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Abstract
Gloss perception is a complex psychovisual phenomenon,

whose mechanisms are not yet fully explained. Instrumentally
measured surface reflectance is usually poor predictor of human
perception of gloss. The state-of-the-art studies demonstrate that,
in addition to surface reflectance, object’s shape and illumination
geometry also affect the magnitude of gloss perceived by the hu-
man visual system (HVS). Recent studies attribute this to image
cues — the specific regularities in image statistics that are gen-
erated by a combination of these physical properties, and that, in
their part, are proposedly used by the HVS for assessing gloss.
Another study has recently demonstrated that subsurface scat-
tering of light is an additional factor that can play the role in
perceived gloss, but the study provides limited explanation of this
phenomenon. In this work, we aimed to shed more light to this ob-
servation and explain why translucency impacts perceived gloss,
and why this impact varies among shapes. We conducted four
psychophysical experiments in order to explore whether image
cues typical for opaque objects also explain the variation of per-
ceived gloss in translucent objects and to quantify how these cues
are modulated by the subsurface scattering properties. We found
that perceived contrast, coverage area, and sharpness of the high-
lights can be combined to reliably predict perceived gloss. While
sharpness is the most significant cue for assessing glossiness of
spherical objects, coverage is more important for a complex Lucy
shape. Both of these observations propose an explanation why
subsurface scattering albedo impacts perceived gloss.

Introduction and Background
Gloss is an important property of objects and materials that

has a large impact on how they look. The International Com-
mission on Illumination names gloss among the four fundamen-
tal attributes of visual appearance, along with color, translucency,
and texture [1]. According to the ASTM Standard Terminology
of Appearance [2], gloss is ”angular selectivity of reflectance, in-
volving surface-reflected light, responsible for the degree to which
reflected highlights or images of objects may be seen as super-
imposed on a surface.” While numerous methods have been de-
veloped over the past century to measure gloss and surface re-
flectance properties, instrumentally measured gloss is a poor pre-
dictor of how glossy the measured material appears to a human
eye [3, 4, 5], and it remains an open question how the human
visual system (HVS) separates these reflections of the surround
in the proximal stimulus. Interestingly, even when surface re-
flectance function is kept constant, its apparent gloss can vary
considerably, being impacted by multiple factors, such as illumi-
nation [6, 7], and the 3D shape of an object it is presented in [8, 9].

These factors have motivated numerous studies on visual

gloss perception. It is proposed that the HVS relies on statisti-
cal regularities in the image of the environment to perceive gloss
– for instance, the skewness or a similar measure of luminance
histogram asymmetry has been proposed as a candidate cue [10]
(see [4] and [5] for a comprehensive review on gloss perception).

Marlow, Kim, and Anderson [11] attempted to explain the
exact mechanisms of how and why the extrinsic factors affect
gloss. They showed that variability of perceived gloss is well ex-
plained by specific image regularities: sharpness, contrast, cov-
erage area, and depth of specular reflections. In the subsequent
work, Marlow and Anderson [12] further explored how variation
in surface geometry and illumination modulate sharpness, con-
trast, and coverage cues – and hence, perceived gloss.

The overwhelming majority of the studies on gloss percep-
tion have focused on fully opaque materials. However, many
glossy objects and materials that we encounter in our daily lives
are also translucent, such as water and ice, glass, plastic, mar-
ble, and human skin. If perceived gloss depends on image statis-
tics, these statistics depend - among other factors - on material’s
translucency as well. Gigilashvili et al. [13, 14] asked human
observers to judge glossiness of five spherical objects with iden-
tical surface reflectance but different translucency. They have ob-
served that translucency impacted their judgments of gloss. While
one group of observers considered opaque ones glossier, as they
could use the objects as a mirror due to larger contrast, another
group, on the other hand, considered translucent ones glossier as
they shone more strongly. In the subsequent study, they used ob-
jects with a complex surface geometry that did not preserve the
mirror image of the environment. In that case, translucent ones
were selected by the majority [15]. Being inspired from these
findings, Gigilashvili et al. [16] used computer graphics to care-
fully control subsurface scattering properties in the stimuli. They
observed that even if surface reflectance is identical, subsurface
scattering properties can affect perceived gloss. However, they
noticed that this impact differs among shapes. For instance, if sub-
surface scattering albedo is negatively correlated with perceived
gloss for spherical objects, the correlation is positive for a com-
plex Lucy shape. Although Gigilashvili et al. [16] hypothesize
that subsurface scattering properties may be modulating image
cues proposed by Marlow and Anderson [12] in a similar manner
as done by surface geometry and illumination, the credible expla-
nation on why translucency affects perceived gloss is yet to be
proposed.

