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Abstract

Consumer color cameras employ sensors that do not mimic
human cone spectral sensitivities, and more generally do not meet
the Luther-Ives condition since the accompanying color correc-
tion substantially amplifies noise in the red channel. This begs
the question: if cone spectral sensitivities yield low SNR, why has
the Human Visual System so evolved?

We answer the above question by noting that since modern
ISPs — and the ancient HVS - remove virtually all chrominance
noise, chrominance denoising artifacts rather than the chromi-
nance noise itself should be considered. While sensor green, blue
are reasonable analogs of the human M, S cones respectively, the
spectral sensitivity of red is much narrower than that of L and
does not overlap much with green. An imager employing L in-
stead of red suffers from increased red noise but is also more sen-
sitive. This allows a high SNR (L+ M) /2 luminance image to be
reconstructed and used for denoising.

Modeling the color filter array on the human retina, with a
higher density of L pixels at the expense of S pixels, further im-
proves the red SNR without the accompanying loss of blue quality
being perceptible. The resulting LMS camera outperforms con-
ventional RGB cameras in color accuracy and luminance SNR
while being competitive in chrominance quality.

Introduction

The human retina comprises of L, M, S cones [1] with the
spectral sensitivities of L, M overlapping a great deal, shown in
figure 1, and together covering practically the whole spectrum
defining the human visual system’s luminance perception. Digital
cameras do not attempt to mimic the L, M, S spectral sensitivities
because differencing L, M to obtain red greatly amplifies noise.

Most consumer cameras instead employ narrower R, G, B
spectral sensitivities, shown in figure 2, that do not overlap much
[2], and hence can be converted to an output color space, such as
sRGB, without significantly amplifying noise. The use of spectral
sensitivities that differs from L, M, S, or more generally, differs
from any linear combination of L, M, S and thus does not satisfy
the Luther-Ives condition, is the primary source of color errors.

Colorimetric cameras, mostly designed for reprographic ap-
plications such as archival work in museums, overcome the noise
amplification problem by capturing the image in more than three
spectral bands [3, 4, 5, 6, 7]. Variants range from monochrome
sensors coupled with liquid crystal tunable filters that capture a
large number of narrow bands [8, 9] to monochrome cameras
with color wheels that capture a smaller number of bands but with
higher resolution and SNR to imagers where the color wheel is in
the light source [10] or the illuminants are multiplexed with a DLP
projector [11]. Color wheel imagers with wide band filters gen-
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erally have higher SNR than those with narrow bands. A popular
design is the joint Munsell Color Science Laboratory and Sinar
designed Color To Match camera [12] that uses only two filters
but a RGB instead of a monochrome sensor.

Single shot multispectral cameras include a 6 band, 6 image
sensor system comprising of two HDTV cameras [13]. Single
shot single sensor cameras overlay the image sensor with a mul-
tispectral color filter array comprising more than 3 spectral bands
and use multispectral demosaicking algorithms to reconstruct the
severely under sampled color planes [14, 15, 16, 17, 18, 19, 20].

While single sensor multispectral cameras avoid noise am-
plification in the color correction step, the effect of under sam-
pling each color plane pushes the noise into lower frequencies,
since each sample must now be used by the demosaicking algo-
rithm to reconstruct its color in a larger surrounding area. Low
frequency noise - and artifacts - are visually more objectionable
than high frequency, fine grained noise and artifacts. Furthermore,
multispectral demosaicking is a challenging problem and results
in lower demosaicked quality. So far research in single sensor
multispectral cameras has not been directed towards sensitivity or
noise to the best of our knowledge.

Attempts to improve the color accuracy of trichromatic sys-
tems invariably run into noise and sensitivity issues [2, 21, 22, 23].
[2] formally poses the problem of minimizing the weighted aver-

age of color error and noise, F&‘z + aEz, where G2 is the noise
variance and o is the weighting factor. They note that increasing
a, and thereby increasing the importance of noise makes a large
change to the red filter but not to the green and blue filters, which
is expected given the L, M, S spectra. [24] also studies the trade
off of color accuracy with noise but in the context of materials for
color filter arrays, and uses the popular SNR10 metric to quantify
noise and AE5qo to quantify color error.

In this paper we introduce chrominance denoising as a factor
in the color accuracy v/s noise trade off of trichromatic cameras.
Chrominance denoising produces a large visual improvement, is
less challenging than luminance denoising, produces less objec-
tionable artifacts and has become ubiquitous in consumer cam-
eras. We show that a single shot single sensor camera with L, M,
S spectral sensitivities has compelling advantages over the con-
ventional RGB Bayer design and, in doing so, explain why the
Human Visual System has so evolved.

