the vertical direction creating vertical line halftones, while
K1 < K2 performs the opposite. The parameter φ specifies
the orientation of the line halftones, i.e. the angle between
the line halftones and the positive y-axis if K1 > K2 or the
angle between the line halftones and the positive x-axis if
K1 < K2. Figure 1 shows the halftone images generated by
three different feed-back filters. As can be seen in Fig. 1(a),
the symmetrical Gaussian function in Eq. (1) was used,
creating symmetrical first-order FM halftones. In Fig. 1(b),
the function in Eq. (2) with k1 = 1, k2 = 3 and φ = 0
was used to create horizontal line halftones. In Fig. 1(c),
the function in Eq. (2) with k1 = 3, k2 = 1 and φ = 20◦

was used, which resulted in line halftones rotated 20◦ with
respect to the positive y-axis. It is also possible to generate
second-order FM, i.e., green-noise [21], halftones by the
following feed-back filter,

h(m, n)=K (e−(m
2
+n2)/2σ 2

1 − e−(Am
2
+2Bmn+Cn2)). (6)

The constants A, B, and C are calculated as shown in
Eqs. (3)–(5), where σ is replaced by σ2. Hence, the
filter in Eq. (6) is a Gaussian function subtracted from
another Gaussian function with larger standard deviation,
i.e., σ1 > σ2. By this filter, the pixel values around the found
maximum are decreased with a radius decided by σ1. After
the single dots have been distributed, the dots start to cluster
and the maximum size of the clustered dots will depend on
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Figure 1. The test image is halftoned using three different feed-back filters: (a) the Gaussian function in Eq. (1). (b) The Gaussian function in Eq. (2) with
k1 = 1, k2 = 3 and φ = 0. (c) The Gaussian function in Eq. (2) with k1 = 3, k2 = 1 and φ = 20◦. The print resolution is 150 dpi.

Figure 2. The test image is halftoned using three different feed-back filters: (a) the function in Eq. (6) with k1 = 1, k2 = 1 and φ = 0. (b) the function in
Eq. (6) with k1 = 3, k2 = 1 and φ = 0. (c) the function in Eq. (6) with k1 = 1, k2 = 3 and φ = 20◦. The print resolution is 150 dpi.

σ2. By appropriate choices of σ1 and σ2, it is possible to
meet a specific demand for the size of the clustered dots at
a certain gray level [3]. In order to generate symmetrical
second-order FM halftones, the parameters K1, K2 and φ
should be set to 1, 1 and 0, respectively. In order to create
line halftones with different orientations, different values for
K1, K2, and φ should be used, as described earlier. The only
difference is that K1 < K2 makes the halftone dots grow
faster in the vertical direction creating vertical line halftones,
while K1 > K2 performs the opposite. Figure 2 shows three

different halftone images achieved by the function in Eq. (6)
with different parameters. In all of these three filters,σ1 = 2.5
and σ2 = 1. Fig. 2(a) is created using k1 = 1, k2 = 1 and
φ = 0, generating symmetrical second-order FM halftones.
In Fig. 2(b), the function in Eq. (6) with k1 = 3, k2 = 1
and φ = 0 was used to create horizontal line halftones. In
Fig. 2(c), the function in Eq. (6) with k1 = 1, k2 = 3 and
φ = 20◦ was used, which resulted in line halftones rotated
20◦ with respect to the positive y-axis. It is worthmentioning
that the proposed 2D first-order FM halftoning is suitable
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Figure 3. The red voxel shows the voxel holding the maximum value at an
iteration and the green voxels show the neighbourhood of the red voxel,
which are all surface voxels within an 11×11×11 box around the red
voxel.

for printers, such as inkjet, that are able to stably print
dispersed isolated dots. The second-order FM halftoning is,
in addition, suitable for printers using electrophotographic
(EP) technology, such as laser printers, that cannot stably
print isolated dots.

3. THREE-DIMENSIONAL IMCDP
In Ref. [17], an extension of the two-dimensional IMCDP to
a 3D halftoning method, referred to as 3D IMCDP in this
article, is presented. In Section 3.1, a brief description of that
extension to 3D IMCDP is given. A major shortcoming of
this extension approach is the occurrence of few artefacts
close to sharp edges. In Section 3.2, an approach to reduce
this artefact is proposed.

