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Abstract
Halftoning a continuous-tone image inherently results in loss

of information, which makes the inverse process, descreening, a
challenging problem. Current state-of-the-art descreening algo-
rithms have two issues: first, they mostly are PSNR-oriented re-
construction algorithms, which tend to generate piecewise smooth
images that do not appear realistic due to their lack of texture.
Furthermore, these algorithms are typically trained with halftone
images generated from the Floyd-Steinberg error diffusion algo-
rithm, which is not an optimal choice since the algorithm is known
to generate visible artifacts in the halftone image. We address
these issues by the following: first, we propose a GAN-based de-
screening algorithm that generate descreened images with abun-
dant texture resulting in more realistic appearance. In the GAN
generator, we use residual in residual dense blocks (RRDBs)
which are known to perform well in image reconstruction tasks.
For the discriminator, we use a U-net to process the image fea-
tures in multiple resolutions. Next, we propose using the direct
binary search (DBS) algorithm instead of Floyd-Steinberg error
diffusion for generating the halftone images, since it is known to
generate halftone images without visible artifacts. Both qualita-
tive and quantitative comparisons show that our algorithm out-
performs state-of-the-art descreening algorithms significantly.

Introduction
Digital halftoning is a process of converting an image into

a binary image with the aim of preserving the image quality as
much as possible. In the halftoning context, the input image is
often called a continuous-tone image. The reverse process that
converts the halftone image into a continuous-tone image is called
inverse halftoning or descreening, which is the topic of interest in
this paper. Since there are only a limited number of tone levels
to be used for halftone images, digital halftoning inherently re-
sults in loss of information, which makes inverse halftoning rather
tricky. Halftoning is most commonly used in printers to reproduce
given image since they can only use a limited number of tones
available for each printer-addressable pixel. However, halftoning
and inverse halftoning also have other potential applications such
as image retrieval [1], watermarking [2, 3], high dynamic range
imaging [4], and so on.

Recent advances in applying deep neural networks (DNNs)
to image processing problems have brought in significant inter-
est in performing inverse halftoning using DNNs, such as in
[5, 6, 7, 8, 9]. While the state-of-the-art inverse halftoning algo-
rithms generate greatly improved results, the output images suffer
from lack of texture because they are trained with PSNR-oriented
objectives. In this paper, we address this issue by applying gen-

erative adversarial networks (GANs) [10] to inverse halftoning,
which is known to overcome the limitations of DNNs trained with
PSNR-oriented objectives [11].

Another issue with the state-of-the-art inverse halftoning al-
gorithms is that they are generally trained using halftone im-
ages generated with the Floyd-Steinberg error diffusion [12] al-
gorithm. While this algorithm generates halftone images with
some desirable properties such as sharpened edges [13], the im-
ages tend to suffer from visible artifacts [14]. Instead of the
Floyd-Steinberg error diffusion algorithm, we suggest generating
the training dataset halftone images using the direct binary search
(DBS) algorithm [15], which does not generate images with ar-
tifacts associated with the Floyd-Steinberg error diffusion algo-
rithm.

This paper is organized as follows. First, we review the liter-
ature on digital halftoning and inverse halftoning. We also review
the literature on the application of GANs for image restoration
and enhancement since the topic is relevant to our paper. Next, we
describe our inverse halftoning algorithm and its novelties. Lastly,
we provide experimental results, including a state-of-the-art com-
parison and ablative study.

Our Contributions To summarize, our contributions are as
follows: first, we propose a GAN-based descreening algoritm that
is capable of generating descreened images with realistic texture.
Next, we propose using the direct binary search (DBS) algorithm
instead of the Floyd-Steinberg error diffusion algorithm for gen-
erating the training dataset, since the halftone images generated
with Floyd-Steinberg error diffusion tend to include visible arti-
facts. We show both qualitative and quantitative comparisons that
illustrate the benefits of our descreening algorithm.