The Case for an LMS Camera

The wider spectral sensitivity of L than red amplifies noise in
the color correction step, but also makes the camera more sensi-
tive. The resulting increase in luminance SNR can be used by the
chrominance denoiser to avoid averaging across feature bound-
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Figure 2. Sensitivity of a conventional RGB image sensor (left), and sensitivity after conversion to the sSRGB color space (right).

aries and thereby decrease color bleed and color desaturation.

A camera with chrominance denoising and a Bayer sensor
with LMS filters in place of RGB filters still has lower quality
red than the corresponding conventional RGB Bayer camera, but
the difference is greatly reduced by the chrominance denoising
step. The blue, green and the luminance color planes of the LMS
camera are superior to RGB, having lower noise and artifacts.

New Color Filter Array

In order to improve the red quality of the LMS camera we
employ a new CFA, shown in figure 3, with double the density of
L pixels and half the density of S pixels as compared to the Bayer
pattern. This design is motivated by the human retina which has
much higher densities of L, M cones than S cones.

To arrive at the LMS CFA pattern we first partition the square
lattice of the image sensor into two quincunx lattices and assign
one quincunx to L and the other to M. Next we substitute 1 in 4
M pixels with S so as to form a regular, 45 degree rotated lattice
occupying 1 in 8 pixels. We substitute S pixels for M instead of L
for the following reasons:
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1.

L is roughly 18% brighter than M on gray features in D65
lighting, hence a higher density of L pixels improves lumi-
nance SNR more than a higher density of M pixels

. L pixels are slightly more important than M for red quality

which is under stress

. S pixels are more strongly correlated to M pixels than L al-

lowing the demosaicker to extract more information from S
pixels for the reconstruction of M than it can do for L

Figure 3.

The Bayer CFA (left), the human retina (center), the proposed

LMS CFA (right).
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Doubling the density of L pixels brings red SNR and de-
noising artifacts roughly on par with RGB Bayer cameras. Green
quality is mostly unchanged between Bayer and the proposed
CFA. Blue quality is degraded by the halving of S pixel density,
but blue can be denoised more aggressively than red and green
since it does not contribute much to the perceived luminance [1].
The loss of S quality also has little impact on red and green qual-
ity in the color correction step owing to low importance of S in the
correction of red and green. This makes the demosaicking of the
proposed CFA less challenging than multispectral CFAs that have
to contend with sparse samples for reconstructing red and green,
in addition to blue.

Processing the Raw LMS Data

The novel LMS CFA requires a new demosaicking algorithm
and also modifications to chrominance denoising to better lever-
age the different noise levels and noise spectra of its color planes.

Demosaicking

Demosaicking of L, M are straightforward owing to their
high densities in the proposed CFA. Universal demosaickers
[25, 26, 27, 28, 29] can be used as can frequency domain algo-
rithms [30].

The spectrum of the LMS mosaicked image is shown in fig-
ure 4. While the LMS mosaic has copies of the chrominance
C2 = M — S overlapping with luminance in the mid frequencies
with carriers at (5 ,+%), it also has copies of the same chromi-
nance at (0,4+7x) and (£x,0). [25, 26], in particular, are good
at removing the effects of S since they can disregard the spectral
overlap of the chrominance and luminance signals if at least one
copy of the chrominance does not overlap with the luminance.
An algorithm based on [25, 26] is used for the experimental work
described in this paper.

Figure 4. Spectrum of the proposed LMS CFA (left). Here Lum=4L+3M+S,
C1=4L-3M-S, C2=M-S. Spectrum after reconstructing M at S locations
(right). Here Lum=L+M and C=L-M.

Also possible is a hybrid spatial/frequency domain algorithm
that first reconstructs M at S locations using a directional average,
to avoid averaging across edges, followed by a filtering operation
to separate the luminance from the L-M chrominance modulated
at (£m,+7) (see figure 4). Next the L-M chrominance is demod-
ulated back to baseband and L, M are recovered via linear combi-
nations of luminance and chrominance signals thus obtained. This
hybrid algorithm is given in figure 5.

Demosaicking of S requires sparse demosaicking techniques
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at each S pixel location
sense edge orientation
M < average(M) along edge direction
to obtain the LMmosaic
at all pixel locations
luminance < LowPassFilter(LMmosaic) reconstructed above
chrominance < Demodulate(LMmosaic — luminance)
at M pixel locations
L < (luminance 4 chrominance) /2
at L pixel locations
M < (luminance — chrominance) /2

Figure 5. Hybrid L, M demosaicking algorithm.

such as those developed for RGBW and multispectral CFAs.
One popular algorithm is to construct a guide image, such as
(L+M)/2 and use a Joint Bilateral [31] or a Guided Image Filter
[32] to reconstruct S.

Chrominance Denoising
We convert from LMS to the sSRGB color space using the
following equation [33],

R 473 =387 0.14 L
G|l =|[-060 175 -0.16|-|M (1)
B 0.07 -026 1.12 S

perform chrominance denoising in the following color space,

. L+M
luminance = ——

2
chrominancel = R — luminance
chrominance2 = G — luminance
chrominance3 = B — luminance

followed by conversion back to the SRGB color space.

Denoising in the above color space brings up the quality of
R, G, B color planes roughly to that of the high SNR (L+M)/2
color plane. It also allows us to apply different denoising strengths
to each of the chrominance channels, which is important given
the vastly different noise levels and noise spectra of R, G, and
B. We use a multi-resolution denoiser similar to [34], but simpler
bilateral or sigma filters can also be used in well lit applications.

White Balance

Most RGB Image Signal Processors (ISP) perform white bal-
ance in the sensor RGB space before demosaicking. This works
well since sensor RGB spectral sensitivities are typically narrow.

LMS, with its wider L spectral sensitivity requires two
rounds of white balance. The first white balance before demo-
saicking helps improve demosaicking performance by equaliz-
ing LMS color channel strengths. The second white balance af-
ter sharpening of spectral sensitivities helps with color constancy
[35, 2]. More sophisticated color constancy algorithms can also
be employed in a LMS camera.

Experimental Results
We compare images from the LMS and Bayer pipelines un-
der a range of simulated noise levels. We measure the deviation
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of the noisy images output by the processing pipelines with the
clean ground truth images and report the PSNR. We also measure
the SNR on gray panels of the Macbeth chart.

We do not measure color error since it is expected to be zero
for LMS under our ideal simulation conditions. Nor is the mea-
surement of Bayer color error interesting as it is already known
for most cameras.

Both the LMS and Bayer pipelines consist of demosaicking,
conversion to sSRGB color space, chrominance denoising and ap-
plication of the sSRGB tone map. For LMS we employ a demo-
saicker based on [25, 26]. For Bayer, we employ the DLMMSE
[36] algorithm that is popular with open source raw converters
especially for noisy images. For chrominance denoising, we em-
ploy a multiresolution denoiser for both LMS and Bayer, with the
Bayer chrominance denoiser operating in the YUV color space.
No luminance denoising, or other post processing, is performed.
Raw LMS and Bayer data is generated in two ways - starting from
a hyperspectral image set or from a SRGB image set.

Hyperspectral Image Set

We use isetcam [37] to generate LMS images from hyper-
spectral image cubes with the D65 illuminant. We use the images
show in figure 6. Next, we simulate diffraction limited optics with
an airy disc diameter of 2 pixels. We then add noise according to
the noise model of a typical 1u pixel pitch CMOS image sensor
with 1.5 e~ read noise and 0.14 counts/e™ conversion gain, where
counts is the output of a 10 bit ADC. We simulate analog gains of
4,8, 16, 32 and 64 and also the noiseless case. Finally, we mosaic
the image according to the LMS CFA pattern.

We generate the Bayer raw data in a similar manner by us-
ing the quantum efficiency of Nikon D100 instead of the LMS
spectral sensitivities.

Repurposing RGB Images

The hyperspectral image sets we have access to are limited
in scope and do not include several popular test targets used to test
demosaicking and chrominance denoising performance. Since the
superior color accuracy of an LMS camera is not in doubt and
noise is the primary concern, we approximately convert RGB im-
ages of test targets to LMS with the understanding that color ac-
curacy of the LMS images so obtained will be no different than
RGB. We use the popular Kodak and IMAX image sets as well as
the test charts shown in in figure 7.

To convert SRGB to LMS we reverse the usual sequence of
color processing steps of an ISP - white balancing of the sensor
raw data, conversion to SRGB color space and sSRGB tone map-
ping. After linearizing the SRGB image, we apply the inverse of
the color conversion matrix of equation 1. To reverse the white
balance step we use the inverse of the white balance coefficients,
[1.0000,1.2191,3.1397], needed to balance the isetcam’s hyper-
spectral Macbeth Color Chart illuminated by a D65 light source
and captured with LMS spectral sensitivities. We then simulate
optics, add noise and mosaic the images exactly as in the hyper-
spectral image set case.

We generate the Bayer raw data in a similar manner by in-
verting the following color conversion matrix of a typical Bayer
sensor to the SRGB color space,

2014

1.81 —-0.53 -0.28
-030 138 —0.08
—-0.13 —-0.33 1.46

and inverting the [1‘81237 1.0000, 1.8799] white balance coeffi-
cients.