3.1 Extending 2D IMCDP to 3D
The 3D IMCDP, like the 2D IMCDP, starts by finding
the position of the voxel holding the maximum value and
assigning the same position in the halftoned 3D surface, to
a ‘‘dot’’, i.e. black voxel. The effect of this placed black voxel
is fed-back to the halftoning process, like in the 2D IMCDP,
by subtracting a neighbourhood around the foundmaximum
by a filter. By the neighbourhood, we mean all surface voxels
within an m×m×m box around the found maximum. In
Figure 3, the red voxel shows the voxel holding themaximum
value at an iteration and the green voxels show all surface
voxels within an 11 × 11 × 11 box around the red voxel.
The natural extension of IMCDP to 3D would then be to
use a three-dimensional Gaussian function similar to that
in Eqs. (1), (2) or (6) as the feed-back filter. However, the
Euclidean distance between two 3D voxels does not always
represent a good measure of the distance between the two
voxels on a 3D surface. For example, there could be two voxels
that are equally far from a voxel on the surface but having
different Euclidean distances to the same voxel. This will give
the voxel having longer 3D distance a higher chance to be
chosen as themaximum than the other one, although both of

them are equally far from the central voxel on the 3D surface.
This might cause undesirable halftone structure artefacts,
which was referred to as circular artefacts in Ref. [17].
Figure 4(a) shows the xz-view of a sphere of radius 150 with
a constant absorptance of 0.5 being halftoned by 3D IMCDP
using a three-dimensional Gaussian filter as the feed-back
filter. Notice that an absorptance of 0 and 1 corresponds
to white and black, respectively. This circular artefact is
clearly visible in this figure, especially close to the origin
of the circle. To overcome these circular artefacts, instead
of using a three-dimensional Gaussian function, an m×m
two-dimensional Gaussian function is constructed and its
weights are sorted in descending order. The surface voxels
within an m×m×m box around the found maximum are
sorted by their 3D Euclidean distance to the central voxel
(the position of the found maximum) in ascending order.
The value of the closest voxel to the central voxel should be
subtracted by the larger filter element value to reduce the
possibility of that voxel being found as the next maximum.
Thus, the closest voxel is subtracted by the first weight, i.e.,
the largest weight, and the second closest voxel by the second
weight in the sorted list of the 2D filter elements, and so on.
If there are more surface voxels around the found maximum
than the filter elements, i.e., m2, only the first m2 surface
voxels are affected. If there are less than m2 surface voxels
around the foundmaximum, all surface voxels are subtracted
by weights in the sorted list from position 1 to the number
of surface voxels. Although the 3D Euclidean distance still
decides the weight assigned to a voxel, it is not directly used
in the Gaussian function and the weights are taken from a 2D
Gaussian filter. This means that two voxels having the same
distance to the central voxel on the 3D surface might still be
subtracted by two different weights, but the difference is not
as large as using a 3DGaussian function [17]. Fig. 4(b) shows
the xz-view of the same sphere as in (a) being halftoned by 3D
IMCDP using the two-dimensional feed-back filter in Eq. (1)
with σ = 1.7, generating first-order FM halftones. The XY
and YZ views of the sphere look identical to the XZ view
and thus not illustrated. The halftone results generated by
this approach show a well-formed first-order FM halftone
structure without visible circular effect. Worth mentioning
that in all 3D halftoned surfaces in this article m equals
11. This extension approach from 2D to 3D IMCDP works
very well and the halftone structures look smooth and very
similar to the 2D halftone structures when viewed from any
viewing angle for most of the parts of a 3D surface. The only
shortcoming is that when using large standard deviations,
e.g. σ = 1.7, edge effects occur close to sharp edges in a
3D surface. The reason is that, close to sharp edges, there
are voxels that are far from the found maximum on the
3D surface but have a very small 3D Euclidean distance to
it. This will assign a large filter element to that voxel if a
large standard deviation is used, even though we use the
strategy to overcome the circular effects. This problem and a
solution to it will be illustrated and discussed in the following
subsection.
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Figure 4. The xz -view of a halftoned spherical surface with a radius of 150 and absorptance 0.5. The feed-back filter is: (a) a three-dimensional Gaussian
function. (b) the two-dimensional Gaussian function in Eq. (1).