While separate works in the past have demonstrated that on
the one hand, translucency affects apparent gloss, and, on the
other hand, apparent gloss depends on sharpness, contrast, and
coverage area of the highlights, the objective of this study is to
investigate why translucency modulates perceived gloss, why the
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impact of translucency on gloss differs among the shapes, whether
these phenomena can be explained by the modulation of the im-
age cues proposed in [11, 12]. Understanding how optical proper-
ties affect material appearance and exactly why, is vital for under-
standing humanly mechanisms of material appearance perception.
The literature demonstrating that translucency impacts apparent
gloss is itself limited, and to the best of our knowledge, this work
is the first attempt to explain the underlying mechanisms of this
impact, which is the key novelty of this work.

The article is organized as follows: we describe the research
methodology in the next section. In the subsequent section, we
first analyze the results, and then discuss them in context of the
state-of-the-art. Finally, we conclude and propose directions for
the future work.

Methodology
This section describes the research methodology. To investi-

gate how image cues correlate with the impact of translucency on
perceived gloss, we conducted psychophysical experiments with
the visual stimuli used by Gigilashvili et al. [16]. As there is no
universal way to quantify the image cues (proposedly used by the
HVS) with image statistics, we decided to quantify perceived con-
trast, sharpness, and coverage area of the highlights psychophysi-
cally, similarly to [11, 12]. Marlow and Anderson assume that yet
unknown image statistics exist that quantify these perceptual cues
and ”whatever the appropriate image measurements are, they will
have to accurately capture how each of these cues is perceived in
a given context... For example, a perceptually relevant image-
based measurement of specular contrast will have to capture how
specular contrast is perceived in a given image” [12]. Our study
is also based on the expectation that this assumption holds.

Experimental Protocol
Being inspired from [11, 12], we conducted four pair-

comparison experiments, where observers were shown pairs of
translucent objects, which they had to compare by one of the
four criteria, in the following order, respectively: total glossi-
ness, perceived contrast between specular and non-specular re-
gions, perceived size of the highlights (coverage), and perceived
sharpness of the highlights. The rationale behind using the
pair-comparison experimental protocol is bi-fold: first of all,
we wanted to be consistent with previous works [11, 16]; sec-
ondly, the pilot experiments, as well as previous studies have in-
dicated that pair-comparison is semantically easier task for the
observers, than triplet comparisons or more subjective magnitude
estimation [16, 17]. QuickEval tool was used to host the experi-
ments [18]. A sample comparison and the interface that have been
used in the experiment are illustrated in Figure 1.

Instructions
Before the experiments, definition of gloss, definition of the

respective cues, and real life examples of specular reflections were
given. It was confirmed by the authors that observers had a clear
understanding of the task. The above-mentioned ASTM definition
was provided for gloss [2]. The definitions for contrast, coverage,
and sharpness were taken from [12], and are as follows:

• Contrast – ”the difference in luminance between a specular
reflection and its surround”;

Figure 1: A sample scene from the experimental interface.

• Coverage – ”the proportion of a visible surface area occu-
pied by specular reflections”;

• Sharpness – ”the slope of the luminance gradient at the edge
of a reflection”;

Observers were allowed to ask questions during the experi-
ment. The instructions were given before each experiment. They
could access them anytime in the user interface. The instructions
were as follows:

• Exp. 1, Glossiness: Choose the image with higher gloss;

• Exp. 2, Contrast: Choose the image with higher contrast;

• Exp. 3, Coverage: Choose the image with higher coverage;

• Exp. 4, Sharpness: Choose the image with higher sharpness.

Observation Conditions
Although a web-based tool was used to host the experi-

ments [18], the observers completed the task in fully-controlled
laboratory conditions. All experiments were conducted on a
sRGB calibrated EIZO CG246 ColorEdge display, with a gamma
of 2.2, a whitepoint color temperature of 6500K, and a luminance
of 80 cd/m2. The distance between display and observer was 60
cm. The display resolution was 1920×1080, and the image size
was 13.55cm (both horizontally and vertically), occupying ap-
proximately 12.88° of the field of view. The experiments were
performed in full display view. A progress indicator was shown
in the top right corner of the display.