Results

Table 2 shows approximately 5 dB SNR lead of LMS over
Bayer on the Macbeth gray panels in low light, read noise limited
conditions and approximately 3.5 dB in bright light, shot noise
limited conditions. The slight PSNR advantage of LMS over
Bayer indicates the absence of serious artifacts, which we also
visually confirm. Note that our Bayer PSNR values are higher
than those previously reported because we simulate the effect of
optics.

We also subjectively demonstrate good resolution and lack
of false color with the Circular Zone plate, the “Siemens Star” of
figure 8 and good color saturation in the presence of noise with
the “Dead Leaves” of figure 9. Both the Siemens Star and the
Dead Leaves crops were taken from the industry standard TE42
chart.

Fabrication of Color Filters

The LMS spectral responses are Gaussian [38] making LMS
color filters easy to fabricate. For high color accuracy, the quan-
tum efficiency of the image sensor should be taken into account
so that the product of filter spectral sensitivities and quantum effi-
ciency closely matches LMS spectral sensitivity, or a linear com-
bination thereof (Luther-Ives condition).

Meeting the more general Luther-Ives condition instead of
matching the LMS spectral sensitivities can be considered if the
quantum efficiency of the sensor makes the required LMS filter
spectral sensitivities deviate significantly from Gaussian functions
making them hard to fabricate.

Conclusion and Future Work

This paper provides a proof of concept for an LMS camera
that is:

1. colorimetric with easy to realize color filters

2. has roughly 5 dB luminance SNR advantage in low light
read noise limited settings and roughly 3.5 dB in bright light
shot noise limited settings over a comparable Bayer camera.

3. has roughly comparable chrominance denoising artifacts as
RGB Bayer and a slight PSNR lead.

This paper focuses on the popular single sensor camera architec-
ture, but the chrominance denoising techniques can be equally
well applied to 3 sensor, beam splitter cameras, scanners and other
trichromatic image capture devices.

The performance of the LMS camera is likely to improve
rapidly, as is the case with most new technologies. Further-
more, the availability of LMS cameras will hopefully lead to the
adoption of more sophisticated color science in image capture
pipelines.

Lastly, the luminance SNR improvement over RGB sensors
helps explain why the Human Visual System has so evolved.
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Figure 6. The hyperspectral images from isetcam used in our experiments.

AL S . % \“‘

Figure 7. RGB sourced charts used in our experiments. We also test on the Kodak and IMAX image sets.

Image Set No added noise 4x Gain 8x Gain 16x Gain 32x Gain 64x Gain
Bayer | LMS Bayer | LMS | Bayer | LMS | Bayer | LMS | Bayer | LMS | Bayer | LMS
ISET (Hyperspectral) | 47.10 | 48.93 | 39.02 | 41.23 | 37.48 | 39.44 | 35.03 | 37.28 | 32.86 | 35.26 | 31.20 | 33.55
Charts (RGB) 47.67 | 4750 | 36.94 | 39.01 | 35.26 | 37.16 | 33.03 | 34.97 | 31.32 | 33.13 | 30.14 | 31.78
Kodak (RGB) 42,79 | 43.15 | 37.89 | 38.83 | 36.57 | 37.51 | 34.52 | 35.78 | 32.57 | 33.99 | 31.07 | 32.50
IMAX (RGB) 37.26 | 39.31 | 34.96 | 36.15 | 34.11 | 34.86 | 32.57 | 33.39 | 31.09 | 31.96 | 30.00 | 30.87

Table 1: PSNR, in dB, after demosaicking, conversion to sRGB color space and chrominance denoising. Note that our Bayer PSNR
values are higher than those previously reported because we simulate the effect of optics.

Noise Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6
Bayer | LMS | Bayer | LMS | Bayer | LMS | Bayer | LMS | Bayer | LMS | Bayer | LMS
4x Gain 17.08 | 21.50 | 21.72 | 25.89 | 24.83 | 28.67 | 27.34 | 31.62 | 29.30 | 33.81 | 31.13 | 34.87
8x Gain 13.90 | 18.44 | 18.61 | 22.79 | 21.82 | 25.84 | 24.32 | 28.82 | 26.36 | 30.99 | 28.14 | 31.84
16x Gain | 11.81 | 1598 | 16.59 | 20.25 | 19.82 | 23.31 | 22.34 | 26.14 | 24.34 | 28.28 | 26.11 | 29.57
32x Gain | 859 | 13.07 | 13.60 | 1745 | 16.91 | 20.51 | 19.45 | 23.34 | 21.46 | 25.44 | 23.21 | 26.79
64x Gain | 1.47 | 7.04 | 7.58 | 12.30 | 11.41 | 1546 | 14.02 | 18.33 | 16.07 | 2043 | 17.76 | 21.64

Table 2: SNR, in dB, of the Machbeth Chart gray panels after demosaicking, conversion to SRGB color space and chrominance
denoising. Left to right in the increasing order of panel brightness.
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