3.2 Reducing the Edge Artefact
As explained earlier, when a large standard deviation is
used, the proposed 3D IMCDP method might create edge
artefacts in areas close to sharp edges. Figure 5(a) shows a
first-order FM halftoned box with a constant absorptance
of 0.3. The feed-back filter is the Gaussian function in
Eq. (1) with σ = 1.7. The artefact close to the sharp edges
are clearly visible in this figure. One simple solution is to
use a smaller standard deviation. Our experiments show
that using σ = 1.3 creates halftones of almost the same
quality as a larger standard deviation with the benefit that
the edge artefacts are much less evident. If for any 3D
shape or any texture being mapped on the 3D surface, it is
important to use a larger standard deviation in flat areas,
we propose the following solution. The solution is to use a
larger standard deviation when the identified maximum is
not close to a sharp edge and gradually reduce the standard
deviation when the maximum gets closer and closer to
the sharp edge. Assume that the identified maximum and
its m×m neighbourhood are on a surface that is parallel
to one of the coordinate planes. This will mean that all
surface voxels in an m × m × m neighbourhood around
the found maximum will be on a 2D plane parallel to one
of the coordinate planes. We define three distances dx =
maxx −minx , dy = maxy −miny and dz = maxz −minz ,
where maxx and minx mean the largest and the smallest
x-coordinate in the neighbourhood, respectively. The other
two distances are defined correspondingly. For an m × m
area on a plane parallel to one of the coordinate planes, one of
these three distances will be 0 and the other two equalm− 1.
When the found maximum is close to an edge of a box, the
least of these three distances, which was zero, becomes larger
and larger. Therefore, we use Eq. (7) as a measure to decide
whether a found maximum is close to an edge,

dmin =min(dx , dy , dz ), (7)

where the function min returns the minimum of its
arguments. Fig. 5(b) shows the same box as in (a) being
halftoned using variable standard deviation. In this figure,
σ = 1.7 for dmin < 2, and it is gradually reduced to 1.3 when
dmin becomes larger. As can be seen in this figure, the edge
effects are considerably reduced.

4. THREE-DIMENSIONAL ADAPTIVE IMCDP
As discussed in previous sections, different feed-back filters
can create different halftone structures. This can allow us to
incorporate different halftone structures in different parts of
a 3D shape. One of the possibilities is to use the appropriate
halftone based on the geometrical structure of the 3D
surface. Another possibility is to use the appropriate halftone
structure based on the viewing/light direction. These two
possibilities are described and illustrated in the following two
subsections.

4.1 Three-Dimensional Structure-Based IMCDP
When a 3D shape is created, there might be different
structures that exist on its surface. It could be undesirable
structures caused by the voxelization or the printing process,
which could be caused by the print resolution, the material
being used, etc. It could also be the geometrical structure of
the surface of the created 3D shape, for instance forehead
wrinkles of a 3D face.We refer to these two types of structures
as 3D structures. Theremight also be other structures coming
from the texture/image content being mapped on the 3D
shapes, similar to structures in 2D images. In this section,
we focus on the 3D geometrical structures and describe
how different halftones could be combined based on the
structures of a surface. Different halftone structures might be
suitable for different 3D structures. In Refs. [18] and [19], it
has been illustrated that line halftones aligned in the same
direction as the direction of the variation on the 3D surface
will attenuate the waviness of the surface, while line halftones
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Figure 5. The box with an absorptance of 0.3 is halftoned by first-order FM. (a) The feedback filter in Eq. (1) with σ = 1.7 is used. (b) The same feed-back
filter with σ = 1.7 is used in areas close to 2D but smaller standard deviations are used close to edges.