Observers
22 observers participated in all four experiments. The major-

ity of the observers were first- and second-year Computer Science
students with experience in image processing and color science.
Three researchers from NTNU ColourLab have also participated
in the experiments. All participants had normal color vision and
normal or corrected-to-normal visual acuity.

Stimuli
We used a subset of the stimuli used by Gigilashvili et

al. [16]. To explain the cross-shape differences observed in [16],
two different shapes were used: a perfect sphere and a Stanford
Lucy [19]. 12 different materials were selected per shape that
varied in surface roughness (α), extinction coefficient (σT), and
subsurface scattering albedo. The properties of these materials
are given in Table 1. The images are illustrated in Figure 2. The
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Figure 2: The images used in the experiment. The numbers on the left correspond to α for a given row, while a pair of numbers on top of
the images correspond to σT and albedo for a given column. All images were used in and are reproduced from [16].

Table 1: The table summarizes material properties used to gen-
erate images of spherical (left, yellow), and Lucy (right, lilac)
objects. Each row in each half of the table corresponds to each
material (triplet of α , σT, and albedo).

Sphere Lucy
α σT Albedo α σT Albedo
0 0.1 0.5 0 0.5 0.8
0 2 0.6 0 3 0.4
0 3 0.3 0 3 0.7
0 4 0.9 0 5 0.1

0.1 0.1 0.5 0.1 0.5 0.8
0.1 2 0.6 0.1 3 0.4
0.1 3 0.3 0.1 3 0.7
0.1 4 0.9 0.1 5 0.1

0.25 0.1 0.5 0.25 0.5 0.8
0.25 2 0.6 0.25 3 0.4
0.25 3 0.3 0.25 3 0.7
0.25 4 0.9 0.25 5 0.1

images had 512×512 pixel resolution, they were displayed on a
neutral gray background. The objects were compared only with
the objects of the same shape, which led to 132 comparisons per
experiment for both shapes combined. On average, it took 8-10
minutes to complete one experiment. The stimuli were shown in
a random order.

Analysis and Discussion
In this section, we present and discuss the results.

Z-scores
First of all, we calculated Z-scores for total glossiness scores

to visualize which objects appeared glossier than others and to
check whether the results from the previous work using these
stimuli [16] are reproduced. Z-score plots are given in Figures 3
and 4 for sphere and Lucy, respectively. These plots are not di-
rectly comparable with similar plots in [16], because Z-score is
a relative measure to the rest of the stimuli, and objects in [16]

were compared primarily with objects with the same roughness,
as well as with additional materials not addressed in this article.
However, we can still compare and discuss overall trends. The
trends are very much similar to that of [16]. Roughness has a
significant impact on glossiness of spheres. When a sphere is
smooth, a transparent one (i.e. low σT) and the ones with low
albedo are considered glossier, while the ones with high albedo
are less glossy. The differences within the same roughness group
decrease for rougher spheres. Similarly to [16], the opposite trend
was observed for Lucy. The differences are smaller for a smooth
Lucy, and they increase for rougher objects. For rough Lucy ob-
jects, as in [16], if σT is low, or if both σT and albedo are high,
Lucy appears glossier than others. The Lucy with low σT is sig-
nificantly glossier than other materials with the same roughness
and is equally glossy as smoother objects.

Gloss as a Weighted Average of the Cues
Afterward, similarly to previous works [11, 12], we ana-

lyze whether total gloss judgment can be presented as a weighted
average of sharpness, coverage, and contrast. We followed the
methodology presented in [11]. Marlow et al. [11] demonstrated
that cues can be combined in a linear manner, and their best fit
accounted for 94% of the variance in apparent gloss judgments.

Pair comparison data was converted into scores from 0 to
100, where the score for a given stimulus corresponds to the per-
centage of the cases out of all comparisons in a given experiment
when a given stimulus was selected. Afterward, for each shape,
total perceived gloss value is presented as a weighted average of
the three perceived cues (Equation 1), where the weights sum up
to 100% (Equation 2).

Gloss=W 1×Contrast+W 2×Coverage+W 3×Sharpness (1)

, where:

W 1 +W 2 +W 3 = 1 (2)

In order to find the best fit, we used a brute force approach to
test all possible combinations of W1, W2, and W3 that satisfy
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Figure 3: Z-scores for sphere. Z-scores are given on a vertical
axis. The materials are grouped by surface roughness along the
horizontal axis. The numbers on the top correspond to respective
σT and albedo. Red squares correspond to the Z-score, while the
whiskers extend to the 95% confidence interval. Identical vari-
ance is assumed.
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Figure 4: Z-scores for Lucy.

