
Machine Learning Estimation of Camera Spectral Sensitivity
Functions with non-RGB Color Filters
Abraham Sachs, Ramakrishna Kakarala; Omnivision Technologies Inc.; Santa Clara, CA/USA

Abstract
The spectral sensitivity functions of a digital image sensor

determine the sensor’s color response to scene-radiated light.
Knowing these spectral sensitivity functions is very important for
applications that require accurate color, such as computer vision.
Traditional measurements of these functions are time consuming,
and require expensive lab equipment to generate narrow-band
monochromatic light. Previous works have shown that sensi-
tivity curves can be estimated using images of a color checker
chart with known spectral reflectances, using either numerical
optimization, or machine learning. However, previous works in
the literature have not considered sensitivity functions for CFAs
(color filter arrays) other than RGB, such as RCCB (Red Clear
Blue) or RYYCy (Red Yellow Cyan). Non-RGB CFAs have been
shown to be useful for automotive and security camera applica-
tions, especially in low light situations. We propose a machine
learning method to estimate the sensitivity curves of sensors with
non-RGB filters, in addition to the RGB filters addressed previ-
ously in the literature, using a single image of a color chart under
unknown illumination.

Introduction
Most digital image sensors today do not have their spectral

sensitivity curves readily available. In order to access the sensi-
tivity curves, one must either measure them directly or somehow
estimate them. Direct measurement is a long process that requires
expensive lab equipment inaccessible to many people. The curves
play a main role in determining the color response of a digital im-
age sensor. Knowing their shape, therefore, is crucial for accurate
color classification and differentiation, which are both important
topics in computer vision. Having access to the sensitivity curves
of a sensor allows for simulating the color response to any known
reflectance spectrum under any illumination, without having to
travel to the scene for a real image capture. A simple estimation
process also aids research because curves which are not supplied
by the manufacturer can now be compared to proposed sensors.
There have been published methods [2, 3, 4] for estimating the
sensitivity curves of sensors with a standard RGB CFA, but we
propose a method which includes spectral sensitivity curves for
sensors with either an RGB or a non-RGB filter such as RCCB or
RYYCy. A diagram of our process is shown in Figure 1.

An example of a study of the advantages of non-RGB color
filters in automotive cameras was discussed this year by Funatsu
et al [1]. They found that image quality was improved by chang-
ing the CFA, and they were able to solve a problem with traffic
light detection. Their work was based on the manipulation of the
spectral sensitivity functions. One example of previous work done
in estimating sensitivity functions comes from Tominaga et al [4].
They use the first principal component of their curve dataset to

Figure 1: The steps of our estimation process. A sensor with un-
known sensitivity curves captures a raw image of a color chart.
The tri-chromatic values of chart tiles collected from the demo-
saiced image are fed into the neural network which then outputs
an estimate of the sensor’s curves

estimate the curves of mobile phone cameras. Their work relies
on the fact that all of the mobile phone cameras they used have
very similar shapes and can all be closely approximated by just
the first principal component. Another example of previous work
done in curve estimation comes from Ji et al [2]. Their study uses
a compressive sensing approach to solve for weights of Gaussian
basis functions to approximate the shape of the curves. An exam-
ple of a neural network approach to estimating sensitivity curves
is provided by He et al [3]. Both [2, 3] cover only RGB filters,
and in this paper we expand on this problem to include non-RGB
filters. Like [3], we use a neural network, but one which is much
simpler than their six convolutional layer network.

In this paper, we investigate machine learning methods to
accurately estimate the sensitivity curves of various color filters,
including both RGB filters that have been previously studied, as
well as the non-RGB filters that are important for automotive and
security camera applications. We develop techniques that work
from a single image of a color checker chart taken under unknown
illumination. We also compare our methods to previous publica-
tions, which to date have not considered non-RGB filters. Includ-
ing non-RGB filters makes the estimation problem much more
challenging, since the resulting space of color filters is no longer
modelled by simple shapes, such as Gaussians. Allowing for un-
known illumination also provides challenges, as we cannot simply
assume that the image has been properly white balanced. Cur-
rently, finding the curves for non-RGB filters requires the slow,
traditional measurement techniques and expensive equipment. By
including non-RGB filters in our estimation, we can improve the
accessibility of curves for filters used in more diverse camera ap-
plications.