perpendicular to that will emphasize the waviness. It has also
been shown that first- and second-order FM halftones might
also behave differently on different 3D surface structures.
In this section, we will describe an approach to partition a
3D surface into different structural areas. This will make it
possible for 3D IMCDP to apply different halftones suitable
for each structural partition by the use of different feed-back
filters. It is logical to assume a 2D plane parallel to one
of the coordinate planes to be a structureless 3D surface.
Therefore, there shouldn’t be any 3D structures on such a
surface, unless it is caused by the print process due to low
resolution and/or printmaterials. As discussed in Section 3.2,
in such an area, the surface voxels within an m × m × m
box around the central voxel will only includem×m surface
voxels on that 2D plane. The standard deviation of one
of the three coordinates of the voxels on this area is zero,
and that of the other two is m

2
√

3
. For instance, if this

surface is parallel to the XY -plane, the standard deviations
of the z-coordinates of these m×m voxels is zero and the
standard deviation of x- and y-coordinates are both m

2
√

3
.

Therefore, for such a surface the smallest and the largest
standard deviation of the coordinates are zero and m

2
√

3
,

respectively. Hence, the difference between the maximum
and the minimum standard deviation of the coordinates
of the surface voxels can be used as a measure/threshold
to partition a surface into structural areas. Another surface
worth considering is a 3D surface shape like u or t, where
the top (or bottom) of the area is one row of surface voxels
and the two sides of it, which arem× m−1

2 each, are parallel
to one of the coordinate planes [18]. The standard deviation
of the three coordinates of the voxels on such a surface are
m

2
√

3
,
√

m
m+1 and

√
m2+3
4
√

3
. The threshold for this surface, i.e.

the difference between the largest and the smallest standard
deviation, would be m

2
√

3
−

√
m

m+1 for m > 5. Considering
the fact that in 3D IMCDP, m is always an odd integer
greater than or equal to 11, this threshold is always valid for
such a surface. The third interesting surface to investigate

is when the central voxel is at the edge of a box and at
least m+1

2 voxels away from the corner of the box. On such
a surface, the standard deviation of one of the coordinates
is m

2
√

3
and that of the other two is

√
5m2+3
8
√

3
. Hence, the

threshold corresponding to this structure is m
2
√

3
−

√
5m2+3
8
√

3
.

Finally, it is noteworthy to specify where this threshold
is zero. The threshold is zero when all three standard
deviations are equal, and this happens for example when
the central voxel is located at the corner of a box. The
area in this case will consist of 3(m−1

2 )2 + 3m−1
2 surface

voxels, on which all three coordinates have equal standard
deviation giving the threshold of zero. Another 3D surface
on which the coordinates of the surface voxels have equal
standard deviation, is a plane tilted 45◦ with respect to
one of the coordinate planes. As an example, these three
aforementioned thresholds could be used to divide 3D
surfaces into four different regions. Figure 6 shows this
partitioning using m = 11 for a sphere of radius 50 and a
box with additional structures on top of it. The green areas
are those very close to 2D surfaces parallel to one of the
coordinate planes, clearly seen on the box. As seen in both
3D surfaces, the green areas gradually turn to white, red
and finally blue as the difference between the maximum and
the minimum standard deviation of the coordinates of the
surface voxels becomes smaller and smaller. For instance, the
red regions are those having similar structure as the edge of a
box, and the blue regions show the voxels close to the corner
of the box or close to planes being tilted 45◦ on the sphere
and the box. In Section 5, several 3D shapes are partitioned
into a number of structural areas and halftoned by different
halftone structures to illustrate the impact of the halftone
structures on the appearance of the surface.

4.2 Three-Dimensional Viewing-Direction-Based IMCDP
Another aspect that might affect the appearance of a 3D
surface is the viewing/light direction. Hence, it might be
of interest to change the halftone structures based on
the viewing direction. In order to take into account the
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Figure 6. Two different 3D surfaces divided into four different structural regions.

viewing/light direction, there is a need to calculate the
normal vector of the 3D surface at a specific voxel. Based
on the information for the viewing/light direction and the
calculated normal vector, the halftone structure can be
adapted by appropriate feed-back filter. In the following
section, we describe two similar approaches to approximate
the normal vector at a surface voxel based on least-squares
method.

For a specific voxel, we firstly find the x , y and z
coordinates of the surface voxels within an n × n × n
box around that specific voxel. Assume that there are l
surface voxels within this box. In the first approach, we
approximate the normal vector with the normal vector to the
best plane approximating these l voxels using least-squares
method. Assume that, the equation of this plane is given by
z = Ax + By + C , giving the normal vector of (−A,−B, 1)
or (A,B,−1). The goal is now to find A and B, such that the
following squared error is minimized,

e=
l∑

i=1

(zi− (Axi+Byi+C))2, (8)

where xi, yi and zi are the coordinates of the l voxels. By
setting the derivative of Eq. (8) with respect to A, B and C
to zero, the following equation system is achieved.

A
∑

x2
i +B

∑
xiyi+C

∑
xi =

∑
xizi

A
∑

xiyi+B
∑

y2
i +C

∑
yi =

∑
yizi.

A
∑

xi+B
∑

yi+Cl =
∑

zi.

(9)

Notice that in Eq. (9), all summations are calculated for i
varying from 1 to l , which has been discarded to make the
equation system more readable. The normal vector to the
plane and thereby the surface at this specific voxel is then
(A,B,−1) or (−A,−B, 1). It is worth mentioning that the
above equation system might be missing solutions, which
happens for cases when the plane approximating the points
is parallel to the z-axis and therefore independent of z . If

the determinant of the matrix built of the coefficients to the
left-hand side of Eq. (9) is close to zero, then we can assume
that the plane can be written as y = Ax + Bz +C and solve
the corresponding equation system. If this equation system
has also a determinant close to zero, it means that the plane
is parallel to the yz-plane, indicating that the normal vector
should be (1, 0, 0) or (−1, 0, 0).

Another approach is to find the best plane approximat-
ing the l points that also goes through a specific voxel. The
specific voxel is the position of the found maximum in the
3D IMCDP method. Assume again that we define the plane
by z =Ax +By +C . In order for this plane to go through the
specific point (x0, y0, z0), we will have C = z0−Ax0− By0,
reducing the number of the variables to two, i.e. A and B.
This will give z = A(x − x0)+ B(y − y0)+ z0, resulting in
the following squared error,

e=
l∑

i=1

(zi− (A(xi− x0)+B(yi− y0)+ z0))
2. (10)

By setting the derivative of Eq. (10) with respect to A and B
to zero, the following equation system is achieved.

A
∑
(xi− x0)

2
+B

∑
(xi− x0)(yi− y0)

=
∑
(xi− x0)(zi− z0)

A
∑
(xi− x0)(yi− y0)+B

∑
(yi− y0)

2

=
∑
(yi− y0)(zi− z0).

(11)

The normal vector to the surface is then approximated
by (A,B,−1) or (−A,−B, 1). As explained above, if this
equation system has a determinant close to zero then we can
assume that the plane can be written as y = Ax + Bz + C
and solve the corresponding equation system. It is worth
pointing out that the two approaches will result in quite
similar normal vectors when n and consequently l are small
integers. Let us give an example. Consider a voxel with
coordinates (158, 138, 28) on a sphere with a radius of 100
and the center of (50, 50, 50). Thus, this point is on the
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Figure 7. A sphere of radius 100 with a constant absorptance of 0.3 is halftoned by 3D IMCDP. (Left) First-order FM, viewing direction (φ, θ)= (45◦,45◦).
(Middle-top) The top view of the first-order FM halftoned sphere. (Middle-bottom) The top view of the second-order FM halftoned sphere. (Right) Second-order
FM, viewing direction (φ, θ)= (45◦,45◦).

lower hemisphere and the surface normal pointing outwards
should be a downward vector. The calculated normal vectors
approximated by the first and the second approach with
n= 3 are (0.77, 0.43,−1) and (0.67, 0.33,−1), respectively.
As can be noticed, they are quite similar. As the second
approach is less computationally expensive, it is probably
more appropriate to use this approach.

Besides the normal vector, its orientation, i.e. pointing
outward or inward the 3D object, is also important in order
to be compared to the viewing/light direction/directions. For
a closed surface such as a box or sphere, the orientation of
the normal vector pointing outward the object is easily found
by making a vector from the specific surface voxel to a point
inside the closed object. If the scalar product between this
vector and the normal vector, e.g. (A,B,−1), is negative,
then this normal vector is pointing outwards, otherwise the
normal vector pointing outwards is (−A,−B, 1). For more
complicated objects, it is not so obvious and there might
be many different approaches to decide the direction of the
normal pointing outward the surface. If the 3D object, as
specified in Ref. [9], consists of inner, surface and outer
voxels, from the specific voxel, find the next voxel in the
direction of the found normal vector. If this next voxel is
an inner voxel, the normal vector pointing outwards will
be the found vector multiplied by −1. If the next voxel is
an outer voxel, the found normal vector is the one pointing
outwards. In Section 5, several halftone results are illustrated,
where different parts of the shapes are halftoned by different
halftone structures, based on the direction of the normal
vector pointing outward the object.

5. RESULTS
In this section, we illustrate several halftone results of the
proposed 3D adaptive iterative halftoning method. One of
the basic requirements for a 3D halftoning method is that,

it should behave the same as a 2D halftoning when it is
applied to a surface close to two-dimensional. Figure 7
illustrates a sphere of radius 100 with an absorptance of
0.3 being halftoned by the proposed first- and second-order
3D IMCDP. To the left, the 3D view of the first-order FM
halftoned sphere is illustrated using the azimuthal angle
φ = 45◦ and the polar angle θ = 45◦. The middle top figure
shows the 2D top view (parallel to the xy-plane) of the
first-order FM halftoned sphere. To the right, the 3D view
of the second-order FM halftoned sphere is illustrated. The
middle-bottom figure is the 2D top-view of this halftoned
sphere. The xz and yz 2D views of the halftones look identical
to those illustrated and are therefore not illustrated. The 2D
views of the halftones and the distributions of the dots verify
that the 3D halftoning algorithm results in similar halftones
achieved by 2D halftoning of a two-dimensional surface.
Another observation is that the concept of two-dimensional
first- and second-order halftoning can be extended to 3D.

In Section 4.1, an approach to partition a 3D surface
into several structural regions has been proposed. In order
to illustrate that, a box with some 3D structures on top
of it with an absorptance of 0.3 has been portioned into a
number of structural regions and adaptively halftoned. In
Figure 8, the structure less areas, i.e. those close to 2D plane
parallel to one of the coordinate planes, have been halftoned
by second-order FM with moderately large cluster dot size.
As the surface becomes more structured, the cluster dot size
is gradually decreased and the most structured area, i.e. the
top face, is halftoned by first-order FM. The right-top and
right-bottom images in Fig. 8 show the 2D view of the top
and bottom face of the box, respectively. As can be seen in
the top face, the spatial 3D structure has a great impact on
the appearance of the top face. In Figure 9, the cluster dot
size is increased as the area becomes more structured. It
means, the most structured area, the top face, is halftoned
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Figure 8. The cluster dot size gradually decreases from structureless area to highly structured areas according to the proposed measure in Section 4.1.
(Right-up) Top face, the highly structured area is halftoned by first-order FM. (Right-bottom) Bottom face, the structureless area is halftoned by 2nd order FM
using moderately large cluster dot size.

Figure 9. The cluster dot size gradually increases from structureless area to highly structured areas according to the proposed measure in Section 4.1.
(Right-up) Top face, the highly structured area is halftoned by 2nd order FM using moderately large cluster dot size. (Right-bottom) Bottom face, the
structureless area is halftoned by first-order FM.

by second-order FM with moderately large cluster dot size
and the structureless area, e.g. the bottom face, is halftoned
by first-order FM (right-top and right-bottom images in
Fig. 9). Comparing the top face views in Figs. 8 and 9
reveals that the top face looks more homogeneous when
halftoned by second-order FM. Thus, it can be concluded
that second-order FM halftone can attenuate the unwanted
spatial geometrical structures.

As themain goal of this work is to present the theoretical
background for the 3D adaptive halftoning method, only
the digital halftones obtained by the proposed method have
been illustrated. We believe that the main application area
for such halftones would be within 2.5D and 3D printing
technologies with the possibility of voxel-level control in the
printing process, such as Stratasys J-series 3D printers. One
of our ultimate future work will be to apply these halftones
using this type of printers. However, in order to give an
illustration on how different halftones behave on structured
areas in practice, we did tests using Canon Elevated Printer.
The R&D version of the Elevated Printing RIP (Raster Image
Processor software) gives the option to print each pixel with

one droplet. In this test droplet size 30 pl black is chosen.
A box with sinusoidal structure on top of it having 0.3
absorptance has been halftoned by second-order FM using
two different cluster dot sizes. The smaller cluster dot sizewas
created by setting σ1 = 1.3 and σ1 = 0.9 in Eq. (6). The larger
cluster dot size was created by σ1 = 1.9 and σ1 = 1.0. The
top-left image in Figure 10 shows the top face of the simulated
digital halftoned box using the smaller cluster dot size and the
bottom-left image illustrates the simulated digital halftone
obtained by using the larger cluster dot size. As can be seen in
these two images, the larger cluster dot size creates halftones
that attenuate the waviness of the surface. The images in the
middle of Fig. 10 are the scanned version of the ones to the left
being printed on a flat surface (height of 0 mm). The images
to the right illustrate the scanned version of the 2.5D print
results of the left images based on the height information,
i.e. the value of the z-coordinates for each surface voxel
(maximum height of 2.5 mm). Note that, these images are
supposed to illustrate how the actual printouts look like and
each printed patch is 1 inch× 1 inch being scanned at 300
ppi. As can be seen in the scanned version of the printed
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Figure 10. Second-order FM has been used. For the top row smaller cluster dot size and for the bottom row larger cluster dot size has been used. (Left)
The top-view of the digital simulated halftoned surface. (Middle) The halftone in the left has been printed on a flat surface and scanned at 300 ppi. (Right)
The halftone in the left has been 3D printed based on the height map information from the 3D box (maximum height of 2.5 mm) and scanned at 300 ppi.

Figure 11. The image mapped on the structured face of a box is halftoned
by: (Left) first-order FM. (Right) second-order FM.

results, larger cluster dot size attenuates the waviness and
creates a more homogeneous surface appearance.

In order to investigate the halftone structures’ impact
on a regular image being printed on a structured surface,
a test image has been mapped on the structured face of a
box. Figure 11 (Left) and (Right) show the surface halftoned
by first- and second-order FM, respectively. As can be seen
in the left image, the chequered-like structure originated
from the surface structure, is visible, while the right image
shows a more homogeneous appearance and the geometrical
structure has been ‘‘hidden’’ by the halftone structure.

Another aspect of the proposed 3D halftoning method,
discussed in Section 4.2, is that it can adapt the halftone
structure to the viewing direction or the lighting conditions.
This is done by approximating the normal vector to the

surface at the foundmaximum in each iteration. For example,
calculating the dot product between the normal vector and
the viewing direction or the direction of the light source,
depending on the conditions, the halftone structure can be
adapted. Figure 12 shows a box with sinusoidal structures on
its top face being halftoned by first- and second-order FM.
The halftone has been adapted based on the angle between
the normal vector and the up-direction, i.e. ẑ = (0, 0, 1).
In this figure, if the angle between the normal vector and
the up-direction is less than 30◦, first-order FM is used
and otherwise a second-order FM is used. As can be seen,
specially in the 2D top view, first-order FM is used on the
peaks and the pits of the structure. The side faces are also
halftoned with the same second-order FM, but the halftone
structures on them could also be easily adapted, if desirable.
There might also be a practical application to this type of
combining different halftones. As an example, assume that
there is a light source above the box in Fig. 12, i.e. the light
direction is ẑ = (0, 0, 1). According to Lambert’s cosine law,
the radiant intensity is directly proportional to the cosine of
the angle between the direction of the incident light and the
surface normal. In this example, it would mean that the areas
close to the peaks and the pits will reflect more diffuse light
than areas on the walls of the dales. As the first-order FM
usually causes larger dot gain than second-order FM, this
phenomenon could be taken into account and compensated
by incorporating appropriate halftones, as done in Fig. 12.
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Figure 12. The box with a structured top face has been halftoned by first- and second-order FM, where the normal vector decides the halftone. The right
image shows the 2D top view.

Figure 13. The sphere of radius 100 with an absorptance of 0.3 has been halftoned by first- and second-order FM with three different cluster dot sizes
based on the direction of the normal vector. (Left) the 3D view. (Middle) the top (xy ) view. (Right) The side (xz ) view.

In order to verify the approach to approximate the
normal vector and investigate how smooth the transition
from one halftone structure to another is, a sphere of radius
100 with an absorptance of 0.3 has been halftoned, as seen
in Figure 13. The normal vector to the surface at each found
maximumwas approximated according to the first approach
proposed in Section 4.2 using n= 5. The angles between the
normal pointing outward the sphere and the up-direction
(ẑ = (0, 0, 1)) in the upper hemisphere and between the
normal and the down-direction (ẑ = (0, 0,−1)) in the lower
hemisphere were used to decide the halftone structure. In
Fig. 13, first-order FM was used for angles less than 30◦. For
larger angles, second-order FM with three different cluster
dot sizes was used. The size of the dot was increased once
at 45◦ and for the second time at 60◦. This means that, four
different halftones have been used to halftone this sphere. As
can be seen in the middle (xy-view) and the right (xz-view)
images in Fig. 13, the transition is very smooth, although we
purposely chose to have big changes in the size of cluster dots
for the sake of illustration.

6. SUMMARY AND CONCLUSION
In this article, a 3D adaptive halftoning method has been
presented that is able to incorporate different halftone
structures on the same 3D shape. It was shown how to
partition a 3D surface into several structural areas and
thereby halftone each partition by an appropriate halftone.

Second-order FM halftone with appropriate cluster-dot size
is able to ‘‘hide’’ the undesirable surface structures better than
first-order FM, giving a more homogeneous appearance.
Another advantage of the proposed method is its ability
in adapting the halftone based on the normal vector of
the surface at a specific voxel. Two different but similar
approaches approximating the normal vector were also
proposed. Having the normal vector at each voxel in each
iterationmakes it possible to choose an appropriate halftone,
for example based on the viewing or the light source
direction. To name a few examples, this possibility allows
the user to have different halftones on different sides of a
box, or on different hemispheres of a sphere or on different
parts of any other 3D shape. One of the possible applications
brought up in this article was to adapt the halftone to the
light source direction. The diffuse reflection is maximum
in points whose normal to the surface is parallel to the
light source direction. If the surface is tilted with regards
to the light source direction, less light will be diffusely
reflected according to Lambert’s cosine law. In order to
give a more homogeneous appearance, it could be beneficial
to use a halftone causing smaller dot gain in tilted areas,
for instance second-order FM. One of the main challenges
when combining different halftone structures in the same
shape is the possible transition artefacts that might occur.
According to our experiments and all illustrations of the
results obtained by the proposed adaptive halftoning in this
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article, the transition between different halftone structures is
very smooth.

Because of the variability of 3D printing, it is important
to evaluate the proposed 3D halftoning methods in practice.
Thus, applying the proposed 3D halftoning method using
3D printing technologies with the possibility of voxel-level
control, such as Stratasys J-series 3D printers, is among
our main future works. In this article, however, we mainly
focused on presenting the theoretical background of the
proposed halftoning technique. Most of the illustrations
have therefore been different views of several 3D halftoned
surfaces. Nevertheless, to verify our observations based on
the obtained digital halftones, we did a number of simple tests
using Canon Elevated Printer. The print results show that it
is possible to achieve a more homogeneous appearance for a
structured surface by appropriate halftone structure.

Regarding the time aspect of the proposed halftoning
method, we have not spent much time on streamlining our
code. To give an indication on the time aspect, halftoning
the sphere with a radius of 100 (consisting of 103734 surface
voxels) in Fig. 13 took about 21 seconds in MATLAB on
a MacBook Pro (Processor: 3.1 GHZ and memory: 16 GB,
2133 MHz). This time also includes the calculation of
the normal vector in each iteration by the first approach
proposed in Section 4.2. We believe that this method can
become much faster if the code is optimized or written in
programming languages other than MATLAB. It might also
be possible to halftone the whole 3D surface by halftoning
several slices at a time, which will be investigated and
evaluated in our future works.
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