Equation 2, changing them with the steps of 0.01. The triplet
of the weights with the least sum of squared residuals (i.e. the
difference between actual total gloss and predicted total gloss
for a given triplet) was selected, and is given in Equation 3 for
sphere and Equation 4 for Lucy, respectively. With these models,
the weighted average of the perceived cues accounted for 99%
and 98% of the variance in total gloss judgments for sphere and
Lucy, respectively (with a p-value orders of magnitude smaller
than 0.01).

GlossSphere = 0.1×Contrast+0.3×Coverage+0.6×Sharpness
(3)

GlossLucy = 0.2×Contrast+0.54×Coverage+0.26×Sharpness

(4)

As we see from Equation 3, sharpness of the highlights has the
largest weight, with coverage coming next, while contrast con-
tributes just 10% to the sum. The model is different for Lucy
(Equation 4); in this case, coverage weights most, while sharp-
ness and contrast are relatively less impactful.

Heatmaps
To get a better understanding of how measured image

cues co-vary with subsurface scattering properties, we produced

heatmaps (Figure 5), and plotted the scores for all individual stim-
uli (Figure 6). Above-mentioned scores on a 0-100 scale are
shown in a tabular format in Figure 5, where the higher the value
– the green the cell; and the lower the value – the redder the cell.
We can observe in the heatmap that the color difference among
the roughness groups is very apparent for sphere and less appar-
ent but still noticeable for Lucy, which is consistent with the Z-
scores. If we refer to smooth objects, we can observe that for
transparent (low σT) materials, contrast is rather low, which is
also the case for the ones with high albedo. However, for transpar-
ent Lucy coverage is very high, which is not the case for sphere.
For sphere, low albedo usually produces sharp highlights with
high contrast and coverage. For Lucy, low albedo also produces
somewhat higher contrast and sharpness, but coverage is rather
low. For rough spheres with high albedo, slightly higher coverage
compensates for low contrast and sharpness, in the end producing
almost equal glossiness for all materials. For rough Lucy, high
coverage is usually responsible for high total gloss values. On the
other hand, rough Lucy with low albedo – although its contrast
and sharpness are relatively high – has very small coverage, and
hence, lower gloss.

Afterward, refer to the plots in Figure 6. The shape of the
curves shows that all four scores are highly correlated for sphere,
while their shape is less similar for Lucy. Low albedo usually
leads to considerably larger contrast for all spheres. However, low
albedo produces sharper highlights only for smoother spheres and
is not capable of increasing sharpness for very rough ones. There-
fore, the negative correlation between albedo and gloss disappears
with the increase in roughness. However, low albedo slightly in-
creases coverage in the latter case. As for Lucy, we can notice that
it is usually high coverage that increases glossiness of low σT as
well as high σT and high albedo materials, despite their sharpness
and contrast being relatively low. When albedo is low, coverage
goes down, while sharpness and contrast go up.

Discussion
We have once again demonstrated that subsurface scattering

properties affect perceived magnitude of gloss, and the nature of
this impact is different between the shapes, being largely consis-
tent with [16]. Similarly to Marlow, Kim, and Anderson [11],
we have been able to linearly combine perceived image cues, and
the weighted average of contrast, coverage, and sharpness ac-
counted for nearly 99% of the variation in perceived glossiness
data. However, the weights differed dramatically between the
two shapes. While sharpness was the most significant contribut-
ing predictor for sphere, it was coverage that contributed most to
the total glossiness of Lucy. This observation is highly consis-
tent with a recent study by Gigilashvili and Islam [17], where the
authors reported that changing surface roughness had a stronger
impact on the glossiness of a sphere than on that of Lucy, which
the authors explained by blurring the nearly mirror-like reflection
image of the surround that is observable on a simple spherical
object and not on Lucy.

This can be an indication that observers primarily assess
sharpness of the reflections when they are clear and contain se-
mantic content, as is the case for sphere. On the other hand, com-
plex shapes, such as Lucy, do not permit us to see the detailed
image of the environment and rather produce homogeneous satu-
rated areas of highlights. The clarity of the reflected image, which
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Figure 5: The heatmaps show the scores for a material with properties specified in a given row. The scores range from 0 to 100 and show
the percentage of the cases when a given stimulus was selected in a given experiment. The larger the score, the greener the cell; and
conversely, the lower the score, the redder the cell. We can observe that redder cells are usually concentrated in high roughness (Alpha)
rows. High albedo usually produces low contrast but high coverage for Lucy.