IS&T International Symposium on Electronic Imaging 2023
Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications 199-1

https://doi.org/10.2352/EI.2023.35.15.COLOR-199
© 2023, Society for Imaging Science and Technology

Figure 2: Example sensitivity curves, illuminant spectrum, and reflectance spectrum.

Background
Sensitivity Curves

The spectral sensitivity curve of a channel of an image sensor
represents that channel’s response to incident light at each wave-
length in the visible spectrum, approximately 400-700nm. An
example of the sensitivity curves of a Canon 20D image sensor
is shown in Figure 2a. We will denote the three curves as S1, S2,
and S3, and the channel responses as C1, C2, and C3. The incident
light to the sensor at some point depends on both the illumination
spectrum of the scene, denoted by `, as well as the reflectance
spectrum of the color at that point, denoted by R. An example
of the D50 illumination spectrum and the reflectance spectrum of
the orange-yellow tile of a color chart are shown in Figure 2b and
2c respectively. The response of one channel, Ci, to some color is
given by:

Ci =
∫ 700nm

400nm
Si(λ)`(λ)R(λ)dλ (1)

Applying this with each tile of a color chart results in a sen-
sor’s trichromatic response to that tile. For the purposes of this
paper, we sampled all of these spectra at 31 points, from 400
to 700nm with 10nm spacing between samples. We could then
represent integration by matrix multiplication. The three channel
response to a single tile becomes:

[
C1 C2 C3

]T
= S∗L∗R (2)

Where S is a 3× 31 matrix corresponding to the sampled
spectra of each channel’s sensitivity curve, L is a 31× 31 diag-
onal matrix which has the sampled illumination spectrum along
its diagonal, and R is a 31× 1 vector representing the sampled
reflectance spectrum. Although it seems like this inverse problem
could be solved by a simple least squares solution, previous work
has shown that the dimensionality of the problem is too high for a
least squares approach [2, 4].

Principal Component Analysis and Intuition
At first glance, this is an underdetermined problem, we are

trying to estimate 93 unknowns using only 72 inputs. When we
carry out a principal component analysis of our dataset, however,
we find that the dimensionality of our set of curves is just 9 to

Figure 3: Colors generated by the curves shown in Figure 2a

Figure 4: Principal component contribution graph. Converges at
the 9th component

capture 99% of variations, meaning we should be able to make
good estimates with our 72 inputs. The graph of the principal
component contributions is shown in Figure 4. As for estimations
under unknown illumination, we believe that the network is able
to estimate and account for the contribution of the illuminant over
ranges of the spectrum. Many of the tiles of a color chart have
overlap in regions of their reflectance spectra, such as the blue sky
and foliage tiles shown in Figure 5. Because of this overlap, the
channel responses to these tiles are affected very similarly by the
illuminant in these ranges, and the ratio of the channel response
in those two tiles can be used to approximate the illuminant con-
tribution in that wavelength range.

The first nine principal components are shown in Figure 6,

199-2
IS&T International Symposium on Electronic Imaging 2023

Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications

Figure 5: The blue sky and foliage tiles are close in the 550-
650nm range

Figure 6: The first nine principal components

and are labeled in their order of importance. The first component
has a distinctly RGB shape to it, which accounts for most of the
simple RGB sensors. The features of non-RGB curves are dis-
tributed throughout the other components. For example, in com-
ponents 2 and 3, we clearly see the right and left sides of a clear
channel; in component 6, we see a spike that corresponds to a
yellow channel. Our principal component analysis shows that the
features of these curves can be represented by much fewer than
93 dimensions. A principal component method, however, would
not be able to handle the added complexity of an unknown illu-
mination which can be overcome by a neural network. We are
also better able to enfore non-negativity, which is not a given in
principal components, with our neural network.