Related Work
Digital halftoning

Digital halftoning algorithms can be categorized based on
whether the dots (black pixels) tend to cluster together or be dis-
persed apart. The former type of halftoning algorithms is called
clustered-dot halftoning, whereas the latter is called dispersed-
dot halftoning. Clustered-dot halftoning is widely used in elec-
trophotographic (laser) printers due to their placement of the
toner particles being relatively instable, whereas for inkjet print-
ers dispersed-dot halftoning is commonly used. For clustered-dot
halftoning, screening [16] is typically used, where a predesigned
threshold array is compared with the input image pixel-by-pixel
for binarization. In this paper, we focus our interest on dispersed-
dot halftoned images.

Among the dispersed-dot halftoning algorithms, the two
types that are most related to our paper are error diffusion algo-
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rithms such as Floyd-Steinberg error diffusion [12] and search-
based algorithms such as direct binary search (DBS) [15]. Error
diffusion algorithms scan through each pixel in the continuous-
tone image in some scan order (e.g., raster scan), binarizing the
pixel using some quantization scheme. After binarization, the er-
ror between the continuous-tone image pixel and its binarized re-
sult is diffused to nearby pixels, which then is reflected later when
binarizing those pixels. While they are efficient, error diffusion
algorithms often suffer from visible streaks of dots that do not
match the contents of the continuous-tone image, called artifacts,
and thus are rarely used in its native form.

On the other hand, search based algorithms optimize a cost
function, typically the loss between the continuous-tone and
halftone images after applying human visual system filters, e.g.
that described in Näsänen’s work [17]. Since the solution space
is discrete, the optimization is nonconvex, so typically greedy
heuristics and multiple iterations of the entire image are used un-
til convergence for optimization. For instance, the DBS algorithm
[15] starts from an initial halftone of the given continuous-tone
image, and for each pixel in the image searches for a potential
toggle or swap of the dots within a local neighborhood of the
pixel that most reduces the cost. This is iterated multiple times
over the entire image until there is no acceptable toggle or swap
for the current halftone image. Because of their iterative nature,
search based halftoning algorithms tend to have a relatively high
cost of computation [18].

Recent advances in deep learning have also inspired research
in its application for halftoning algorithms. Guo and Sankarasrini-
vasan [19] jointly learn to halftone and inverse halftone images
using unsupervised training similar to the cycleGAN [20] frame-
work. Xia et al. [21] notes that there are multiple optimal dot
distributions for a given continuous-tone image, and leverages it
by learning to encode the fine details of the continuous-tone image
in the dot distribution of the halftone images. Compared to both
these papers, which employ unsupervised training for halftoning,
Choi and Allebach [22] train a GAN framework similar to [10] by
using the halftone images generated with DBS [15] as the ground
truth halftone images.

Inverse halftoning
Inverse halftoning algorithms taking digital halftones as in-

puts have been extensively researched. Traditional approaches to
inverse halftoning include methods such as MAP estimation [25],
LUT approaches [26, 27], wavelets [28], and so on. Recently, due
to advances in the application of deep neural networks for image
processing, several papers proposed using deep neural networks
for inverse halftoning. Hou and Qiu [29] and Xiao et al. [5] use
a U-net [30] and end-to-end learning for inverse halftoning. Xiao
et al. [7] estimate the gradient map of the output continuous-
tone image from the halftone image as an intermediate step of
inverse halftoning, and use the estimated gradient map along with
the halftone image for final inverse halftoning. Xia and Wong
[6] perform a two-step estimation of the continuous-tone image,
where for the second step the output from the first step is used
alongside the halftone image as input. Both stages use networks
designed with residual blocks [31]. Yuan et al. [8] combine the
key ideas from [7] and [6], by estimating the gradient map to esti-
mate the initial continuous-tone image and refining it using resid-
ual learning. Wicaksono et al. [9] learns to inverse halftone in the

wavelet domain for the initial estimation, which is then refined
in the image domain. All the inverse halftoning algorithms dis-
cussed use halftone images generated with Floyd-Steinberg error
diffusion for training the networks.