Figure 6: Total Glossiness, Contrast, Coverage, and Sharpness scores for each of the 12 materials. The material names are specified in
the horizontal axis, in α-σT-albedo format. The scores range from 0 to 100 and show the percentage of the cases when a given stimulus
was selected in a given experiment. We can notice that the curves are more aligned for sphere than this is the case for Lucy. Low σT or
high albedo usually produces high coverage, and thus, relatively high glossiness for Lucy.

depends on sharpness as well as contrast, is what observers may
be primarily assessing on spherical objects; on the other hand, the
primary cue that observers base their judgments on for Lucy is
the overall area covered by the highlights rather than sharpness
and contrast. The latter fact demonstrates that the HVS has a poor
ability to invert optics and recover reflectance, and highlights re-
sulting from subsurface scattering are easily mistaken for specular
reflections, as is the case for Lucy in this work. In post experi-
ment interviews, the observers considered Lucy more challenging
to assess in all four experiments, due to its complex shape.

Gigilashvili et al. [16] reported that the correlation between
albedo and gloss was negative for smooth spheres, and positive
for Lucy and rough spherical objects. The explanation for this
can be albedo’s negative impact on sharpness and contrast in the
former case, and its positive impact on coverage in the latter case.
However, the findings need to be taken with care, as the study
is based on small subset of materials. It is important in future

works to have better sampling of materials, and to change σT and
albedo in small steps, while fixing all other parameters, to model
more accurately how each individual subsurface scattering prop-
erty modulates each individual image cue. Pair-comparisons need
to be conducted with fixed roughness levels to capture the subtle
variations, which may be hidden by large roughness differences.

Finally, this work was based on the assumption that there are
measurable image metrics that quantify perceived gloss. We at-
tempted to predict perceived gloss with handcrafted image statis-
tics extracted from the pixel intensities, such as standard devia-
tion divided by mean for contrast; number of pixels with intensity
above a given threshold divided by the total number of pixels – for
coverage; the slope of the intensity curve across the section start-
ing from the highlights and ending in the neighboring areas, or
no reference image quality metrics, such as Natural Image Qual-
ity Evaluator (NIQE) [20] – for sharpness. None of these statis-
tics demonstrated performance comparable to that of psychophys-

IS&T International Symposium on Electronic Imaging 2023
Color Imaging XXVIII: Displaying, Processing, Hardcopy, and Applications 191-5



ically measured contrast, coverage, and sharpness. Therefore, au-
tomatic measurement of image cues and subsequent prediction of
apparent gloss from pixel values remain an open question.

Conclusion and Future Work
This work partially reproduced the results from previous

works, demonstrating that subsurface scattering contributes to
perceived gloss, and this contribution varies between shapes [13,
14, 15, 16]. While previous works managed to model perceived
gloss as a linear combination of perceived contrast, coverage area,
and sharpness of the highlights for completely opaque materials,
we have been able to repeat the same for highly translucent and
transparent materials. We identified interesting trends in how sub-
surface scattering properties modulate these image cues that the
human visual system proposedly relies on for gloss perception.
Low albedo increases contrast between specular and non-specular
parts and makes reflections appear sharper – that subsequently
makes the reflected image of the surrounding more discernible.
This can be why smooth spheres with low albedo appear glossier
than the ones with high albedo. On the other hand, if surface
roughness or a complex shape make it impossible to observe the
reflected image, observers usually attend to the overall area cov-
ered by highlights. High subsurface scattering albedo in this kind
of objects produces large areas of highlights, which are mistaken
for specular reflections and stronger gloss.

While this work indicates that image cues explain why
translucency impacts perceived gloss, we need denser sampling
of materials to model this relationship. This should be addressed
in the future. Apart from that, we have not been able to identify
any handcrafted image statistics for quantifying contrast, cover-
age, and sharpness, that could potentially predict perceived gloss
as precisely as done by their psychophysically measured counter-
parts. If such measures exist, their mathematical definition could
make it possible to predict apparent gloss from image intensities
alone. This topic deserves a rigorous study in future works.
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