Method
We built a fully connected neural network in Pytorch which

would take in the 24 trichromatic values of the tiles of a color chart
and output the estimated shape of the curves which generated the
colors.

Training Data
To create training data, we needed spectral sensitivity curves,

illuminant data, and reflectance data of a color chart. In order to
make the network more robust to imperfect illumination, either

from a non-standard illuminant or from non-uniform illumination,
we needed to apply some illuminant error to the color generating
process. To simulate this effect, we used the illumination spectra
of some LED lighting and multiplied it with the standard illumi-
nants to create some illuminant imperfections.

We generated 15808 sets of 24 tri-chromatic values using 38
known sensor sensitivity curves, 28 of the curves collected from
[7] and 10 from [1], 8 LED illuminant spectra used as sources of
error collected from a lamp database [6], with 52 different illumi-
nants and the 24 reflectance spectra of color charts both collected
from the colour-science python package [5]. The trichromatic re-
sponses were calculated then stored in a matrix, C, to be used by
the network as shown in equation 3.

C = S∗L∗Lerr ∗Rchart (3)

Where S and L are the same as before, C is a 3× 24 ma-
trix storing the 24 trichromatic values of the chart tiles, Lerr is
a 31× 31 diagonal matrix representing an LED illuminant spec-
trum meant to simulate imperfect illumination, and Rchart is a
31× 24 matrix storing the 24 different reflectance spectra of the
color chart. The C matrices were saved to a text file and labeled
with the curve which generated the colors to be used as the ground
truth while training. 10000 sets of values were labeled for train-
ing, 3000 for a test set, and the remaining 2808 were set aside
for validation. An example of the colors generated by the Canon
20D under D50 illumination with no LED error is shown in Fig-
ure 3. When displaying colors, we add a dark grey border as well
as Gaussian noise to make it look like an actual captured image
of a color chart. During the generation process, 15% of the tri-
chromatic triplets were randomly set to (0,0,0) to discourage the
network from relying too heavily on any particular set of tiles.

Network Structure
A visualization of the fully connected network structure is

shown in Figure 7 [9]. The network has a 72-node input layer
corresponding to the 24 average tri-chromatic values of the tiles
in the input image. The network has a single 100-node hidden
layer. The output layer has 93 nodes, 31 for each of the three
curves. Because we expect only positive values at the output, we
used a leaky relu activation function which passes positive values

Figure 7: Diagram of the fully connected neural network struc-
ture. 72 node input layer, 100 node hidden layer, and a 93 node
output layer

IS&T International Symposium on Electronic Imaging 2023
Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications 199-3

Figure 8: Input colors, ground truth curves, estimated colors, and estimated curves for RCCB and RYYCy color filters

Figure 9: Actual RGB sensor curve estimates

Figure 10: Actual non-RGB sensor curve estimates

199-4
IS&T International Symposium on Electronic Imaging 2023

Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications

and reduces the impact of negative values. In our case, we used
a slope of 0.01 for the negative range. We used the leaky relu
because, when using a standard relu, there was a tendency for
neurons to ”die”, or stop updating with their output stuck at 0.
The loss function, shown in Equation 4, was defined as the mean
squared error between the 93 points of the output curves, Out,
and the ground truth curves which generated the input values, GT .
The network was trained for 100 epochs at a learning rate of 1E-4.

loss =
∑

93
i=1(GTi−Outi)2

93
(4)

Results
Test Data

At the end of training, the loss function converged to around
1E-3 for most of the test data, 1E-2 for some of the larger error
samples. The network achieved a good fit for most samples, and
in some cases there was little to no visual difference between the
estimated and the ground truth curves. The loss was on the same
level regardless of the type of color filter. Some examples of a
RCCB and a RYYCy estimate are shown in Figure 8a and 8b re-
spectively. We see that the shapes of the curves are followed well
by this relatively simple neural network. The colors generated by
the estimated curves are also shown as another visual indication
of the accuracy of the estimation.