While not as much as inverse halftoning on digital halftone
images, research has also been performed with the goal of per-
forming inverse halftoning on scanned prints of images. Gao
et al. [32] perform inverse halftoning on scanned halftones by
first converting them to a synthetic halftone that mimicks the look
of digital halftone images, then performing inverse halftoning on
them. Kim and Park [33] perform inverse halftoning in two stages
as well, where an initial estimate of the continuous-tone image is
generated, then using semantic segmentation and edge detection
on the initial estimate, the refined final continuous-tone image is
generated. They show inverse halftoned results on both digital
and scanned halftone images. The two works are similar to our
work in that GANs [10] are used for inverse halftoning. However,
they are crucially different to our work in two aspects: first, we fo-
cus our work on restoring the images from digital halftone images
instead of scanned prints, and second, the printed images used in
the papers as inputs are the results of printing halftone images that
are generated by clustered-dot screening algorithms.

Image restoration with deep neural networks
Another topic that is closely related to our work is applying

deep neural networks for image restoration tasks such as image
inpainting (e.g., in [35, 36]) and image super-resolution (e.g., in
[37, 11]). Since image restoration tasks often aim to recover the
lost information from the degradation, generative models, espe-
cially GANs, have been successfully applied. Ledig et al. [37]
first applied GAN training [10] to image super-resolution tasks to
greatly improve the perceptual quality of the output images. Wang
et al. [11] improved the results further by carefully designing the
generator architecture along with introducing two-step training,
where first the generator network is trained with a PSNR-oriented
objective, then is refined using GAN training. Lugmayr et al. [38]
applied invertible neural networks [39] to image super-resolution,
which are available to generate multiple outputs that correspond
to the same low resolution input image. For image inpainting, Yu
et al. [35] were able to succesfully apply GANs. In our work,
we also apply GANs similar to those in image restoration litera-
ture for inverse halftoning since halftoned images also suffer from
loss of information from the continuous-tone images.

Our Work
Network architectures

Our inverse halftoning algorithm is based on the GAN
framework in [10]. The overall architecture of the generator is de-
scribed in Figure 1. The key building block of the generator is the
residual in residual dense blocks (RRDBs), which were originally
proposed in [11]. The structure of a RRDB block is illustrated in
Figure 2. As shown in Figure 1, the input halftone image is passed
through two convolution layers with a leaky ReLU [24] activation
in between them, then is downscaled by a factor of 2 using bi-
linear downscaling before being passed through 12 consecutive
RRDBs, then is upscaled back to the original scale using pixel
shuffling [23]. Lastly, a 1×1 convolution is used to generate the
output image. We decided to perform the main computation using
the downscaled features since we postulate that halftone images
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Figure 1. The overall architecture of the generator in our GAN, which is used for inferencing to generate descreened images. In the figure, DS stands for

bilinear downscaling, and PS stands for pixel shuffling [23].

Figure 2. The structure of a residual in residual dense block (RRDB) [11].

In the figure, c3 stands for a convolution kernel of size 3× 3, LR stands for

leaky ReLU [24] activation, and cat stands for concatenation of the tensors

in the channel dimension.

Figure 3. The overall architecture of the discriminator in our GAN. In the

figure, cis j stands for a convolution kernel of size i× i with stride j, cTis j

stands for transposed convolution kernel of size i× i with stride j, and LR

stands for leaky ReLU [24] activation. Blocks which have two inputs first

concatenate the inputs in the channel dimension and then process them,

whereas blocks with two output arrows simply mean that the same output

features are passed onto two different blocks to be processed. All convolution

layers in the discriminator are followed by spectral normalization [34].

are oversampled; that is, the true dimension of the space where the
halftone images lie is likely smaller than the true dimension of the
space where the continuous-tone images with the same resolution
lie.

For the discriminator, we use a U-net [30]. This is because
a U-net discriminator has a higher model capacity compared to
a typical VGG-style network [40] and can lead the generator to
synthesize realistic texture locally [41]. Following [41], we also
employ spectral normalization [34] in our U-net discriminator to
stabilize the overall GAN training. The overall architecture of the
discriminator is illustrated in Figure 3.

Training dataset
We propose using a training dataset of halftone and

continuous-tone image pairs that are generated using the direct bi-
nary search (DBS) algorithm [15] instead of error diffusion [12],
which is commonly used for generating training datasets in the

Figure 4. Comparison of halftone images generated with Floyd-Steinberg

error diffusion [12] versus direct binary search (DBS) [15]. In the halftone

image generated with Floyd-Steinberg error diffusion, there are visible arti-

facts appearing similar to texture with a diagonal direction, which is not in the

original image. The halftone image generated with DBS does not have such

artifacts.

literature. This is because halftone images generated with error
diffusion tends to contain visible artifacts in the area correspond-
ing to the smooth region of the continuous-tone image which to
human observers is perceived as artificial texture [14], as is shown
in Figure 4. On the other hand, halftone images generated with
DBS do not show such artifacts. For training our GAN, we use
the same dataset as in [22], the training split of the DIV2K dataset
[42] halftoned using DBS [15] divided into 27,958 nonoverlap-
ping 256×256 patches.

Training details
We train the GAN network for descreening in two steps, in-

spired by the work in [11]. In the first step, we do not train the en-
tire GAN, but only train the generator using PSNR-oriented loss
terms. The loss terms used for the first step include the percep-
tual loss [43] Lp and the L1 loss LGT between the ground truth
and the descreened images. For computing the perceptual loss,
we use the pretrained VGG-19 network [40], and the features ex-
tracted from the last convolution layers of block 2 and 3 before
activation are used. The overall weighting for the loss term of the
first stage training is given by L = LGT +0.01Lp.

For the second stage of training, we incorporate the entire
GAN. For the adversarial loss, we use the hinge GAN loss [44]
in its relativistic average form [45]. The overall weighting for the
loss term of the second stage, for the generator update, is given by
L = LGT +Lp +0.1L G

adv. The relativistic average hinge GAN
loss for the discriminator is given by

L D
adv = Exr∼Pr

[
max

(
0,1− D̃(xr)

)]
+Ex f ∼q

[
max

(
0,1+ D̃(x f )

)]
(1)
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whereas the relativistic average hinge GAN loss for the generator
is given by

L G
adv = Ex f ∼q

[
max

(
0,1− D̃(x f )

)]
+Exr∼Pr

[
max

(
0,1+ D̃(xr)

)]
(2)

xr ∼ Pr refers to the samples from the training dataset and
x f ∼ q refers to the generated images. D̃(xr) and D̃(x f ) are de-
fined as

D̃(xr) =C(xr)−Ex f ∼q
[
C(x f )

]
(3)

and

D̃(x f ) =C(x f )−Exr∼Pr

[
C(xr)

]
(4)

where C(·) denotes the output from the discriminator network.
Each stage in the training is performed for 20 epochs with

a batch size of 4, which results in around 140K updates. For the
first stage, we fix the learning rate to be 2×10−4. For the second
stage, the learning rate starts at 2× 10−4 and after 10 epochs it
is scaled down by 0.9 for each epoch. For the discriminator, the
learning rate is scaled by 4.0. We use the Adam optimizer [46]
with hyperparameters (β1,β2) = (0.5,0.999) for both stages.

Experiments
State-of-the-art comparison

For the state-of-the-art comparison, we choose the works de-
scribed in the following paragraphs. Since we are using a dataset
generated with the DBS algorithm, we also train the networks in
the baselines using the training dataset we used for our work for a
fair comparison. For the training procedures, we follow the train-
ing process described in the papers as closely as possible.

PRL [6]. PRL performs descreening in two steps. In the
first step, a coarse reproduction of the continuous-tone image is
generated from the input halftone image, using a variant of U-net
[30] where the skip connections are replaced by residual connec-
tions [31]. Then, the coarse reproduction, along with the initial
halftone image, is passed through the detail enhancement phase
where the fine details of the continuous-tone image are refined via
residual learning.

GGDCNN [7]. GGDCNN first estimates the x and y di-
rection gradients of the continuous-tone image from the input
halftone image. The gradients are defined using Sobel filters.
Next, using both the estimated gradients and the input halftone
image, the final estimated continuous-tone image is generated.
While due to its gradient enhancing nature the output images ap-
pear sharper, the images generated with GGDCNN also tend to
include unnatural artifacts.

GGRL [8]. GGRL combines the ideas from PRL and GGD-
CNN by using GGDCNN for the first phase of PRL that gener-
ates a coarse reproduction of the continuous-tone image. From
the output of GGDCNN, the final output image is generated via
residual learning similar to as in PRL.

SAIHN [9]. SAIHN performs initial estimation of the
continuous-tone image in the stationary wavelet transform (SWT)
domain. The input used is the SWT of the halftone image, and the

estimation output is the SWT of the continuous-tone image. Af-
ter the continuous-tone image is estimated in the SWT domain,
the inverse SWT is performed to get the estimation in the image
domain, which for refinement is then passed through a relatively
small convolutional neural network.

Real-ESRGAN [41]. Since our algorithm is closely related
to the ESRGAN [11] variants, we also compare the results to the
pretrained Real-ESRGAN [41] network. For this, we first filter
the image with an isotropic Gaussian filter with σ = 1.25, down-
scale the image using bilinear downscaling by a factor of 2, and
then perform super-resolution on the images. σ was chosen to find
the Gaussian filter that removes the dot structure from the halftone
image while preserving the image details as much as possible,
by searching for the value that gives the best value of the LPIPS
[48] image quality metric after reconstruction using the pretrained
Real-ESRGAN network.

For quantitative comparison, we report multiple image qual-
ity (IQ) metric values. Along with the commonly used metrics
PSNR and SSIM [49], we report the following IQ metrics:

BRISQUE [50]. BRISQUE computes the image features
by taking into account the statistics of the local luminance and
the relations between the neighboring pixels in the image. These
features are then used to compute an image quality score, using
a support vector regression [51] module trained on a dataset of
images and their corresponding quality scores.

LPIPS [48]. LPIPS is an extension to the works of Johnson
et al. [43], where features of the two images to be compared are
extracted using a pretrained classification network and then are
compared to determine the similarity between the two images.
A linear mapping from the feature differences of the two images
computes the similarity score of the two images. Using the ground
truth image as one of the images, LPIPS can be used as an image
quality metric when ground truth exists, as in our case. We choose
to use AlexNet [52] as the feature extractor for LPIPS in our paper
for fair comparison, since we are using a perceptual loss term
using the pretrained VGG-19 [40] in our training.

DISTS [53]. DISTS also uses a pretrained network to extract
features from two images to be compared, but before fitting the
features into a score they are converted into texture and structure
features using a method similar to SSIM [49]. The SSIM-like
features are then used to estimate the similarity score between the
two images via a linear mapping. While DISTS uses a pretrained
VGG-16 for feature extraction, they substitute the max-pooling
layers of the VGG-16 network with weighted L2 pooling and then
retrain the network to avoid aliasing during downscaling of the
features, so there is no potential issue of overfitting of the scores
coming from using perceptual loss in the training.

Figure 5 includes the results generated by the different de-
screening algorithms to be compared. The descreened images
generated with our algorithm contain realistic texture whereas
algorithms trained with PSNR-oriented objectives generally are
overly smooth. This observation is supported by the IQ metric
values reported in Table 1. The IQ metrics in Table 1 are com-
puted over the DIV2K validation set [42] and the Waterloo Ex-
ploration Database [47]. Note that for PSNR and SSIM, our algo-
rithm does not appear to produce better results, but this is because
PSNR and SSIM do not correlate well with image quality ob-
served by human observers [38]. Indeed, we can see that for the
other IQ metrics that fit better with perceived image qualities, our
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Figure 5. State-of-the-art comparison. GT stands for ground truth and the halftone generated with DBS is the input used for all descreening algorithms. Note

that our algorithm generates descreened images with abundant texture compared to the state-of-the-art descreening algorithms.

Algorithm\IQ metric PSNR (↑) SSIM (↑) BRISQUE (↓) LPIPS (↓) DISTS (↓)
GGDCNN 25.878/25.731 0.875/0.876 32.118/32.802 0.161/0.143 0.147/0.168

GGRL 30.804/30.505 0.925/0.926 37.628/37.136 0.153/0.129 0.144/0.160
PRL 31.044/30.762 0.928/0.929 40.350/39.515 0.165/0.140 0.147/0.162

SAIHN 30.420/30.150 0.922/0.923 36.978/36.177 0.153/0.132 0.151/0.168
Real-ESRGAN 27.408/27.500 0.878/0.886 28.177/26.578 0.126/0.107 0.099/0.126

Ours 30.075/29.855 0.914/0.916 24.176/22.841 0.078/0.064 0.075/0.103
Table 1. IQ metric values computed over the validation split of the DIV2K [42] dataset and the Waterloo Exploration Database
(WED) [47], computed for each of the state-of-the-art descreening algorithms. The IQ metric values on the left of each cell are for
the DIV2K validation set, whereas those on the right of each cell are for the WED dataset. IQ metric values with bold text indicates
the best value among the algorithms for each dataset. (↑) indicates that the IQ metric gives higher scores to preferred images,
whereas (↓) indicates that the IQ metric gives lower scores to preferred images.
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Figure 6. Qualitative comparison for ablative study. GT stands for ground truth and the halftone generated with DBS is the input used for all descreening

algorithms. For single stage training, we train the entire GAN from scratch for 20 epochs. For the version of our GAN with a VGG-type discriminator, other than

the discriminator network structure, all the hyperparameters, training procedures, etc. are the same as our base model, which uses a U-net discriminator. The

base model is the work described in this paper.

Algorithm\IQ metric PSNR (↑) SSIM (↑) BRISQUE (↓) LPIPS (↓) DISTS (↓)
Ours (base) 30.075 0.914 24.176 0.078 0.075

Single stage training 30.245 0.917 24.767 0.087 0.082
VGG-type discriminator 30.280 0.915 39.217 0.096 0.082

Table 2. IQ metric values computed over the validation split of the DIV2K [42] dataset, computed for different variants of our
descreening algorithm. IQ metric values with bold text indicates the best value among the variants. (↑) indicates that the IQ metric
gives higher scores to preferred images, whereas (↓) indicates that the IQ metric gives lower scores to preferred images.

algorithm significantly outperforms the state-of-the-art descreen-
ing algorithms.

Ablative study
We also investigate the effectiveness of two aspects of our

descreening algorithm. First, we look into whether we could train
the entire GAN from scratch instead of performing two-step train-
ing. We expect that the first step of our training procedure that
trains only the generator gives a good starting point for the GAN
and results in descreened images with better quality. Next, we
compare the GANs using a U-net [30] discriminator and a VGG-
type discriminator. Since a U-net discriminator enjoys a larger
model capacity and can provide gradients to the generator to learn
to generate images with realistic local texture [41], we expect that
using a U-net discriminator for the GAN will result in better qual-
ity descreened images.

Figure 6 compares the different variations of our descreening
algorithm discussed previously. While the differences are subtle,
we can observe that there in fact is a benefit to both using two-
step training and a U-net discriminator. This observation is sup-
plemented by the image quality metrics in Table 2, where our base
algorithm using both two-stage training and a U-net discrimina-
tor outperforms the variants. The difference is especially notable
with the LPIPS [48] and DISTS [53] metrics for which the base
algorithm yields values that are on average 14.75% and 8.54%
lower than those yielded by the two variants.

Conclusions
In this paper, we proposed a GAN-based descreening algo-

rithm that significantly outperforms the state-of-the-art descreen-

ing algorithms. We first observed that the current state-of-the-
art descreening algorithms are trained with PSNR-oriented re-
construction loss terms and result in generating images that lack
texture. Instead, we proposed using a GAN to generate de-
screened images with realistic texture. Furthermore, we ob-
served that the current literature on descreening generally uses the
Floyd-Steinberg error diffusion algorithm to generate the train-
ing dataset, but this is not ideal since halftone images generated
with Floyd-Steinberg error diffusion tend to include visible arti-
facts, especially where the continuous-tone image is smooth. To
address this issue, we proposed using the direct binary search
(DBS) algorithm instead to generate the training dataset. Qualita-
tive and quantitative comparison of the descreened images gener-
ated with our algorithm with the descreened images from baseline
algorithms showed that our algorithm indeed significantly outper-
forms the state-of-the-art descreening algorithms.
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