Actual Sensor Estimates
With the network fully trained, we wished to estimate some

real sensors with unknown sensitivity curves. For standard RGB
sensors, we supplied the trichromatic data of demosaiced images
from an iPhone X, a Motorola One Vision, and a Motorola G7, all
under D50 illumination. For non-RGB sensors, we supplied the
trichromatic data from one RCCB sensor and one RYYCy sen-
sor both under D65 illumination. The estimated RGB curves are
shown in Figure 9, and the estimated non-RGB curves are in Fig-
ure 10. Because the ground truth curves are not available to us,
we validate the estimations by using the estimated curves to re-
construct the chart colors using the same method as generating
the training data colors. The images were taken on a test bench,
so we assume the illuminant is accurate, and we applied the proper
illuminants without any LED error. The actual and estimated col-
ors are shown in the same figures as the estimated curves. To
calculate the color error between the actual and estimated col-
ors, we used DeltaE 2000, a standard measurement of color error
described in [8]. The relatively low DeltaE values of the recon-
structed images, shown in Table 1, lead us to believe that these are
good approximations of the actual sensitivity curves. We also cal-
culated DeltaC for each estimate, which is the same as DeltaE, but
neglects the luminance value in LAB color space. A low DeltaC
means that there is good chromatic accuracy even if the two colors
are off in terms of luminance. The DeltaC values are also shown
in Table 1. We see that most of the DeltaC values are slightly
smaller than the corresponding DeltaEs, but in the RYYCy case
we see a large increase in accuracy. This means that, in this case,
our estimated colors are accurate in terms of chromaticity but are
generally a little high or low in luminance.

Sensor Maximum DeltaE/C Average DeltaE/C
iPhone 6.14 / 5.92 4.40 / 3.72
Moto One 6.26 / 5.65 2.72 / 1.93
Moto G7 5.68 / 5.49 2.56 / 1.79
RCCB 4.52 / 3.63 2.80 / 2.29
RYYCy 9.75 / 3.77 4.19 / 2.17

Table 1: DeltaE and DeltaC 2000 values from estimated curves

Comparison
The study by Tominaga et al [4] used a principal components

technique for estimating the sensitivity curves of mobile phone
cameras. They relied on the fact that all of the mobile phone cam-
eras they measured had very similar shaped curves. Because the
shapes of all curves were so similar, they were able to make good
estimates using only the first principal component of the aver-
age curves. This estimation method only works for curves which
have a similar shape to Figure 11. Our method expands on this by
including RGB sensors with various curve shapes including the
wide variety of curves represented in DSLR image sensors.

Figure 11: Average shape of all curves measured in [4]

Ji et al [2] also expanded the problem to a more general RGB
curve shape, but using a compressive sensing approach. Rather
than estimating the curves directly, they use a set of Gaussian ba-
sis functions and attempt to solve the equation:

C = RT
chart ∗Ψ∗ s (5)

Where C and Rchart are the same as above, Ψ is the basis
functions, and s is a matrix of weights which, together with Ψ,
generate the sensitivity curves. They achieved this by minimizing
the following loss function using the CVX convex optimization
algorithm in MATLAB:

1
2
||C−Φ∗ s||22 + γ||s||1 (6)

Where Φ = RT
chart ∗Ψ, and γ is a constant weight. The l2

norm represents a least squares minimization used to solve Equa-
tion 5, and the added l1 norm encourages sparsity which helps the
estimate follow a Gaussian shape by using as few basis functions
as possible. This approach works well for estimating RGB curves
that have a Gaussian shape to them, but when we attempt an es-
timation of the RYYCy filter in Figure 12a we get the curve in

IS&T International Symposium on Electronic Imaging 2023
Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications 199-5

Figure 12: CVX estimation of RYYCy curves. The shape is not
followed closely because it is not Gaussian, which is expected of
most RGB filters.

Figure 12b. The non-gaussian shape of the curve makes the mini-
mization problem much harder because we are not able to rely on
Gaussian basis functions. Instead, we use the power of the large
number of weights and biases in even our small neural network to
estimate the curves directly.

Another machine learning approach to this estimation prob-
lem was proposed by He et al [3]. They used a confidence voting
convolutional neural network which included 6 convolutional lay-
ers, 5 pooling layers, and a confidence voting layer. The network
would take in an entire image and output estimates of the sen-
sor curves using various basis functions. Their network is much
more complex than ours and again only deals with standard RGB
color filters. In comparison, we simplified the network to our rel-
atively small fully connected neural network that only takes in 24
tri-chromatic values rather than an entire image. At the same time
we expanded the problem by including non-RGB filters in our
training data to allow estimation on a broader range of sensors.

Conclusion
This paper describes a method to estimate the sensitivity

curves of a camera using a single demosaiced image of a color
chart with known reflectances. Our method directly estimates
the curves without relying on basis functions, and does not re-
quire knowledge of the scene illumination. Our method expands
on previous work by being able to estimate the sensitivity curves
of a camera without assuming a RGB color filter array. We in-
troduce examples of RCCB and RYYCy color filters which have
been shown to have benefits in the automotive and security cam-
era fields. The addition of new types of color filters made this a
more complicated problem because there are very large variations
in the shapes of curves when comparing two different filters. This
means we could not rely on principal components with simple
shapes as in [4] and we had to make sure the network was not
biased toward any particular shape. The results of this project
are promising for the development of a simple estimation method
that generalizes to any color filter, and requires nothing more than
a raw image of a color chart under some unknown illumination.

References
[1] Eiichi Funatsu, Steve Wang, Jken Vui Kok, Lou Lu, Fred Chen, Mario

Heid. “Non-RGB Color Filter Options and Traffic Signal Detection
Capabilities.” Electronic Imaging, vol. 34, no. 16, 2022, pp. 215–1.
Crossref, https://doi.org/10.2352/ei.2022.34.16.avm-215.

[2] Yuhyun Ji, Yunsang Kwak, Sang Mok Park, Young L. Kim. “Com-
pressive Recovery of Smartphone RGB Spectral Sensitivity Func-
tions.” Optics Express, vol. 29, no. 8, 2021, p. 11947. Crossref,
https://doi.org/10.1364/oe.420069.

[3] Tianyue He, Qican Zhang, Mingwei Zhou, Junfei Shen. “CVNet:
Confidence Voting Convolutional Neural Network for Camera Spec-
tral Sensitivity Estimation.” Optics Express, vol. 29, no. 13, 2021, p.
19655. Crossref, https://doi.org/10.1364/oe.425988.

[4] Shoji Tominaga, Shogo Nishi, Ryo Ohtera. “Measurement and
Estimation of Spectral Sensitivity Functions for Mobile Phone
Cameras.” Sensors, vol. 21, no. 15, 2021, p. 4985. Crossref,
https://doi.org/10.3390/s21154985.

[5] Thomas Mansencal, Michael Mauderer, colour-science python pack-
age. https://github.com/colour-science/colour

[6] Johanne Roby, LSPDD: Lamp Spectral Power Distribution Database.
https://lspdd.org/app/en/home

[7] Jinwei Gu, Camera Spectral Sensitivity Database.
https://www.gujinwei.org/research/camspec/db.html

[8] Bruce Justin Lindbloom, Useful Color Information, Studies and Files.
http://www.brucelindbloom.com/Eqn DeltaE CIE2000.html

[9] Alex Lenail, NN-SVG. http://alexlenail.me/NN-SVG/index.html

Author Biography
Abraham Sachs is a senior at UC Davis completing a BS in electrical

engineering with minors in music and mathematics, graduating in June of
2023. He plans to complete a PhD in electrical engineering. He was
an intern at Omnivision during the summer of 2022 where he researched
color processing.

Ramakrishna Kakarala is Director of Algorithm Development at
Omnivision. He received his PhD in Mathematics from the University
of California, Irvine, in 1992.

199-6
IS&T International Symposium on Electronic Imaging 2023

Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications

